1
|
Huang H, Wan P, Chen Y, Luo X, Zhu Y, Lin W, Chen Y, Zeng Z. Phenotypic and genetic stepwise changes in Staphylococcus aureus during in vitro adaptive laboratory evolution under the selective pressure of tigecycline. Antimicrob Agents Chemother 2025; 69:e0007225. [PMID: 40135899 PMCID: PMC12057350 DOI: 10.1128/aac.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Compared with tigecycline-resistant gram-negative bacteria, tigecycline adaptive laboratory evolution (ALE) has been preliminarily performed in Staphylococcus aureus. This study aims to develop higher-level tigecycline-resistant S. aureus mutants (TRSAms) and explore the mechanisms behind decreasing susceptibility to tigecycline. In this study, S. aureus strains were cultured in serial-increasing concentrations of tigecycline and successfully obtained high-level TRSAms. Different phenotypic changes in high-level TRSAms were assessed by growth rate measurement, autolysis assays, mutant frequency determination, and virulence evaluations in vivo and in vitro. The phenotypes of fitness cost showed significant differences in these high-level TRSAms. Whole-genome sequencing analysis detected synchronous mutations between yycH and fakA repeatedly in three high-level TRSAms from different parent strains. Further cloning experiments demonstrated that the complementary yycH gene increased susceptibility to tigecycline in TRSAms, and deletion mutant construction and complementation of Glu283Ter YycH confirm its critical role in tigecycline susceptibility in S. aureus. We also scanned the global genome to evaluate clinical importance; mutations on rpsJ detected in this study are associated with the MRSA ST5-t002 isolates and omadacycline selective mutants. In summary, we described a complete trajectory of phenotypic and genotypic changes in the ALE process for decreasing susceptibility to tigecycline in S. aureus. It is considered that the yycH gene has been involved in decreasing tigecycline susceptibility in S. aureus.
Collapse
Affiliation(s)
- Honghao Huang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Peng Wan
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyue Luo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yizhen Zhu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanxin Lin
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenling Zeng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Fong PM, Tang VYM, Xu L, Yam BHC, Pradeep HP, Feng Y, Tao L, Kao RYT, Yang D. Synthetic Cation Transporters Eradicate Drug-Resistant Staphylococcus aureus, Persisters, and Biofilms. JACS AU 2025; 5:1328-1339. [PMID: 40151269 PMCID: PMC11938004 DOI: 10.1021/jacsau.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/29/2025]
Abstract
New drugs are urgently required to address the ongoing health crisis caused by methicillin-resistant Staphylococcus aureus (MRSA) infections. Added to the challenge is the difficult-to-treat persister cells and biofilm which are tolerant to the antibiotics. Here we report a new approach to these problems, describing the design and synthesis of aminoxy-acid-based dipeptides that facilitate cation transport across cell membranes to disrupt bacterial ion homeostasis. Remarkably, these synthetic cation transporters display significant antibacterial activity against MRSA, while maintaining high selectivity over mammalian cells. They also effectively eliminate bacterial persisters and reduce established biofilms. Additionally, they inhibit biofilm formation and suppress bacterial virulent protein secretion, even at subinhibitory concentrations. Their associated antibiotic effects support their in vivo efficacy in murine skin and bloodstream MRSA infection models with no observable toxicity to the host. Mode-of-action analysis indicates that these cation transporters induce cytoplasmic acidification, hyperpolarization, and calcium influx, accelerating autolysis. Given their potent activity against bacterial persisters and biofilms, synthetic cation transporters are an emergent and promising class of compounds in the fight against MRSA infections.
Collapse
Affiliation(s)
- Pak-Ming Fong
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Victor Yat-Man Tang
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Lu Xu
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bill Hin-Cheung Yam
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Halebeedu Prakash Pradeep
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Yuhui Feng
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Liang Tao
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Richard Yi-Tsun Kao
- Department
of Microbiology and Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
| | - Dan Yang
- Morningside
Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, P. R. China
- School
of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake
Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Wang Y, Huang X, Hu Z, Peng H, Yang Y, Chen J, Dou J, Xiao C, Shang W, Rao X. Oxacillin promotes membrane vesicle secretion in Staphylococcus aureus via a SarA-Sle1 regulatory cascade. NANOSCALE 2025; 17:2488-2497. [PMID: 39589411 DOI: 10.1039/d4nr04321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Membrane vesicles (MVs) are nanoscale particles secreted by living bacteria in vitro and in vivo. Bacterial MVs encapsulate various proteins, making them promising candidates for developing vaccines, drug carriers, and cancer immunotherapy agents. However, the mechanisms underlying MV secretion in Gram-positive bacteria remain unclear. Here, we showed that the subinhibitory concentration of oxacillin (OXA) stimulated MV production in Staphylococcus aureus with diverse genetic backgrounds. OXA treatment remarkably increased the expression of sle1, which encodes a main peptidoglycan hydrolase for adjusting peptidoglycan cross-linking. Deletion of sle1 decreased the OXA-mediated MV yield, whereas overexpression of sle1 considerably increased MV production. The accessory regulator SarA increased in response to OXA treatment, and SarA inactivation substantially attenuated OXA-stimulated MV production. We also demonstrated that SarA controlled sle1 expression by directly binding to its promoter region. Thus, the SarA-Sle1 regulatory axis was formed to mediate OXA-induced MV production in S. aureus. MVs derived from OXA-treated S. aureus RN4220 (MVs/OXA) exhibited a smaller particle size compared with those purified from wild-type RN4220; however, proteomic analysis revealed a comparable protein profile between MVs and MVs/OXA. Overall, our research reveals a mechanism underlying OXA-promoted S. aureus MV secretion and highlights the potential application of OXA-induced MVs.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Juan Chen
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Jianxiong Dou
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Chuan Xiao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Ugalde Silva P, Desbonnet C, Rice LB, García-Solache M. Evolutionary trajectories of β-lactam resistance in Enterococcus faecalis strains. mBio 2024; 15:e0289724. [PMID: 39540731 PMCID: PMC11633384 DOI: 10.1128/mbio.02897-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Resistance to ampicillin and imipenem in Enterococcus faecalis is infrequent. However, the evolution of resistance can occur through prolonged antibiotic exposure during the treatment of chronic infections. In this study, we conducted a long-term evolution experiment using four genetically diverse strains of E. faecalis with varying susceptibilities to ampicillin and imipenem. Each strain was subjected to increasing concentrations of either ampicillin or imipenem over 200 days, with three independent replicates for each strain. Selective pressure from imipenem led to the rapid selection of highly resistant lineages across all genetic backgrounds, compared to ampicillin. In addition to high resistance, we describe, for the first time, the evolution of a β-lactam-dependent phenotype observed in lineages from all backgrounds. Whole-genome sequencing and bioinformatic analysis revealed mutations in three main functional classes: genes involved in cell wall synthesis and degradation, genes in the walK/R two-component system, and genes in the c-di-AMP pathway. Our analysis identified new mutations in genes known to be involved in resistance as well as novel genes potentially associated with resistance. Furthermore, the newly described β-lactam-dependent phenotype was correlated with the inactivation of c-di-AMP degradation, resulting in high levels of this second messenger. Together, these data highlight the diverse genetic mechanisms underlying resistance to ampicillin and imipenem in E. faecalis. The emergence of high resistance levels and β-lactam dependency underscores the importance of understanding evolutionary dynamics in the development of antibiotic resistance. IMPORTANCE Enterococcus faecalis is a major human pathogen, and treatment is frequently compromised by poor response to first-line antibiotics such as ampicillin. Understanding the factors that play a role in susceptibility/resistance to these drugs will help guide the development of much-needed treatments.
Collapse
Affiliation(s)
- Paul Ugalde Silva
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Charlene Desbonnet
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B. Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Ramesh V, Sivakumar R, Annamanedi M, Chandrapriya S, Isloor S, Rajendhran J, Hegde NR. Genome sequencing and comparative genomic analysis of bovine mastitis-associated non-aureus staphylococci and mammaliicocci (NASM) strains from India. Sci Rep 2024; 14:29019. [PMID: 39578587 PMCID: PMC11584863 DOI: 10.1038/s41598-024-80533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
We describe the whole-genome sequencing and comparative genomic analysis of 22 mastitis-associated NASM strains isolated from India. The mean genome size of the strains was 2.55 Mbp, with an average GC content of 32.2%. We identified 14 different sequence types (STs) among the 22 NASM strains. Of these, ST1 and ST6 of S. chromogenes were exclusively associated with bovine mastitis. Genome-wide SNP-based minimum spanning tree revealed the intricate phylogenetic relationships among NASM strains from India, categorizing them into five major clades. Interestingly, mastitis-associated strains formed separate subclades in all the NASM species studied, indicating distinct host-specific co-evolution. The study identified 32 antimicrobial resistance (AMR) genes and 53 virulence-associated genes, providing insights into the genetic factors that could contribute to the pathogenicity of NASM species. Some virulence and AMR genes were found in the predicted genomic islands, suggesting possible horizontal transfer events.
Collapse
Affiliation(s)
- Vishnukumar Ramesh
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | | | - S Chandrapriya
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Shrikrishna Isloor
- Department of Veterinary Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bengaluru, 560024, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| | - Nagendra R Hegde
- National Institute of Animal Biotechnology, Hyderabad, 500032, India.
| |
Collapse
|
6
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
7
|
Ugalde Silva P, Desbonnet C, Rice LB, García-Solache M. Evolutionary trajectories of β-lactam resistance in Enterococcus faecalis strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614543. [PMID: 39386712 PMCID: PMC11463550 DOI: 10.1101/2024.09.23.614543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Resistance to ampicillin and imipenem in Enterococcus faecalis is infrequent. However, the evolution of resistance can occur through prolonged antibiotic exposure during the treatment of chronic infections. In this study, we conducted a Long-Term Evolution Experiment (LTEE) using four genetically diverse strains of E. faecalis with varying susceptibilities to ampicillin and imipenem. Each strain was subjected to increasing concentrations of either ampicillin or imipenem over 200 days, with three independent replicates for each strain. Selective pressure from imipenem led to the rapid selection of highly resistant lineages across all genetic backgrounds, compared to ampicillin. In addition to high resistance, we describe, for the first time, the evolution of a β-lactam dependent phenotype observed in lineages from all backgrounds. WGS and bioinformatic analysis revealed mutations in three main functional classes: genes involved in cell wall synthesis and degradation, genes in the walK/R two-component system, and genes in the c-di-AMP pathway. Our analysis identified new mutations in genes known to be involved in resistance as well as novel genes potentially associated with resistance. Furthermore, the newly described β-lactam dependent phenotype was correlated with the inactivation of c-di-AMP degradation, resulting in high levels of this second messenger. Together, these data highlight the diverse genetic mechanisms underlying resistance to ampicillin and imipenem in E. faecalis . The emergence of high resistance levels and β-lactam dependency underscores the importance of understanding evolutionary dynamics in the development of antibiotic resistance. Importance E. faecalis is a major human pathogen, and treatment is frequently compromised by poor response to first-line antibiotics such ampicillin. Understanding the factors that play a role in susceptibility/resistance to these drugs will help guide the development of much needed treatments.
Collapse
|
8
|
Long DR, Holmes EA, Lo HY, Penewit K, Almazan J, Hodgson T, Berger NF, Bishop ZH, Lewis JD, Waalkes A, Wolter DJ, Salipante SJ. Clinical and in vitro models identify distinct adaptations enhancing Staphylococcus aureus pathogenesis in human macrophages. PLoS Pathog 2024; 20:e1012394. [PMID: 38991026 PMCID: PMC11265673 DOI: 10.1371/journal.ppat.1012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.
Collapse
Affiliation(s)
- Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elizabeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jared Almazan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nova F. Berger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Zoe H. Bishop
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Ahator SD, Hegstad K, Lentz CS, Johannessen M. Deciphering Staphylococcus aureus-host dynamics using dual activity-based protein profiling of ATP-interacting proteins. mSystems 2024; 9:e0017924. [PMID: 38656122 PMCID: PMC11097646 DOI: 10.1128/msystems.00179-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
11
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Crozier D, Gray JM, Maltas JA, Bonomo RA, Burke ZDC, Card KJ, Scott JG. The evolution of diverse antimicrobial responses in vancomycin-intermediate Staphylococcus aureus and its therapeutic implications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569373. [PMID: 38077036 PMCID: PMC10705500 DOI: 10.1101/2023.11.30.569373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Staphylococcus aureus causes endocarditis, osteomyelitis, and bacteremia. Clinicians often prescribe vancomycin as an empiric therapy to account for methicillin-resistant S. aureus (MRSA) and narrow treatment based on culture susceptibility results. However, these results reflect a single time point before empiric treatment and represent a limited subset of the total bacterial population within the patient. Thus, while they may indicate that the infection is susceptible to a particular drug, this recommendation may no longer be accurate during therapy. Here, we addressed how antibiotic susceptibility changes over time by accounting for evolution. We evolved 18 methicillin-susceptible S. aureus (MSSA) populations under increasing vancomycin concentrations until they reached intermediate resistance levels. Sequencing revealed parallel mutations that affect cell membrane stress response and cell-wall biosynthesis. The populations exhibited repeated cross-resistance to daptomycin and varied responses to meropenem, gentamicin, and nafcillin. We accounted for this variability by deriving likelihood estimates that express a population's probability of exhibiting a drug response following vancomycin treatment. Our results suggest antistaphylococcal penicillins are preferable first-line treatments for MSSA infections but also highlight the inherent uncertainty that evolution poses to effective therapies. Infections may take varied evolutionary paths; therefore, considering evolution as a probabilistic process should inform our therapeutic choices.
Collapse
|
13
|
Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, Lewis JD, Waalkes A, Salipante SJ. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. Infect Immun 2023; 91:e0022823. [PMID: 37676013 PMCID: PMC10580828 DOI: 10.1128/iai.00228-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.
Collapse
Affiliation(s)
- Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizbeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
14
|
Cho J, Manna AC, Snelling HS, Cheung AL. GraS signaling in Staphylococcus aureus is regulated by a single D35 residue in the extracellular loop. Microbiol Spectr 2023; 11:e0198223. [PMID: 37728380 PMCID: PMC10581149 DOI: 10.1128/spectrum.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 09/21/2023] Open
Abstract
Bacterial two-component systems are crucial features of bacterial pathogens such as methicillin-resistant Staphylococcus aureus to overcome environmental and antimicrobial stresses by activating regulons to interfere with the bactericidal mechanisms. GraRS is a unique subset of two-component systems belonging to the intramembrane-sensing histidine kinase family (IM-HK) and is responsible for resistance to cationic host defense peptides. However, the precise manner by which the short 9-residue extracellular loop of the membrane sensor GraS detects the antimicrobial peptides and transduces the signal is not comprehensively understood. Here, we show that a single point mutation (D35A) in the extracellular loop of GraS blocked activation of GraRS, but this effect was also abrogated with graS mutations in the N-terminal transmembrane segments without any accompanying effect on GraS protein expression. Additionally, mutations in H120 and T172 in the dimerization/histidine phosphotransfer (DHp) domain of GraS increased activation without any accompanying enhancement in dimerization, likely due to disruption of the H120-T172 interaction that restricts rotational movements of the DHp helices since swapping H120 and T172 did not alter GraS activation. Notably, the enhancing effects of H120 and T172 mutations were abolished with a D35 mutation, highlighting the pivotal role of D35 in the 9-residue extracellular loop of GraS in GraR phosphorylation. In summary, our study delivers the significance of the D35 in the extracellular loop of GraS and ensuing changes in the N-terminal transmembrane helices as a model to illustrate signaling in the IM-HK subset of two-component regulatory systems. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a human pathogen capable of infecting skin, blood, internal organs, and artificial medical devices. Generally, personal hygiene and a robust immune system can limit the spread of this pathogen; however, MRSA possesses an assortment of phenotypic tools to survive the hostile host environment including host defense peptides. More specifically, S. aureus utilizes two-component systems to sense noxious environmental cues to respond to harmful environmental elements. Our study focused on a two-component system called GraRS that S. aureus deploys against host defense peptides. We showed that one single residue in the extracellular loop of GraS and the adjacent membrane segment controlled the activation of GraRS, indicating the importance of a well-tuned-charged residue in the extracellular loop of GraS for sensing activity.
Collapse
Affiliation(s)
- Junho Cho
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Adhar C. Manna
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Helah S. Snelling
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Youngblom MA, Imhoff MR, Smyth LM, Mohamed MA, Pepperell CS. Portrait of a generalist bacterium: pathoadaptation, metabolic specialization and extreme environments shape diversity of Staphylococcus saprophyticus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553882. [PMID: 37645846 PMCID: PMC10462137 DOI: 10.1101/2023.08.18.553882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Staphylococcus saprophyticus is a Gram-positive, coagulase-negative staphylococcus found in diverse environments including soil and freshwater, meat, and dairy foods. S. saprophyticus is also an important cause of urinary tract infections (UTIs) in humans, and mastitis in cattle. However, the genetic determinants of virulence have not yet been identified, and it remains unclear whether there are distinct sub-populations adapted to human and animal hosts. Using a diverse sample of S. saprophyticus isolates from food, animals, environmental sources, and human infections, we characterized the population structure and diversity of global populations of S. saprophyticus . We found that divergence of the two major clades of S. saprophyticus is likely facilitated by barriers to horizontal gene transfer (HGT) and differences in metabolism. Using genome-wide association study (GWAS) tools we identified the first Type VII secretion system (T7SS) described in S. saprophyticus and its association with bovine mastitis. Finally, we found that in general, strains of S. saprophyticus from different niches are genetically similar with the exception of built environments, which function as a 'sink' for S. saprophyticus populations. This work increases our understanding of the ecology of S. saprophyticus and of the genomics of bacterial generalists. Data summary Raw sequencing data for newly sequenced S. saprophyticus isolates have been deposited to the NCBI SRA under the project accession PRJNA928770. A list of all genomes used in this work and their associated metadata are available in the supplementary material. Custom scripts used in the comparative genomics and GWAS analyses are available here: https://github.com/myoungblom/sapro_genomics . Impact statement It is not known whether human and cattle diseases caused by S. saprophyticus represent spillover events from a generalist adapted to survive in a range of environments, or whether the capacity to cause disease represents a specific adaptation. Seasonal cycles of S. saprophyticus UTIs and molecular epidemiological evidence suggest that these infections may be environmentally-acquired rather than via transmission from person to person. Using comparative genomics and genome wide association study tools, we found that S. saprophyticus appears adapted to inhabit a wide range of environments (generalist), with isolates from animals, food, natural environments and human infections being closely related. Bacteria that routinely switch environments, particularly between humans and animals, are of particular concern when it comes to the spread of antibiotic resistance from farm environments into human populations. This work provides a framework for comparative genomic analyses of bacterial generalists and furthers our understanding of how bacterial populations move between humans, animals, and the environment.
Collapse
|
16
|
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr 2022; 10:e0256722. [PMID: 36173303 PMCID: PMC9603734 DOI: 10.1128/spectrum.02567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.
Collapse
|
17
|
Tan S, Cho K, Nodwell JR. A defect in cell wall recycling confers antibiotic resistance and sensitivity in Staphylococcus aureus. J Biol Chem 2022; 298:102473. [PMID: 36089064 PMCID: PMC9547203 DOI: 10.1016/j.jbc.2022.102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
WalKR is a two-component system that is essential for viability in Gram-positive bacteria that regulates the all-important autolysins in cell wall homeostasis. Further investigation of this essential system is important for identifying ways to address antibiotic resistance. Here, we show that a T101M mutation in walR confers a defect in autolysis, a thickened cell wall, and decreased susceptibility to antibiotics that target lipid II cycle, a phenotype that is reminiscent of the clinical resistance form known as vancomycin intermediate-resistant Staphylococcus aureus. Importantly, this is accompanied by dramatic sensitization to tunicamycin. We demonstrate that this phenotype is due to partial collapse of a pathway consisting of autolysins, AtlA and Sle1, a transmembrane sugar permease, MurP, and GlcNAc recycling enzymes, MupG and MurQ. We suggest that this causes a shortage of substrate for the peptidoglycan biosynthesis enzyme MraY, causing it to be hypersensitive to competitive inhibition by tunicamycin. In conclusion, our results constitute a new molecular model for antibiotic sensitivity in S. aureus and a promising new route for antibiotic discovery.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada, M5G 1M1
| | - Kelvin Cho
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada, M5G 1M1
| | - Justin R Nodwell
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada, M5G 1M1.
| |
Collapse
|
18
|
Mutation in the Two-Component System Regulator YycH Leads to Daptomycin Tolerance in Methicillin-Resistant Staphylococcus aureus upon Evolution with a Population Bottleneck. Microbiol Spectr 2022; 10:e0168722. [PMID: 35913149 PMCID: PMC9431245 DOI: 10.1128/spectrum.01687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a useful tool to study the evolution of antibiotic tolerance in bacterial populations under diverse environmental conditions. The role of population bottlenecks in the evolution of tolerance has been investigated in Escherichia coli, but not in a more clinically relevant pathogen, methicillin-resistant Staphylococcus aureus (MRSA). In this study, we used ALE to evolve MRSA under repetitive daptomycin treatment and incorporated population bottlenecks following antibiotic exposure. We observed that the populations finally attained a tolerance mutation in the yycH gene after 2 weeks of evolution with population bottlenecks, and additional mutations in yycI and several other genes further increased the tolerance level. The tolerant populations also became resistant to another glycopeptide antibiotic, vancomycin. Through proteomics, we showed that yycH and yycI mutations led to the loss of function of the proteins and downregulated the WalKR two-component system and the downstream players, including the autolysin Atl and amidase Sle1, which are important for cell wall metabolism. Overall, our study offers new insights into the evolution of daptomycin tolerance under population bottlenecking conditions, which are commonly faced by pathogens during infection; the study also identified new mutations conferring daptomycin tolerance and revealed the proteome alterations in the evolved tolerant populations. IMPORTANCE Although population bottlenecks are known to influence the evolutionary dynamics of microbial populations, how such bottlenecks affect the evolution of tolerance to antibiotics in a clinically relevant methicillin-resistant S. aureus (MRSA) pathogen are still unclear. Here, we performed in vitro evolution of MRSA under cyclic daptomycin treatment and applied population bottlenecks following the treatment. We showed that under these experimental conditions, MRSA populations finally attained mutations in yycH, yycI, and several other genes that led to daptomycin tolerance. The discovered yycH and yycI mutations caused early termination of the genes and loss of function of the proteins, and they subsequently downregulated the expression of proteins controlled by the WalKR two-component system, such as Atl and Sle1. In addition, we compared our proteomics data with multiple studies on distinct daptomycin-tolerant MRSA mutants to identify proteins with a consistent expression pattern that could serve as biological markers for daptomycin tolerance in MRSA.
Collapse
|
19
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
20
|
Proteomic Correlates of Enhanced Daptomycin Activity following β-Lactam Preconditioning in Daptomycin-Resistant, Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0201721. [PMID: 35041502 DOI: 10.1128/aac.02017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical treatment options for daptomycin (DAP)-resistant (DAP-R), methicillin-resistant Staphylococcus aureus (MRSA) infections are relatively limited. Current therapeutic strategies often take advantage of potential synergistic activity of DAP plus β-lactams; however, the mechanisms underlying their combinatorial efficacy are likely complex and remain incompletely understood. We recently showed that in vitro β-lactam passaging can resensitize DAP-R strains to a DAP-susceptible (DAP-S) phenotype. To further investigate the implications of selected β-lactam pretreatments on DAP plus β-lactam combination efficacy, we utilized DAP-R strain D712. We studied six such combinations, featuring β-lactams with a broad range of penicillin-binding protein-targeting profiles (PBP-1 to -4), using DAP-R strain D712. Of note, preconditioning with each β-lactam antibiotic (sequential exposures), followed by DAP exposure, yielded significantly enhanced in vitro activity compared to either DAP treatment alone or simultaneous exposures to both antibiotics. To explore the underpinnings of these outcomes, proteomic analyses were performed, with or without β-lactam preconditioning. Relative proteomic quantitation comparing β-lactam pretreatments (versus untreated controls) identified differential modulation of several well-known metabolic, cellular, and biosynthetic processes, i.e., the autolytic and riboflavin biosynthetic pathways. Moreover, these differential proteomic readouts with β-lactam preconditioning were not PBP target specific. Taken together, these studies suggest that the cellular response to β-lactam preconditioning in DAP-R MRSA leads to distinct and complex changes in the proteome that appear to resensitize such strains to DAP-mediated killing.
Collapse
|
21
|
Analysis of protein kinases by Phos-tag SDS-PAGE. J Proteomics 2022; 255:104485. [DOI: 10.1016/j.jprot.2022.104485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
|
22
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
23
|
Hort M, Bertsche U, Nozinovic S, Dietrich A, Schrötter AS, Mildenberger L, Axtmann K, Berscheid A, Bierbaum G. The Role of β-Glycosylated Wall Teichoic Acids in the Reduction of Vancomycin Susceptibility in Vancomycin-Intermediate Staphylococcus aureus. Microbiol Spectr 2021; 9:e0052821. [PMID: 34668723 PMCID: PMC8528128 DOI: 10.1128/spectrum.00528-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 μg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 μg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 μg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly β-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of β-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, β-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the β-conformation. By experimentally increasing the proportion of β-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the β-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.
Collapse
Affiliation(s)
- Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Sophie Schrötter
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Laura Mildenberger
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Berscheid
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Investigating Extracellular DNA Release in Staphylococcus xylosus Biofilm In Vitro. Microorganisms 2021; 9:microorganisms9112192. [PMID: 34835318 PMCID: PMC8617998 DOI: 10.3390/microorganisms9112192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus xylosus forms biofilm embedded in an extracellular polymeric matrix. As extracellular DNA (eDNA) resulting from cell lysis has been found in several staphylococcal biofilms, we investigated S. xylosus biofilm in vitro by a microscopic approach and identified the mechanisms involved in cell lysis by a transcriptomic approach. Confocal laser scanning microscopy (CLSM) analyses of the biofilms, together with DNA staining and DNase treatment, revealed that eDNA constituted an important component of the matrix. This eDNA resulted from cell lysis by two mechanisms, overexpression of phage-related genes and of cidABC encoding a holin protein that is an effector of murein hydrolase activity. This lysis might furnish nutrients for the remaining cells as highlighted by genes overexpressed in nucleotide salvage, in amino sugar catabolism and in inorganic ion transports. Several genes involved in DNA/RNA repair and genes encoding proteases and chaperones involved in protein turnover were up-regulated. Furthermore, S. xylosus perceived osmotic and oxidative stresses and responded by up-regulating genes involved in osmoprotectant synthesis and in detoxification. This study provides new insight into the physiology of S. xylosus in biofilm.
Collapse
|
25
|
Inferring multilayer interactome networks shaping phenotypic plasticity and evolution. Nat Commun 2021; 12:5304. [PMID: 34489412 PMCID: PMC8421358 DOI: 10.1038/s41467-021-25086-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity represents a capacity by which the organism changes its phenotypes in response to environmental stimuli. Despite its pivotal role in adaptive evolution, how phenotypic plasticity is genetically controlled remains elusive. Here, we develop a unified framework for coalescing all single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) into a quantitative graph. This framework integrates functional genetic mapping, evolutionary game theory, and predator-prey theory to decompose the net genetic effect of each SNP into its independent and dependent components. The independent effect arises from the intrinsic capacity of a SNP, only expressed when it is in isolation, whereas the dependent effect results from the extrinsic influence of other SNPs. The dependent effect is conceptually beyond the traditional definition of epistasis by not only characterizing the strength of epistasis but also capturing the bi-causality of epistasis and the sign of the causality. We implement functional clustering and variable selection to infer multilayer, sparse, and multiplex interactome networks from any dimension of genetic data. We design and conduct two GWAS experiments using Staphylococcus aureus, aimed to test the genetic mechanisms underlying the phenotypic plasticity of this species to vancomycin exposure and Escherichia coli coexistence. We reconstruct the two most comprehensive genetic networks for abiotic and biotic phenotypic plasticity. Pathway analysis shows that SNP-SNP epistasis for phenotypic plasticity can be annotated to protein-protein interactions through coding genes. Our model can unveil the regulatory mechanisms of significant loci and excavate missing heritability from some insignificant loci. Our multilayer genetic networks provide a systems tool for dissecting environment-induced evolution.
Collapse
|
26
|
Ma P, Phillips-Jones MK. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery. Molecules 2021; 26:molecules26165110. [PMID: 34443697 PMCID: PMC8399564 DOI: 10.3390/molecules26165110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
There is an urgent need to find new antibacterial agents to combat bacterial infections, including agents that inhibit novel, hitherto unexploited targets in bacterial cells. Amongst novel targets are two-component signal transduction systems (TCSs) which are the main mechanism by which bacteria sense and respond to environmental changes. TCSs typically comprise a membrane-embedded sensory protein (the sensor histidine kinase, SHK) and a partner response regulator protein. Amongst promising targets within SHKs are those involved in environmental signal detection (useful for targeting specific SHKs) and the common themes of signal transmission across the membrane and propagation to catalytic domains (for targeting multiple SHKs). However, the nature of environmental signals for the vast majority of SHKs is still lacking, and there is a paucity of structural information based on full-length membrane-bound SHKs with and without ligand. Reasons for this lack of knowledge lie in the technical challenges associated with investigations of these relatively hydrophobic membrane proteins and the inherent flexibility of these multidomain proteins that reduces the chances of successful crystallisation for structural determination by X-ray crystallography. However, in recent years there has been an explosion of information published on (a) methodology for producing active forms of full-length detergent-, liposome- and nanodisc-solubilised membrane SHKs and their use in structural studies and identification of signalling ligands and inhibitors; and (b) mechanisms of signal sensing and transduction across the membrane obtained using sensory and transmembrane domains in isolation, which reveal some commonalities as well as unique features. Here we review the most recent advances in these areas and highlight those of potential use in future strategies for antibiotic discovery. This Review is part of a Special Issue entitled “Interactions of Bacterial Molecules with Their Ligands and Other Chemical Agents” edited by Mary K. Phillips-Jones.
Collapse
Affiliation(s)
- Pikyee Ma
- Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Correspondence:
| |
Collapse
|
27
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|