1
|
Dulle M, Seifert R. Ivermectin repurposing for COVID-19: pharmacological and bibliometric analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04233-5. [PMID: 40327060 DOI: 10.1007/s00210-025-04233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Since the onset of the COVID-19 pandemic in March 2020, researchers worldwide have sought effective drugs to prevent and manage SARS-CoV-2 and its spectrum of symptoms. Ivermectin, originally developed as an anthelmintic for controlling parasitic infections in humans and animals, has drawn attention based on the hypothesis that it inhibits viral replication. In Austria, ivermectin usage peaked in November 2021, following promotion by the right-wing Freedom Party of Austria (FPÖ) as an alternative treatment to vaccination, resonating strongly within anti-vaccine and skeptical communities. The topic is also very present in the United States of America due to the re-election of D. Trump as US President and the designation of R. Kennedy as the United States' Secretary of Health and Human Services. To critically examine the controversial use of ivermectin for COVID-19 and publication trends during the pandemic, this study analysed all publications listed in PubMed from 1 January 2020 to 31 December 2022 using the keywords 'ivermectin' and 'COVID-19', resulting in a dataset of 353 publications. These publications were assessed for scientific quality, methodological rigour and bias, with particular focus on the influence of social and political dynamics on publication practices, as well as the prevalence of preprints, citation trends and the role of funding sources. Our study shows that many highly cited studies on ivermectin display methodological weaknesses and data gaps, contributing to the propagation of hypotheses lacking substantial empirical support. This analysis underscores the necessity of rigorous quality control during crises and highlights the long-term risks posed to scientific databases and public health by methodologically deficient research.
Collapse
Affiliation(s)
- Maresa Dulle
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
2
|
Alvisi G, Manaresi E, Pavan S, Jans DA, Wagstaff KM, Gallinella G. Avermectins Inhibit Replication of Parvovirus B19 by Disrupting the Interaction Between Importin α and Non-Structural Protein 1. Viruses 2025; 17:220. [PMID: 40006975 PMCID: PMC11860776 DOI: 10.3390/v17020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Human parvovirus B19 (B19V) is a major human pathogen in which the ssDNA genome is replicated within the nucleus of infected human erythroid progenitor cells (EPCs) through a process involving both cellular and viral proteins, including the non-structural protein (NS)1. We previously characterized the interaction between NS1 classical nuclear localization signal (cNLS: GACHAKKPRIT-182) and host cell importin (IMP)α and proposed it as a potential target for antiviral drug development. Here, we further extend on such findings. First, we demonstrate that NS1 nuclear localization is required for viral production since introducing the K177T substitution in a cloned, infectious viral genome resulted in a non-viable virus. Secondly, we demonstrate that the antiparasitic drug ivermectin (IVM), known to inhibit the IMPα/β dependent nuclear import pathway, could impair the NS1-NLS:IMPα interaction and suppress viral replication in UT7/EpoS1 cells in a dose-dependent manner. We also show that a panel of structurally related avermectins (AVMs) can dissociate the NS1-NLS:IMPα complex with half-maximal inhibitory concentrations in the nanomolar range. Among them, Eprinomectin emerged as the most selective inhibitor of B19V replication, with a selectivity index of c. 5.0. However, when tested in EPCs generated from peripheral blood mononuclear cells, which constitute a cellular population close to the natural target cells in bone marrow, the inhibitory effect of IVM and Eprinomectin was demonstrated to a lesser extent, and both compounds exhibited high toxicity, thus highlighting the need for more specific inhibitors of the NS1-NLS:IMPα interaction.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Kylie M. Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, VIC 3800, Australia; (D.A.J.); (K.M.W.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
3
|
Ma B, Gu C, Lu R, Lian P, Wang W, Huang Z, Su Z, Wang H. Inhibition of KPNA2 by ivermectin reduces E2F1 nuclear translocation to attenuate keratinocyte proliferation and ameliorate psoriasis-like lesions. Int Immunopharmacol 2024; 143:113360. [PMID: 39388894 DOI: 10.1016/j.intimp.2024.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Psoriasis is a chronic, immune-mediated skin disease with a significant global prevalence. Karyopherin subunit alpha 2 (KPNA2), a nuclear transport protein involved in cellular activities such as differentiation, proliferation, apoptosis, and immune response, has emerged as a potential biomarker in several diseases. Our study found that KPNA2 was significantly upregulated in psoriasis patients and in imiquimod (IMQ)-induced psoriasis mouse models by bioinformatics and molecular biotechnology. In vivo, treatment with ivermectin, a KPNA2 inhibitor, significantly improved psoriasis symptoms in mice as evidenced by reduced erythema, desquamation, and skin thickness. Histopathological staining revealed decreased expression of KPNA2, K17, and Ki67 in ivermectin-treated mice, suggesting reduced abnormal differentiation and proliferation of keratinocytes. Transcriptome data and immunoblotting analysis showed that KPNA2 inhibition reduced inflammation and keratinocyte proliferation and differentiation in IMQ-induced mice. In vitro, EdU (5-ethynyl-2'-deoxyuridine) and flow cytometry experiments demonstrated that the downregulation of KPNA2 expression in HaCaT cells was capable of inhibiting the EGF (Epidermal Growth Factor)-induced activation of AKT/STAT3 signaling and keratinocytes proliferation. In addition, nuclear-cytoplasmic protein separation and immunofluorescence localization experiments showed that KPNA2 inhibition affected the nuclear translocation of E2F transcription factor 1 (E2F1), a process critical for keratinocyte proliferation. This study elucidated the role of KPNA2 in the pathogenesis of psoriasis and highlighted its potential as a target for future psoriasis therapies. These findings provide new insights into targeted therapy for psoriasis and have significant implications for future clinical treatment.
Collapse
Affiliation(s)
- Bojie Ma
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Chaode Gu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Renwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Panpan Lian
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Wentong Wang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zhiqiang Huang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
4
|
Lin HS, Li CH, Chen LW, Wang SS, Chen LY, Hung CH, Lin CL, Chang PJ. The varicella-zoster virus ORF16 protein promotes both the nuclear transport and the protein abundance of the viral DNA polymerase subunit ORF28. Virus Res 2024; 345:199379. [PMID: 38643859 PMCID: PMC11061344 DOI: 10.1016/j.virusres.2024.199379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.
Collapse
Affiliation(s)
- Huang-Shen Lin
- Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Han Li
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
5
|
Zia S, Sumon MM, Ashik MA, Basar A, Lim S, Oh Y, Park Y, Rahman MM. Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches. Animals (Basel) 2024; 14:1283. [PMID: 38731287 PMCID: PMC11083254 DOI: 10.3390/ani14091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.
Collapse
Affiliation(s)
- Sabbir Zia
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Mehedi Sumon
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Md-Ashiqur Ashik
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Abul Basar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| | - Sangjin Lim
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yeonsu Oh
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Yungchul Park
- College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (S.Z.); (M.-M.S.); (M.-A.A.); (A.B.)
| |
Collapse
|
6
|
Kaur B, Blavo C, Parmar MS. Ivermectin: A Multifaceted Drug With a Potential Beyond Anti-parasitic Therapy. Cureus 2024; 16:e56025. [PMID: 38606261 PMCID: PMC11008553 DOI: 10.7759/cureus.56025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Ivermectin was first discovered in the 1970s by Japanese microbiologist Satoshi Omura and Irish parasitologist William C. Campbell. Ivermectin has become a versatile pharmaceutical over the past 50 years. Ivermectin is a derivative of avermectin originally used to treat parasitic infections. Emerging literature has suggested that its role goes beyond this and may help treat inflammatory conditions, viral infections, and cancers. Ivermectin's anti-parasitic, anti-inflammatory, anti-viral, and anticancer effects were explored. Its traditional mechanism of action in parasitic diseases, such as scabies and malaria, rests on its ability to interfere with the glutamate-gated chloride channels in invertebrates and the lack of P-glycoprotein in many parasites. More recently, it has been discovered that the ability of ivermectin to block the nuclear factor kappa-light-chain enhancer of the activated B (NF-κB) pathway that modulates the expression and production of proinflammatory cytokines is implicated in its role as an anti-inflammatory agent to treat rosacea. Ivermectin has also been evaluated for treating infections caused by viruses, such as SARS-CoV-2 and adenoviruses, through inhibition of viral protein transportation and acting on the importin α/β1 interface. It has also been suggested that ivermectin can inhibit the proliferation of tumorigenic cells through various pathways that lead to the management of certain cancers. The review aimed to evaluate its multifaceted effects and potential clinical applications beyond its traditional use as an anthelmintic agent.
Collapse
Affiliation(s)
- Baneet Kaur
- Department of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Cyril Blavo
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Mayur S Parmar
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| |
Collapse
|
7
|
Ma Y, Guo X, He Q, Liu L, Li Z, Zhao X, Gu W, Zhong Q, Li N, Yao G, Ma X. Integrated analysis of microRNA and messenger RNA expression profiles reveals functional microRNA in infectious bovine rhinotracheitis virus-induced mitochondrial damage in Madin-Darby bovine kidney cells. BMC Genomics 2024; 25:158. [PMID: 38331736 PMCID: PMC10851472 DOI: 10.1186/s12864-024-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.
Collapse
Affiliation(s)
- Yingcai Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueping Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qin He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zelong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, China
| | - Wenxi Gu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
8
|
Patho B, Grant DM, Percival A, Russell GC. Ivermectin inhibits replication of the malignant catarrhal fever virus alcelaphine herpesvirus 1. Virology 2024; 590:109958. [PMID: 38071929 DOI: 10.1016/j.virol.2023.109958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Malignant catarrhal fever is a lymphoproliferative disease of cattle and other ungulates that is caused by genetically and antigenically related gamma herpesviruses of the genus Macavirus. Infection of the natural host species is efficient and asymptomatic but spread to susceptible hosts is often fatal with clinical signs including fever, depression, nasal and ocular discharge. There is no recognised treatment for MCF but a vaccine for one MCF virus, alcelaphine herpesvirus 1 (AlHV-1), has been described. In this paper we describe the inhibition of AlHV-1 replication and propagation by the anthelminthic drug ivermectin. Concentrations of 10 μM or greater led to significant reductions in both copy number and viable titre of virus tested in culture medium, with little replication detected at over 20 μM ivermectin. In the absence of alternative treatments, further testing of ivermectin as a candidate antiviral treatment for MCF may therefore be justified.
Collapse
Affiliation(s)
- Blanka Patho
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Dawn M Grant
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - Ann Percival
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK
| | - George C Russell
- Moredun research Institute, Pentlands Science Park, Midlothian, EH26 0PZ, UK.
| |
Collapse
|
9
|
Liu B, Jiao XQ, Dong XF, Guo P, Wang SB, Qin ZH. Saikosaponin B2, Punicalin, and Punicalagin in Vitro Block Cellular Entry of Feline Herpesvirus-1. Viruses 2024; 16:231. [PMID: 38400007 PMCID: PMC10892935 DOI: 10.3390/v16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Hua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (B.L.); (X.-Q.J.); (X.-F.D.); (P.G.); (S.-B.W.)
| |
Collapse
|
10
|
Pérez S, Miró MV, Verna A, Altamiranda EG, Barcos O, Lanusse C, Lifschitz A. Ivermectin antiviral activity against Varicellovirus bovinealpha 1: assessment of intracellular drug accumulation in virus-infected cells. Arch Microbiol 2024; 206:78. [PMID: 38277061 DOI: 10.1007/s00203-023-03806-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Varicellovirus bovinealpha 1 (formerly bovine alphaherpesvirus type 1, BoAHV-1) is associated with several syndromes in cattle, including respiratory disease and is one of the main agents involved in the bovine respiratory disease complex (BRDC). Its infectious cycle is characterized by latent infections with sporadic virus reactivation and transmission. Although the acute disease can be prevented by the use of vaccines, specific therapeutic measures are not available. Ivermectin (IVM) is a semi-synthetic avermectin with a broad-spectrum antiparasitic activity, which has previously shown to have potential as an antiviral drug. In this study, IVM antiviral activity against BoAHV-1 was characterized in two cell lines (MDBK [Madin Darby bovine kidney] and BT [bovine turbinate]), including the measurement of intracellular drug accumulation within virus-infected cells. IVM antiviral activity was assessed at three different drug concentrations (1.25, 2.5 and 5 µM) after incubation for 24, 48 and 72 h. Slight cytotoxicity was only observed with 5 µM IVM. Even the lowest IVM dose was able to induce a significant reduction in virus titers in both cell lines. These findings indicate that the antiviral effects of IVM were evident in our experimental model within the range of concentrations achievable through therapeutic in vivo administration. Consequently, additional in vivo trials are necessary to validate the potential utility of these results in effectively managing BoAHV-1 in infected cattle.
Collapse
Affiliation(s)
- Sandra Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina.
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina.
| | - María Victoria Miró
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Andrea Verna
- Laboratorio de Virología, Área de Producción Animal, Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA- CONICET), Ruta Nacional 226 km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Erika Gonzalez Altamiranda
- Laboratorio de Virología, Área de Producción Animal, Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA- CONICET), Ruta Nacional 226 km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Oscar Barcos
- Laboratorio Colón, San Martin, Buenos Aires, Argentina
| | - Carlos Lanusse
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Adrian Lifschitz
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| |
Collapse
|
11
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
12
|
Wang C, Chen Y, Chen X, Hu C, Chen J, Guo A. Evaluation of Antiviral Activity of Ivermectin against Infectious Bovine Rhinotracheitis Virus in Rabbit Model. Animals (Basel) 2023; 13:3164. [PMID: 37893888 PMCID: PMC10603647 DOI: 10.3390/ani13203164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Infectious bovine rhinotracheitis (IBR) caused by bovine herpes virus 1 (BoHV-1) can lead to enormous economic losses in the cattle industry. Vaccine immunization is preferentially used to decrease its transmission speed and resultant clinical signs, rather than to completely stop viral infection. Therefore, a drug effective in treating IBR is urgently needed. Our previous work demonstrated that ivermectin significantly inhibited viral replication in a cell infection model. This study aimed to investigate its antiviral effects in vivo by using a rabbit infection model. The viral inhibition assay was first used to confirm that ivermectin at low concentrations (6-25 nM) could reduce viral titers (TCID50) significantly (p < 0.001) at 24 h post-infection. In rabbits, ivermectin was administrated with one to three doses, based on the recommended anti-parasite treatment dosage (0.2 mg/kg bodyweight) through subcutaneous injection at different days post-infection in the treated IBRV infection groups, while non-treated infection group was used as the control. The infected rabbits showed hyperthermia and other clinical signs, but the number of high-fever rabbits in the ivermectin treatment groups was significantly lower than that in the non-treated infection group. Furthermore, in ivermectin treatment groups, the cumulative clinical scores correlated negatively with drug doses and positively with delay of administration time post-infection. The overall nasal shedding time in ivermectin-treated groups was two days shorter than the non-treated challenge group. At the same time point, the titer of neutralizing antibodies in the treatment group with triple doses was higher than the other two-dose groups, but the difference between the treatment groups decreased with the delay of drug administration. Correspondingly, the serious extent of lung lesions was negatively related to the dosage, but positively related to the delay of drug administration. The qPCR with tissue homogenates showed that the virus was present in both the lung tissues and trigeminals of the infected rabbits. In conclusion, ivermectin treatment had therapeutic effect by decreasing clinical signs and viral shedding, but could not stop virus proliferation in lung tissues and trigeminals.
Collapse
Affiliation(s)
- Chen Wang
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ruminant Bio-Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Arshad S, Raza S, Rafique R, Altaf I, Sattar A. Lack of antiviral activity of ivermectin against foot-and-mouth disease virus serotype O in BALB/c mice. Microb Pathog 2023; 182:106245. [PMID: 37422171 DOI: 10.1016/j.micpath.2023.106245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Ivermectin is an FDA approved drug and showed in vitro antiviral activity against different serotypes of Foot-and-mouth disease virus (FMDV). We here assessed the effect of ivermectin in 12 day old female BALB/c mice infected with 50LD50 FMDV serotype O intraperitoneally. Initially FMDV was adopted on 3-day old BALB/c mice by blind passages. After successful adaptation of virus mice showed hind limb paralysis. Mice were divided in 6 different groups and each group has 6 mice. Ivermectin was given at clinically prescribed dose of 500 μg/kg subcutaneously at different time interval. Ivermectin was given at 0 h post infection (hpi) and 12 hpi. Moreover we compared commercially available ivermectin with purified ivermectin preparation in sterilized DMSO. Viral load was evaluated through RT-qPCR and ELISA in different groups. Results showed that positive control and negative control has CT-value 26.28 and 38 respectively. Treated groups at 0hpi, 12hpi, purified ivermectin and pre-post treatment group has CT values 24.89, 29.44, 27.26 and 26.69 respectively that showed there was no significant reduction in virus load in treated groups as compare to positive control. In histopathology of lung tissue perialveolar capillaries were congested and alveoli were altelactic. Some emphysema was seen in alveoli and mild thickening in the alveolar wall was observed. In the alveolar epithelium mononuclear cells infiltration was seen. There was discoloration haemorrhages and enlargement of heart. Degeneration, fragmentation and loss of sarcoplasm were seen in the cardiac muscle fibers. Above results showed that ivermectin did not lessen lung and heart viral load. This study contributes that ivermectin does not have a significant antiviral effect when used in mice against FMDV serotype O, according to a growing body of research.
Collapse
Affiliation(s)
- Sheeza Arshad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Rehan Rafique
- Foot-and-mouth disease Research Center, Lahore, Pakistan
| | - Imran Altaf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
14
|
Shahin F, Raza S, Chen X, Hu C, Chen Y, Chen H, Guo A. Molecular Characterization of UL50 (dUTPase) Gene of Bovine Herpes Virus 1. Animals (Basel) 2023; 13:2607. [PMID: 37627398 PMCID: PMC10451702 DOI: 10.3390/ani13162607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine herpes virus -1 (BoHV-1) infection leads to upper respiratory tract infection, conjunctivitis and genital disorders in cattle. To control BoHV-1, it is important to understand the role of viral proteins in viral infection. BoHV-1 has several gene products to help in viral replication in infected cell. One such gene is deoxyuridine triphosphate nucleotidohydrolase (dUTPase) also known as UL50. In this study, we analyzed the amino acid sequence of UL50 (dUTPase) using bioinformatics tools and found that it was highly conserved among herpesvirus family. Then, it was cloned and expressed in Escherichia coli Rosetta (DE3), induced by isopropy1-b-D-thiogalactopyranoside (IPTG) and the recombinant UL50 protein was purified to immunize rabbits for the preparation of polyclonal antiserum. The results indicated that the UL50 gene of BoHV-1 was composed of 978 nucleotides, which encoded 323 amino acids. Western blot analysis revealed that polyclonal sera against UL50 reacted with a band of 34 kDa. Furthermore, immunofluorescence assay showed that UL50 localized in the cytoplasmic area. Taken together, UL50 was successfully cloned, expressed and detected in BoHV-1-infected cells and was localized in the cytoplasm to help in the replication of BoHV-1 in infected cells.
Collapse
Affiliation(s)
- Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Sohail Raza
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Yingyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Alvisi G, Manaresi E, Cross EM, Hoad M, Akbari N, Pavan S, Ariawan D, Bua G, Petersen GF, Forwood J, Gallinella G. Importin α/β-dependent nuclear transport of human parvovirus B19 nonstructural protein 1 is essential for viral replication. Antiviral Res 2023; 213:105588. [PMID: 36990397 DOI: 10.1016/j.antiviral.2023.105588] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Human parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function. Despite the localization of NS1 within the host cell nucleus during infection, little is known regarding the mechanism of its nuclear transport pathway. In this study we undertake structural, biophysical, and cellular approaches to characterize this process. Quantitative confocal laser scanning microscopy (CLSM), gel mobility shift, fluorescence polarization and crystallographic analysis identified a short sequence of amino acids (GACHAKKPRIT-182) as the classical nuclear localization signal (cNLS) responsible for nuclear import, mediated in an energy and importin (IMP) α/β-dependent fashion. Structure-guided mutagenesis of key residue K177 strongly impaired IMPα binding, nuclear import, and viral gene expression in a minigenome system. Further, treatment with ivermectin, an antiparasitic drug interfering with the IMPα/β dependent nuclear import pathway, inhibited NS1 nuclear accumulation and viral replication in infected UT7/Epo-S1 cells. Thus, NS1 nuclear transport is a potential target of therapeutic intervention against B19V induced disease.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Emily M Cross
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Nasim Akbari
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Daryl Ariawan
- Dementia Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Jade Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
16
|
Nabi-Afjadi M, Mohebi F, Zalpoor H, Aziziyan F, Akbari A, Moradi-Sardareh H, Bahreini E, Moeini AM, Effatpanah H. A cellular and molecular biology-based update for ivermectin against COVID-19: is it effective or non-effective? Inflammopharmacology 2023; 31:21-35. [PMID: 36609716 PMCID: PMC9823263 DOI: 10.1007/s10787-022-01129-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Despite community vaccination against coronavirus disease 2019 (COVID-19) and reduced mortality, there are still challenges in treatment options for the disease. Due to the continuous mutation of SARS-CoV-2 virus and the emergence of new strains, diversity in the use of existing antiviral drugs to combat the epidemic has become a crucial therapeutic chance. As a broad-spectrum antiparasitic and antiviral drug, ivermectin has traditionally been used to treat many types of disease, including DNA and RNA viral infections. Even so, based on currently available data, it is still controversial that ivermectin can be used as one of the effective antiviral agents to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not. The aim of this study was to provide comprehensive information on ivermectin, including its safety and efficacy, as well as its adverse effects in the treatment of COVID-19.
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
| | - Fatemeh Mohebi
- Molecular Medicine Research Center, Hormozghan Health Institute, Hormozghan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, University of Tarbiat Modares, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mansour Moeini
- Department of Internal Medicine, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
17
|
Ma Y, Xu X, Wu H, Li C, Zhong P, Liu Z, Ma C, Liu W, Wang C, Zhang Y, Wang J. Ivermectin contributes to attenuating the severity of acute lung injury in mice. Biomed Pharmacother 2022; 155:113706. [PMID: 36116250 DOI: 10.1016/j.biopha.2022.113706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Ivermectin has been proposed as a potential anti-inflammatory drug in addition to its antiparasitic activity. Here we investigated the potential role of ivermectin in the pathogenesis of acute lung injury (ALI) using the lipopolysaccharide (LPS)- or bleomycin (BLM)-induced mice models. Male C57BL/6 mice were given ivermectin orally every day for the remainder of the experiment at doses of 1 or 2 mg/kg after 24 h of LPS or BLM treatment. Ivermectin reversed severe lung injury caused by LPS or BLM challenge, including mortality, changes in diffuse ground-glass and consolidation shadows on lung CT imaging, lung histopathological scores, lung wet/dry ratio, and protein content in the bronchoalveolar lavage fluid (BALF). Furthermore, ivermectin also reduced total lung BALF inflammatory cells, infiltrating neutrophils, myeloperoxidase activity, and plasma TNF-α and IL-6 levels in mice treated with LPS or BLM. Finally, the mechanism study showed that LPS or BLM administration increased JNK, Erk1/2, and p38 MAPK phosphorylation while decreasing IκBα expression, an inhibitor of NF-κB. However, ivermectin increased IκBα expression but blocked elevated phosphorylated JNK and p38 MAPK, not Erk1/2, in both ALI mice. These findings suggested that ivermectin may alleviate ALI caused by LPS or BLM in mice, partly via lowering the inflammatory response, which is mediated at least by the inhibition of MAPK and NF-κB signaling. Collectively, ivermectin might be used to treat acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Changbo Li
- Medical Imaging Department of Huaihe Hospital, Henan University, Kaifeng, China
| | - Peijie Zhong
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chuang Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chenyu Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China.
| |
Collapse
|
18
|
Zaidi AK, Dehgani-Mobaraki P. The mechanisms of action of ivermectin against SARS-CoV-2-an extensive review. J Antibiot (Tokyo) 2022; 75:60-71. [PMID: 34931048 PMCID: PMC8688140 DOI: 10.1038/s41429-021-00491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Considering the urgency of the ongoing COVID-19 pandemic, detection of new mutant strains and potential re-emergence of novel coronaviruses, repurposing of drugs such as ivermectin could be worthy of attention. This review article aims to discuss the probable mechanisms of action of ivermectin against SARS-CoV-2 by summarizing the available literature over the years. A schematic of the key cellular and biomolecular interactions between ivermectin, host cell, and SARS-CoV-2 in COVID-19 pathogenesis and prevention of complications has been proposed.
Collapse
Affiliation(s)
- Asiya Kamber Zaidi
- Association "Naso Sano" Onlus, Umbria Regional Registry of Volunteer Activities, Corciano, Italy.
| | - Puya Dehgani-Mobaraki
- Association "Naso Sano" Onlus, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| |
Collapse
|
19
|
Inhibition of bovine and ovine capripoxviruses (Lumpy skin disease virus and Sheeppox virus) by ivermectin occurs at different stages of propagation in vitro. Virus Res 2022; 310:198671. [PMID: 34986368 DOI: 10.1016/j.virusres.2021.198671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Capripoxvirus diseases are listed as reportable diseases by World Organization for Animal Health (OIE). Lumpy skin disease virus (LSDV) and sheeppox virus (SPPV), which can only be distinguished by molecular analysis, cause moderately, severe, or sometimes fatal infections in cattle and sheep. Even though vaccines are the most effective way to control the infection, their effectiveness may decrease in some cases. Therefore, it is significant to explore antiviral drugs against these diseases along with the vaccine. This study aimed to investigate the antiviral efficiency of ivermectin (IVM) at different stages of in vitro replication of LSDV and SPPV. For this purpose, viral titers (TCID50/mL) of the viruses not treated with IVM (0.0 μM) and treated with non-cytotoxic concentrations of IVM (1.0 and 2.5 μM) were compared during a nine-day (216 h) post-infection period by viral titration assay. At 2.5 μM concentrations of IVM, the mean viral titer was significantly (P<0.05) reduced by approximately three logs for the replication stage of LSDV and SPPV. To evaluate the antiviral activity of IVM against LSDV and SPPV by treatment at the virus attachment and penetration stages, the titers of the virus either untreated or treated with 2,5 μM IVM were compared by virus titration assay. The number of infectious virions for LSDV and SPPV were decreased by 99.82% and 99.87% at the viral replication stage, 68.38% and 25.01% at the attachment stage, and 57.83% and 0.0% at the penetration stage, respectively. It was determined that ivermectin is statistically more effective on LSDV than SPPV at the virus attachment and penetration stages (P<0.05). This study found that the drug IVM can inhibit capripoxviruses, including LSDV and SPPV at various stages of the propagation. Moreover, this research predicted the in vitro antiviral ability of IVM against capripoxvirus infections for the first time.
Collapse
|
20
|
Increase in the reproductive efficiency of primiparous and multiparous Nellore cows following moxidectin treatment at the onset of a fixed-time artificial insemination protocol. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Elalfy H, Besheer T, El‐Mesery A, El‐Gilany A, Soliman MA, Alhawarey A, Alegezy M, Elhadidy T, Hewidy AA, Zaghloul H, Neamatallah MAM, Raafat D, El‐Emshaty WM, Abo El Kheir NY, El‐Bendary M. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID-19. J Med Virol 2021; 93:3176-3183. [PMID: 33590901 PMCID: PMC8014583 DOI: 10.1002/jmv.26880] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
This trial compared the rate and time of viral clearance in subjects receiving a combination of nitazoxanide, ribavirin, and ivermectin plus Zinc versus those receiving supportive treatment. This non-randomized controlled trial included 62 patients on the triple combination treatment versus 51 age- and sex-matched patients on routine supportive treatment. all of them confirmed cases by positive reverse-transcription polymerase chain reaction of a nasopharyngeal swab. Trial results showed that the clearance rates were 0% and 58.1% on the 7th day and 13.7% and 73.1% on the 15th day in the supportive treatment and combined antiviral groups, respectively. The cumulative clearance rates on the 15th day are 13.7% and 88.7% in the supportive treatment and combined antiviral groups, respectively. This trial concluded by stating that the combined use of nitazoxanide, ribavirin, and ivermectin plus zinc supplement effectively cleared the SARS-COV2 from the nasopharynx in a shorter time than symptomatic therapy.
Collapse
Affiliation(s)
- Hatem Elalfy
- Tropical Medicine and Hepatology Department, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Tarek Besheer
- Department of Tropical Medicine, Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Ahmed El‐Mesery
- Department of Tropical Medicine, Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Abdel‐Hady El‐Gilany
- Department of Public Health and Preventive Medicine, Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Ahmed Alhawarey
- Department of Tropical Medicine, Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Mohamed Alegezy
- Tropical Medicine and Hepatology Department, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Asem A. Hewidy
- Chest Medicine DepartmentMansoura UniversityMansouraEgypt
| | - Hossam Zaghloul
- Department of Clinical Pathology, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Douaa Raafat
- Department of Clinical Pathology, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Wafaa M. El‐Emshaty
- Department of Clinical Pathology, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Nermin Y. Abo El Kheir
- Department of Clinical Pathology, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| | - Mahmoud El‐Bendary
- Tropical Medicine and Hepatology Department, Mansoura Faculty of MedicineMansoura UniversityMansouraEgypt
| |
Collapse
|
22
|
Naeem Z, Raza S, Afzal S, Sheikh AA, Ali MM, Altaf I. Antiviral potential of ivermectin against foot-and-mouth disease virus, serotype O, A and Asia-1. Microb Pathog 2021; 155:104914. [PMID: 33915205 DOI: 10.1016/j.micpath.2021.104914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022]
Abstract
Each year, foot-and-mouth disease leads to enormous economic losses to the livestock industry. Currently, the killed whole virus is widely using to control FMD. However, vaccination is constrained by lack of or incomplete protection. Therefore, along with vaccination, we need to find the antivirals against FMD. This study was conducted to investigate the antiviral potential of ivermectin against multiple serotypes of FMDV. Initially, an MTT assay was performed on the BHK-21 cell line to determine assay ivermectin cytotoxicity. Viral inhibition assays using the non-cytotoxic concentration of ivermectin were performed to check the antiviral potential of ivermectin on different stages of virus replication. At 2.5 μM and 5 μM concentrations of ivermectin, the virus titer was reduced significantly (p < 0.001) by two to three log in all three strains of viruses at both non-toxic concentrations (2.5 and 5 μM). The virus titer in strain O control was 106.0 TCID50/0.1 mL and was reduced to 104.1 TCID50/0.1 mL at a concentration of 2.5 μM and 103.10 TCID50/0.1 mL at 5 μM concentration. In the case of strain Asia-1, the virus titer was reduced to 103.8 TCID50/0.1 mL at 2.5 μM and 103.01TCID50/0.1 mL at 5 μM concentration. The titer of strain A was reduced from 105.8 TCID50/0.1 mL to 103.9 TCID50/0.1 mL at 2.5 μM concentration and 103.1 TCID50/0.1 mL at 5 μM concentration. Moreover, the virus titer was reduced more at the replication stage as compared to attachment and entry stages. This study showed the in vitro anti-FMDV potential of ivermectin for the first time and predicted its potential use against FMDV infections.
Collapse
Affiliation(s)
- Zahra Naeem
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Saba Afzal
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Imran Altaf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Yesilbag K, Toker EB, Ates O. Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro. Virus Res 2021; 297:198384. [PMID: 33713753 PMCID: PMC7944862 DOI: 10.1016/j.virusres.2021.198384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Bovine respiratory disease (BRD) complex is an important viral infection that causes huge economic losses in cattle herds worldwide. However, there is no directly effective antiviral drug application against respiratory viral pathogens; generally, the metaphylactic antibacterial drug applications are used for BRD. Ivermectin (IVM) is currently used as a broad-spectrum anti-parasitic agent both for veterinary and human medicine on some occasions. Moreover, since it is identified as an inhibitor for importin α/β-mediated nuclear localization signal (NLS), IVM is also reported to have antiviral potential against several RNA and DNA viruses. Since therapeutic use of IVM in COVID-19 cases has recently been postulated, the potential antiviral activity of IVM against bovine respiratory viruses including BRSV, BPIV-3, BoHV-1, BCoV and BVDV are evaluated in this study. For these purposes, virus titration assay was used to evaluate titers in viral harvest from infected cells treated with non-cytotoxic IVM concentrations (1, 2.5 and 5 μM) and compared to titers from non-treated infected cells. This study indicated that IVM inhibits the replication of BCoV, BVDV, BRSV, BPIV-3 and BoHV-1 in a dose-dependent manner in vitro as well as number of extracellular infectious virions. In addition, it was demonstrated that IVM has no clear effect on the attachment and penetration steps of the replication of the studied viruses. Finally, this study shows for the first time that IVM can inhibit infection of BRD-related viral agents namely BCoV, BPIV-3, BVDV, BRSV and BoHV-1 at the concentrations of 2.5 and 5 μM. Consequently, IVM, which is licensed for antiparasitic indications, also deserves to be evaluated as a broad-spectrum antiviral in BRD cases caused by viral pathogens.
Collapse
Affiliation(s)
- Kadir Yesilbag
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059, Bursa, Turkey.
| | - Eda Baldan Toker
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059, Bursa, Turkey.
| | - Ozer Ates
- Department of Virology, Bursa Uludag University, Faculty of Veterinary Medicine, 16059, Bursa, Turkey
| |
Collapse
|
24
|
Dash P, Mohapatra S, Ghosh S, Nayak B. A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Front Pharmacol 2021; 11:590154. [PMID: 33815095 PMCID: PMC8015872 DOI: 10.3389/fphar.2020.590154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of highly virulent CoVs (SARS-CoV-2), the etiologic agent of novel ongoing "COVID-19" pandemics has been marked as an alarming case of pneumonia posing a large global healthcare crisis of unprecedented magnitude. Currently, the COVID-19 outbreak has fueled an international demand in the biomedical field for the mitigation of the fast-spreading illness, all through the urgent deployment of safe, effective, and rational therapeutic strategies along with epidemiological control. Confronted with such contagious respiratory distress, the global population has taken significant steps towards a more robust strategy of containment and quarantine to halt the total number of positive cases but such a strategy can only delay the spread. A substantial number of potential vaccine candidates are undergoing multiple clinical trials to combat COVID-19 disease, includes live-attenuated, inactivated, viral-vectored based, sub-unit vaccines, DNA, mRNA, peptide, adjuvant, plant, and nanoparticle-based vaccines. However, there are no licensed anti-COVID-19 drugs/therapies or vaccines that have proven to work as more effective therapeutic candidates in open-label clinical trial studies. To counteract the infection (SARS-CoV-2), many people are under prolonged treatment of many chemical drugs that inhibit the PLpro activity (Ribavirin), viral proteases (Lopinavir/Ritonavir), RdRp activity (Favipiravir, Remdesivir), viral membrane fusion (Umifenovir, Chloroquine phosphate (CQ), Hydroxychloroquine phosphate (HCQ), IL-6 overexpression (Tocilizumab, Siltuximab, Sarilumab). Mesenchymal Stem Cell therapy and Convalescent Plasma Therapy have emerged as a promising therapeutic strategy against SARS-CoV-2 virion. On the other hand, repurposing previously designed antiviral agents with tolerable safety profile and efficacy could be the only promising approach and fast response to the novel virion. In addition, research institutions and corporations have commenced the redesign of the available therapeutic strategy to manage the global crisis. Herein, we present succinct information on selected anti-COVID-19 therapeutic medications repurposed to combat SARS-CoV-2 infection. Finally, this review will provide exhaustive detail on recent prophylactic strategies and ongoing clinical trials to curb this deadly pandemic, outlining the major therapeutic areas for researchers to step in.
Collapse
Affiliation(s)
| | | | | | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
25
|
Kinobe RT, Owens L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin's possible mode of action against SARS-CoV-2. Fundam Clin Pharmacol 2021; 35:260-276. [PMID: 33427370 PMCID: PMC8013482 DOI: 10.1111/fcp.12644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023]
Abstract
Viral infections remain a major cause of economic loss with an unmet need for novel therapeutic agents. Ivermectin is a putative antiviral compound; the proposed mechanism is the inhibition of nuclear translocation of viral proteins, facilitated by mammalian host importins, a necessary process for propagation of infections. We systematically reviewed the evidence for the applicability of ivermectin against viral infections including SARS‐CoV‐2 regarding efficacy, mechanisms and selective toxicity. The SARS‐CoV‐2 genome was mined to determine potential nuclear location signals for ivermectin and meta‐analyses for in vivo studies included all comparators over time, dose range and viral replication in multiple organs. Ivermectin inhibited the replication of many viruses including those in Flaviviridae, Circoviridae and Coronaviridae families in vitro. Real and mock nuclear location signals were identified in SARS‐CoV‐2, a potential target for ivermectin and predicting a sequestration bait for importin β, stopping infected cells from reaching a virus‐resistant state. While pharmacokinetic evaluations indicate that ivermectin could be toxic if applied based on in vitro studies, inhibition of viral replication in vivo was shown for Porcine circovirus in piglets and Suid herpesvirus in mice. Overall standardized mean differences and 95% confidence intervals for ivermectin versus controls were −4.43 (−5.81, −3.04), p < 0.00001. Based on current results, the potential for repurposing ivermectin as an antiviral agent is promising. However, further work is needed to reconcile in vitro studies with clinical efficacy. Developing ivermectin as an additional antiviral agent should be pursued with an emphasis on pre‐clinical trials in validated models of infection.
Collapse
Affiliation(s)
- Robert T Kinobe
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Leigh Owens
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
26
|
Lardone RD, Garay YC, Parodi P, de la Fuente S, Angeloni G, Bravo EO, Schmider AK, Irazoqui FJ. How glycobiology can help us treat and beat the COVID-19 pandemic. J Biol Chem 2021; 296:100375. [PMID: 33548227 PMCID: PMC7857991 DOI: 10.1016/j.jbc.2021.100375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged during the last months of 2019, spreading throughout the world as a highly transmissible infectious illness designated as COVID-19. Vaccines have now appeared, but the challenges in producing sufficient material and distributing them around the world means that effective treatments to limit infection and improve recovery are still urgently needed. This review focuses on the relevance of different glycobiological molecules that could potentially serve as or inspire therapeutic tools during SARS-CoV-2 infection. As such, we highlight the glycobiology of the SARS-CoV-2 infection process, where glycans on viral proteins and on host glycosaminoglycans have critical roles in efficient infection. We also take notice of the glycan-binding proteins involved in the infective capacity of virus and in human defense. In addition, we critically evaluate the glycobiological contribution of candidate drugs for COVID-19 therapy such as glycans for vaccines, anti-glycan antibodies, recombinant lectins, lectin inhibitors, glycosidase inhibitors, polysaccharides, and numerous glycosides, emphasizing some opportunities to repurpose FDA-approved drugs. For the next-generation drugs suggested here, biotechnological engineering of new probes to block the SARS-CoV-2 infection might be based on the essential glycobiological insight on glycosyltransferases, glycans, glycan-binding proteins, and glycosidases related to this pathology.
Collapse
Affiliation(s)
- Ricardo D Lardone
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Yohana C Garay
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Pedro Parodi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Sofia de la Fuente
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Genaro Angeloni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Eduardo O Bravo
- Medicina Interna, Nuevo Hospital San Roque, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Anneke K Schmider
- Klinik für Kinder- und Jugendpsychiatrie und Psychotherapie, Psychiatrische Klinik Lüneburg, Lüneburg, Germany
| | - Fernando J Irazoqui
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
27
|
The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses. Cells 2020; 9:cells9122654. [PMID: 33321790 PMCID: PMC7764567 DOI: 10.3390/cells9122654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The transport of host proteins into and out of the nucleus is key to host function. However, nuclear transport is restricted by nuclear pores that perforate the nuclear envelope. Protein intrinsic disorder is an inherent feature of this selective transport barrier and is also a feature of the nuclear transport receptors that facilitate the active nuclear transport of cargo, and the nuclear transport signals on the cargo itself. Furthermore, intrinsic disorder is an inherent feature of viral proteins and viral strategies to disrupt host nucleocytoplasmic transport to benefit their replication. In this review, we highlight the role that intrinsic disorder plays in the nuclear transport of host and viral proteins. We also describe viral subversion mechanisms of the host nuclear transport machinery in which intrinsic disorder is a feature. Finally, we discuss nuclear import and export as therapeutic targets for viral infectious disease.
Collapse
|
28
|
Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020; 288:5569-5585. [PMID: 33296547 DOI: 10.1111/febs.15659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Extensive structural and functional studies have been carried out in the field of nucleocytoplasmic transport. Nuclear transport factors, such as Importin-α/-β, recognize nuclear localization signals (NLSs) on cargo, and together with the small GTPase Ran, facilitate their nuclear localization. However, it is now emerging that binding of nuclear transport factors to NLSs not only mediates nuclear transport but also contributes to a variety of cellular functions in eukaryotes. Here, we describe recent advances that reveal how NLSs facilitate diverse cellular functions beyond nuclear transport activity. We review separately NLS-mediated regulatory mechanisms at different levels of biological organization, including (a) assembly of higher-order structures; (b) cellular organelle dynamics; and (c) modulation of cellular stress responses and viral infections. Finally, we provide mechanistic insights into how NLSs can regulate such a broad range of functions via their structural and biochemical properties.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
29
|
Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo) 2020; 73:593-602. [PMID: 32533071 PMCID: PMC7290143 DOI: 10.1038/s41429-020-0336-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Ivermectin proposes many potentials effects to treat a range of diseases, with its antimicrobial, antiviral, and anti-cancer properties as a wonder drug. It is highly effective against many microorganisms including some viruses. In this comprehensive systematic review, antiviral effects of ivermectin are summarized including in vitro and in vivo studies over the past 50 years. Several studies reported antiviral effects of ivermectin on RNA viruses such as Zika, dengue, yellow fever, West Nile, Hendra, Newcastle, Venezuelan equine encephalitis, chikungunya, Semliki Forest, Sindbis, Avian influenza A, Porcine Reproductive and Respiratory Syndrome, Human immunodeficiency virus type 1, and severe acute respiratory syndrome coronavirus 2. Furthermore, there are some studies showing antiviral effects of ivermectin against DNA viruses such as Equine herpes type 1, BK polyomavirus, pseudorabies, porcine circovirus 2, and bovine herpesvirus 1. Ivermectin plays a role in several biological mechanisms, therefore it could serve as a potential candidate in the treatment of a wide range of viruses including COVID-19 as well as other types of positive-sense single-stranded RNA viruses. In vivo studies of animal models revealed a broad range of antiviral effects of ivermectin, however, clinical trials are necessary to appraise the potential efficacy of ivermectin in clinical setting.
Collapse
Affiliation(s)
- Fatemeh Heidary
- Head of Ophthalmology Division, Taleghani Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Reza Gharebaghi
- Kish International Campus, University of Tehran, Tehran, Iran. .,International Virtual Ophthalmic Research Center (IVORC), Austin, TX, USA.
| |
Collapse
|
30
|
Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob 2020; 19:23. [PMID: 32473642 PMCID: PMC7261036 DOI: 10.1186/s12941-020-00368-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
|
31
|
Venkatasubbaiah M, Dwarakanadha Reddy P, Satyanarayana SV. Literature-based review of the drugs used for the treatment of COVID-19. CURRENT MEDICINE RESEARCH AND PRACTICE 2020; 10:100-109. [PMID: 32572376 PMCID: PMC7301064 DOI: 10.1016/j.cmrp.2020.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is primarily a respiratory disease caused by a newly discovered SARS-CoV-2 virus and identified in the city of Wuhan, China in December 2019. WHO has declared this disease as a pandemic, and warned other countries. Presently this has affected 216 countries, areas or territories worldwide, spreading of this disease is very fast in USA, Brazil, and Russia than in the country of its origin, China. Like other coronaviruses, this may develop respiratory tract infections in the patients range from mild to fatal illness like pneumonia and acute respiratory distress syndrome (ARDS). As of now, no effective drug, vaccine, or any procedure is available and experiments are underway. However, empirical therapy is being followed to manage and save the lives of the patients. There is a need for pharmacological alternatives to combat this deadly virus and its complications. Based on the previous experiences with similar coronavirus management and present preliminary data from uncontrolled studies, drugs like chloroquine, hydroxychloroquine, remdesivir, lopinavir/ritonavir, and favipiravir have been recommended by the researchers to manage COVID-19. This review had assessed the potential mechanisms, safety profile, availability and cost of these drugs. This review concludes that the drugs mentioned above are having different properties and act differently in combating the COVID-19 viruses. Instead of single drug, combination of antivirals with different mechanism of action may be more effective and at the same time their adverse events should not be underestimated.
Collapse
Affiliation(s)
- Meda Venkatasubbaiah
- Jawaharlal Nehru Technological University Anantapur (JNTUA), Ananthapuramu, Andhra Pradesh, India
| | - P. Dwarakanadha Reddy
- Department of Pharmaceutics, Annamacharya College of Pharmacy, Rajampet, Andhra Pradesh, India
| | - Suggala V. Satyanarayana
- Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuramu, Andhra Pradesh, India
| |
Collapse
|