1
|
Askari S, Zomorodi AR, Aflakian F. Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: a comprehensive review. Microb Pathog 2025; 205:107684. [PMID: 40348206 DOI: 10.1016/j.micpath.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Mastitis, an inflammation of mammary tissue frequently associated with infection, is a prevalent disease among dairy animals. Bacterial intra-mammary infection is identified as a primary cause of bovine mastitis (BM). In dairy cattle, antimicrobials are used for mastitis treatment during the lactating phase and for dry cow therapy. Although self-curing can occur, the success of mastitis treatment depends on several factors, including the type of bacteria responsible for the infection, the effectiveness of the administered antibiotics, and the host's overall immune response. Moreover, the growing resistance of microorganisms to antibiotics has restricted the available treatment options for managing intramammary infections. In addition, the utilization of critically essential antimicrobials in animals raised for food production may elevate the risk of human infections that are challenging to treat. Therefore, it is crucial to have alternative treatments with equivalent or superior effectiveness as part of any stewardship program. These may include the application of nanotechnology, stem cell technology, photodynamic and laser radiation or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics. This review aims to discuss the potential of vaccination as an indirect strategy, along with nanotechnology, probiotics, stem cell therapy, antimicrobial peptides, photodynamic therapy, laser irradiation, and antibody treatments as direct approaches. These approaches are examined as possible alternative therapeutic options to antibiotic treatment for BM.
Collapse
Affiliation(s)
- Sepideh Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Committee of Medical Education Development, Education Development Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
2
|
Li W, Wang X, Chen K, Zhu Y, Yang G, Jin Y, Wang J. Engineered Bacillus subtilis WB600/ZD prevents Salmonella Infantis-induced intestinal inflammation and alters the colon microbiota in a mouse model. Vet Res 2025; 56:35. [PMID: 39920770 PMCID: PMC11806837 DOI: 10.1186/s13567-024-01438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/04/2024] [Indexed: 02/09/2025] Open
Abstract
Antimicrobial peptides (AMPs) are instrumental in maintaining intestinal homeostasis and have emerged as potential therapeutic candidates for ameliorating intestinal bacterial infections. However, the intrinsic instability associated with the in vivo delivery of AMPs constitutes a substantial impediment to their therapeutic efficacy in treating infections. In this study, we genetically modified Bacillus subtilis (B. subtilis) WB600 to express Zophobas atratus defensin (ZD), an antimicrobial peptide with broad-spectrum activity isolated from Zophobas atratus, for oral administration. This engineered strain effectively protects against Salmonella Infantis (S. Infantis) infection in mice. Pretreatment with WB600/ZD prevented NF-κB pathway activation induced by S. Infantis infection and increased expression of antioxidant and tight junction proteins, thus alleviating the severity of intestinal inflammation in both the jejunum and ileum (P < 0.01). Moreover, WB600/ZD pretreatment facilitated the growth of beneficial bacteria such as Lachnospiraceae, Butyricicoccus, Eubacterium_xylanophilum, and Clostridia_UCG-014 while decreasing the abundance of pathogenic bacteria such as Escherichia-Shigella and Salmonella (P < 0.05). In conclusion, this study underscores the protective effects of WB600/ZD on S. Infantis-induced intestinal inflammation, suggesting that oral delivery of B. subtilis WB600/ZD may be a promising prophylactic strategy for combating bacterial infections in the intestine.
Collapse
Affiliation(s)
- Wei Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Xue Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China
| | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, Hainan, China.
| |
Collapse
|
3
|
Xia X, Ren P, Bai Y, Li J, Zhang H, Wang L, Hu J, Li X, Ding K. Modulatory Effects of Regulated Cell Death: An Innovative Preventive Approach for the Control of Mastitis. Cells 2024; 13:1699. [PMID: 39451217 PMCID: PMC11506078 DOI: 10.3390/cells13201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Mastitis is a common disease worldwide that affects the development of the dairy industry due to its high incidence and complex etiology. Precise regulation of cell death and survival plays a critical role in maintaining internal homeostasis, organ development, and immune function in organisms, and regulatory abnormalities are a common mechanism of various pathological changes. Recent research has shown that regulated cell death (RCD) plays a crucial role in mastitis. The development of drugs to treat cell death and survival abnormalities that can be widely used in mastitis treatment has important clinical significance. This paper will review the molecular mechanisms of apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis and their regulatory roles in mastitis to provide a new perspective for the targeted treatment of mastitis.
Collapse
Affiliation(s)
- Xiaojing Xia
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Pengfei Ren
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Li
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Huihui Zhang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Lei Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Jianhe Hu
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| | - Xinwei Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ke Ding
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (X.X.)
| |
Collapse
|
4
|
Knežić T, Avramov M, Tatić V, Petrović M, Gadjanski I, Popović ŽD. Insects as a Prospective Source of Biologically Active Molecules and Pharmaceuticals-Biochemical Properties and Cell Toxicity of Tenebrio molitor and Zophobas morio Cell-Free Larval Hemolymph. Int J Mol Sci 2024; 25:7491. [PMID: 39000598 PMCID: PMC11242118 DOI: 10.3390/ijms25137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Insects are of great interest as novel sources of alternative proteins and biologically active compounds, primarily anticancer agents. Protein-rich insect larval hemolymph is a prospective candidate for pharmaceutical and food industry-related research. In this study, selected biochemical properties and cell toxicity of larval hemolymph from two mealworm species, Tenebrio molitor and Zophobas morio, were analyzed. Total proteins and carbohydrates, antioxidant capacity, and the level of lipid peroxidation were determined. Human cancer (U-87) and normometabolic (MRC-5) cells were treated with different concentrations of larval hemolymph proteins, and the effects on cell viability were assayed 24, 48, and 72 h after treatments. Z. morio hemolymph was shown to be richer in total proteins, showing a higher antioxidant capacity and lipid peroxidation level than T. molitor hemolymph, which was richer in total carbohydrates. Cytotoxicity assays showed that T. molitor and Z. morio hemolymphs differently affect the viability of U-87 and MRC-5 cells in cell type-, dose-, and time-dependent manners. Hemolymph from both species was more cytotoxic to U-87 cells than to MRC-5 cells, which was particularly prominent after 48 h. Additionally, a more potent cytotoxic effect of Z. morio hemolymph was observed on both cell lines, likely due to its higher antioxidant capacity, compared to T. molitor hemolymph.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Miloš Avramov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (V.T.)
| | - Vanja Tatić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (V.T.)
| | - Miloš Petrović
- Department of Plant and Environmental Protection, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Željko D. Popović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (V.T.)
| |
Collapse
|
5
|
Yang H, Wang J, Wang X, Wang S, Xu J, Shan Q, Wang J, Ma X, Zhu Y. Nanofiber Peptides for Bacterial Trapping: A Novel Approach to Antibiotic Alternatives in Wound Infections. Adv Healthc Mater 2024; 13:e2304657. [PMID: 38607802 DOI: 10.1002/adhm.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial β-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.
Collapse
Affiliation(s)
- Hao Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jieru Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
6
|
Wang X, Li S, Du M, Liu N, Shan Q, Zou Y, Wang J, Zhu Y. A novel glycine-rich peptide from Zophobas atratus, coleoptericin B, targets bacterial membrane and protects against Klebsiella pneumoniae-induced mastitis in mice. J Antimicrob Chemother 2024; 79:417-428. [PMID: 38267384 DOI: 10.1093/jac/dkad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES The growing occurrence of bacterial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides, a class of small molecules with antimicrobial activity, have been regarded as the ideal alternatives to antibiotics. METHODS In this study, we amplified a new type of Zophobas atratus coleoptericin (denoted coleoptericin B) through rapid amplification of cDNA ends (RACE) PCR and expressed recombinant Z. atratus coleoptericin B (rZA-col B) by prokaryotic expression. Subsequently, we evaluated the antimicrobial effect and biocompatibility of rZA-col B in vivo, investigated its antimicrobial mechanism, and assessed its therapeutic effect in a murine model of mastitis caused by MDR Klebsiella pneumoniae. RESULTS The in vivo studies demonstrated that rZA-col B possesses broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria. It exhibited less than 1.5% haemolysis and 10% cytotoxicity, even at a concentration of 128 μM. Additionally, rZA-col B had a minimal risk of inducing drug resistance. Furthermore, rZA-col B could disrupt the integrity of bacterial membranes, induce membrane permeabilization and ultimately lead to bacterial death. Importantly, rZA-col B also alleviated mastitis caused by MDR K. pneumoniae in a murine model by enhancing bacterial clearance, reducing neutrophil infiltration, decreasing TNF-α and IL-1β expression, and protecting the mammary barrier. CONCLUSIONS rZA-col B may be a promising antibacterial agent to combat MDR bacterial infection.
Collapse
Affiliation(s)
- Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Shuxian Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Mengze Du
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Yunjing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China
| |
Collapse
|
7
|
Shen P, Yu J, Yan C, Yang D, Tong C, Wang X. Analysis of differentially expressed microRNAs in bovine mammary epithelial cells treated with lipoteichoic acid. J Anim Physiol Anim Nutr (Berl) 2023; 107:463-474. [PMID: 35997417 DOI: 10.1111/jpn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Shen P, Yu J, Long X, Huang X, Tong C, Wang X. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid. Reprod Domest Anim 2023; 58:89-96. [PMID: 36128756 DOI: 10.1111/rda.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Abstract
Mastitis is a common disease of the dairy cattle, which affects the development of the dairy industry and leads to huge economic losses. Forsythoside A (FTA) has anti-inflammatory, antioxidant, antiviral and anti-apoptotic effects. However, the therapeutic effect and molecular mechanism of FTA on dairy cow mastitis remain unclear. In this study, bovine mammary epithelial cells (BMECs) were stimulated with lipoteichoic acid (LTA), a key virulence factor of Staphylococcus aureus (S. aureus), to construct in vitro models, and then treated with FTA. Subsequently, the differentially expressed genes (DEGs) in different groups were determined by RNA sequencing (RNA-Seq) analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse the possible function of the DEGs, real-time quantitative PCR (RT-qPCR) was used to verify whether the expression levels of these DEGs were consistent with RNA-Seq results. The results showed that cell division cycle 20B (CDC20B), endothelial cell surface expressed chemotaxis and apoptosis regulator (ECSCR), complement factor H-related 5 (CFHR5) and phospholipase A2 group IVA (PLA2G4A) were down-regulated after FTA treatment. In contrast, Kruppel-like factor 15 (KLF15) and Metallothionein 1E (MT1E) were up-regulated. These DEGs are involved in processes such as apoptosis, inflammation and development of cancer. This study provides valuable insights into the transcriptome changes in BMECs after FTA treatment. Further analysis may help identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiaochuan Long
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Xiankai Huang
- College of Animal Science, Phase II, West Campus of Guizhou University, Xibei Community Service Center, Guiyang, Guizhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.,Wushu Overseas Students Pioneer Park, Wuhu, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Niu Y, Zhao Y, Shi F, Li M, Zhang S, Yang J, Zong S, Tao J. An Efficient and Simple Method for Collecting Haemolymph of Cerambycidae (Insecta: Coleoptera) Adults. INSECTS 2022; 14:29. [PMID: 36661957 PMCID: PMC9863847 DOI: 10.3390/insects14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cerambycid beetles (Cerambycidae) are major forest pests, posing a serious threat to the security of forest resources worldwide. Extensive research has focused on the control of cerambycid beetles from physiological and biochemical perspectives. Despite the important roles of insect haemolymph in physiological processes, efficient collection methods for Cerambycidae are lacking. For the efficient and easy collection of large amounts of pure haemolymph from adult cerambycid beetles, a new method, named net centrifugation, was developed. Three species of cerambycid beetles with large differences in size, Anoplophora chinensis, Monochamus saltuarius and Saperda populnea, were selected for the study. Haemolymph was collected by the newly developed net centrifugation method-in which an inner nylon net is used during centrifugation under optimised conditions, and a relatively small wound is generated on the insect-as well as the traditional tearing method and double centrifugation method. Among the three methods evaluated, the net centrifugation method caused the least damage to cerambycid beetles during the whole operation. This method resulted in the most haemolymph from a single beetle, with the lowest turbidity, mostly pure haemocytes in the precipitate, the clearest haemolymph smears by microscopy and the highest quality of RNA extracted from haemocytes. The net centrifugation method has a high collection efficiency, providing important technical support for haemolymph extraction and entomological research.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jinglin Yang
- Mentougou Forestry Station, Beijing 102308, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Zou Y, Wang X, Xu J, Wang S, Li S, Zhu Y, Wang J. Z. morio Hemolymph Relieves E. coli-Induced Mastitis by Inhibiting Inflammatory Response and Repairing the Blood-Milk Barrier. Int J Mol Sci 2022; 23:13279. [PMID: 36362066 PMCID: PMC9657162 DOI: 10.3390/ijms232113279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2024] Open
Abstract
Escherichia coli (E. coli) is a major environmental pathogen causing coliform mastitis, characterized by cell death and mammary tissue damage. Our previous study has shown the antimicrobial effect of Zophobas morio (Z. morio) hemolymph against mastitis pathogens. In this study, we established E. coli-induced cellular and animal models for mastitis, aiming to evaluate the protective effect of Z. morio hemolymph against E. coli-induced mastitis in vivo and in vitro. In mice with E. coli, Z. morio hemolymph attenuated bacterial burden and histopathological impairment, reduced the production of interleukin (IL)-1β, IL-18, tumor necrosis factor-α (TNF-α) and the ratio of CD4+ T/CD8+ T, and increased the production of IL-2 triggered by E. coli. Z. morio hemolymph also enhanced the integrity of the blood-milk barrier in E. coli-induced mastitis. In E. coli-stimulated porcine mammary epithelial cells, Z. morio hemolymph inhibited E. coli-induced inflammatory responses and upregulated tight junction proteins (ZO-1, Claudin-3 and Occludin). Moreover, we found that the anti-inflammatory effect of Z. morio hemolymph was mediated by inhibiting E. coli-induced NLRP3 inflammasome assembly, Caspase-1 activation, and reversing the inhibitory effect of E. coli on autophagy. Besides, Z. morio hemolymph augmented ATG5/ATG16L1-mediated autophagy activation, negatively regulated NLRP3 inflammasome activation. Our results reveal that Z. morio hemolymph alleviates E. coli-induced mastitis via lessening the inflammatory response by regulating the NLRP3 and ATG5/ATG16L1 signaling pathway, as well as repairing the blood-milk barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
12
|
Wang X, Li S, Du M, Liu N, Shan Q, Zou Y, Wang J, Zhu Y. A Novel β-Hairpin Peptide Z-d14CFR Enhances Multidrug-Resistant Bacterial Clearance in a Murine Model of Mastitis. Int J Mol Sci 2022; 23:ijms23094617. [PMID: 35563007 PMCID: PMC9105976 DOI: 10.3390/ijms23094617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
The widespread prevalence of antimicrobial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides (AMPs) have gained comprehensive attention as one of the major alternatives to antibiotics. However, low antibacterial activity and high-cost production have limited the applications of natural AMPs. In this study, we successfully expressed recombinant Zophobas atratus (Z. atratus) defensin for the first time. In order to increase the antimicrobial activity of peptide, we designed 5 analogues derived from Z. atratus defensin, Z-d13, Z-d14C, Z-d14CF, Z-d14CR and Z-d14CFR. Our results showed that Z-d14CFR (RGCRCNSKSFCVCR-NH2) exhibited a broad-spectrum antimicrobial activity to both Gram-positive bacteria and Gram-negative bacteria, including multidrug-resistant bacteria. It possessed less than 5% hemolysis and 10% cytotoxicity, even at a high concentration of 1 mg/mL. Antimicrobial mechanism studies indicated that Z-d14CFR performed antimicrobial effect via inhibiting biofilm formation, disrupting bacterial membrane integrity and inducing cellular contents release. Furthermore, Z-d14CFR showed a great therapeutic effect on the treatment of multidrug-resistant Escherichia coli (E. coli) infection by enhancing bacterial clearance, decreasing neutrophils infiltration and the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in a murine model of mastitis. Our findings suggest that Z-d14CFR could be a promising candidate against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Shuxian Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Mengze Du
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China;
| | - Ning Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Yunjing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
- Correspondence: ; Tel.: +86-010-6273-1094
| |
Collapse
|
13
|
Single-Chain Fragment Variables Targeting Leukocidin ED Can Alleviate the Inflammation of Staphylococcus aureus-Induced Mastitis in Mice. Int J Mol Sci 2021; 23:ijms23010334. [PMID: 35008761 PMCID: PMC8745144 DOI: 10.3390/ijms23010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a vital bovine mastitis pathogen causing huge economic losses to the dairy industry worldwide. In our previous studies, leukotoxin ED (LukED) was detected in most S. aureus strains isolated from bovine mastitis. Here, four single-chain fragment variables (scFvs) (ZL8 and ZL42 targeting LukE, ZL22 and ZL23 targeting LukD) were obtained using purified LukE and LukD proteins as the antigens after five rounds of bio-panning. The complementarity-determining region 3 (CDR3) of the VH domain of these scFvs exhibited significant diversities. In vitro, the scFvs significantly decreased LukED-induced cell killing by inhibiting the binding of LukED to chemokine receptors (CCR5 and CXCR2) and reduced the death rates of bovine neutrophils and MAC-T cells caused by LukED and S. aureus (p < 0.05). In an S. aureus-induced mouse mastitis model, histopathology and MPO results revealed that scFvs ameliorated the histopathological damages and reduced the infiltration of inflammatory cells (p < 0.05). The ELISA and qPCR assays showed that scFvs reduced the transcription and expression levels of Tumor Necrosis Factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-18 (p < 0.05). The overall results demonstrated the protective anti-inflammatory effect of scFvs in vitro and in vivo, enlightening the potential role of scFvs in the prevention and treatment of S. aureus-induced mastitis.
Collapse
|
14
|
Therapeutic Effect of Darkling Beetle ( Zophobas morio) Hemolymph on Skin Thermal Injury in Mice Infected by Staphylococcus haemolyticus. Vet Sci 2021; 8:vetsci8120319. [PMID: 34941846 PMCID: PMC8705897 DOI: 10.3390/vetsci8120319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Staphylococci are the most common pathogens isolated from skin infections in livestock or companion animals. Antibiotic therapy is the best treatment for infections, but local or systemic use of antimicrobials increases the risk of bacterial resistance. Insects are rich in antimicrobial peptides, which can reduce bacterial resistance and can be used to treat bacterial infections after skin burns. We propose that the use of the darkling beetle (Z. morio) hemolymph to treat skin infections in mice by Staphylococcus haemolyticus is one of the alternatives. Z. morio hemolymph alleviated the increase in wound area temperature in mice with a skin infection, reduced the bacterial load of the wound, and accelerated the wound healing speed significantly. Pathological sections showed that Z. morio hemolymph can significantly reduce inflammatory cell infiltration, and promote skin tissue repair. Real-time fluorescent quantitative polymerase chain reaction (PCR) revealed that the Z. morio hemolymph can significantly reduce the levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine interleukin-8 (IL-8). Our findings suggest that Z. morio antibacterial hemolymph can promote wound contraction, relieve local inflammatory responses and promote wound healing in mice infected with a heat injury, which has a positive therapeutic effect and enormous potential for skin thermal injury.
Collapse
|
15
|
Rhodotorula sp. and Trichosporon sp. are more Virulent After a Mixed Biofilm. Mycopathologia 2021; 187:85-93. [PMID: 34855103 DOI: 10.1007/s11046-021-00606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Rhodotorula spp. and Trichosporon spp. are opportunistic pathogens, and although an association between these two species in the same infection appears to be uncommon, it has been reported. This is the first study that aimed to evaluate the pathogenesis of a co-infection by R. mucilaginosa and T. asahii, using a new in vivo model, the Zophobas morio larvae. Suspensions from planktonic and biofilm-recovered cells were injected in the larvae as in monospecies as mixed (a ratio of 1:1 for both agents of a of 105 inoculum). Individual and mixed biofilms of R. mucilaginosa and T. asahii were produced for 24 and 48 h, and they were partially characterized by crystal violet and reduction of tetrazolium salt. When evaluating the impact of the planktonic suspension in vivo we verified that the fungi in monoculture were more able to kill the larvae than those from planktonic mixed suspension. On the other hand, regarding biofilm-recovered cells, there was an increase in the death of larvae infected for mixed suspensions. Moreover, the death rate was more pronounced when the larvae were infected with 48 h biofilm-recovered cells than the 24 h ones. T. asahii was the best producer of total biomass, mainly in 48 h. The metabolic activity for both yeasts organized in biofilm maintained the same pattern between 24 and 48 h. The present study proves a synergistic interaction between R. mucilaginosa and T. asahii after an experience in a mixed biofilm. Our results suggest that both species were benefited from this interaction, acquiring a greater potential for virulence after passing through the biofilm and this ability was acquired by the cells released from the biofilm.
Collapse
|
16
|
Sunil SV, Kerima OZ, Kumar HSS, Prabhakar BT, Pramod SN, Niranjana P. In Silico Characterization of a Transcript Code Based Screening of Antimicrobial Peptide from Trichogramma chilonis. Int J Pept Res Ther 2021; 27:2861-2872. [DOI: 10.1007/s10989-021-10295-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
|
17
|
Rumbos CI, Athanassiou CG. The Superworm, Zophobas morio (Coleoptera:Tenebrionidae): A 'Sleeping Giant' in Nutrient Sources. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:13. [PMID: 33834209 PMCID: PMC8033247 DOI: 10.1093/jisesa/ieab014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/20/2023]
Abstract
The aim of this review is to compile up-to-date information on the superworm, Zophobas morio (F.), regarding its biology and ecology, but also its further potential for use as a nutrient source for food and feed. We illustrate certain basic characteristics of the morphology and bio-ecology of this species, which is marginally considered as a 'pest' in durable amylaceous commodities. More recent data show that Z. morio can be a valuable nutrient and antimicrobial source that could be utilized further in insect-based feed and food production. The inclusion of this species in aquafeed has provided promising results in a wide range of feeding trials, both in terms of fish development and health. Additional data illustrate its potential for use in poultry, indicating that this species provides comparable results with those of other insect species that are used in feed. Moreover, Z. morio can be a viable waste management agent. This review aims to summarize the available data and underline data gaps for future research, toward the potential of the utilization of Z. morio for human food and animal feed. Based on the data presented, Z. morio appears to be a well-promising insect-based protein source, which potential still remains to be unfold.
Collapse
Affiliation(s)
- C I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - C G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|