1
|
Wietschel KA, Fechtner K, Antileo E, Abdurrahman G, Drechsler CA, Makuvise MK, Rose R, Voß M, Krumbholz A, Michalik S, Weiss S, Ulm L, Franikowski P, Fickenscher H, Bröker BM, Raafat D, Holtfreter S. Non-cross-reactive epitopes dominate the humoral immune response to COVID-19 vaccination - kinetics of plasma antibodies, plasmablasts and memory B cells. Front Immunol 2024; 15:1382911. [PMID: 38807606 PMCID: PMC11130424 DOI: 10.3389/fimmu.2024.1382911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.
Collapse
Affiliation(s)
- Kilian A. Wietschel
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Kevin Fechtner
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Elmer Antileo
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Chiara A. Drechsler
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Lena Ulm
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Philipp Franikowski
- Institute for Educational Quality Improvement, Humboldt University of Berlin, Berlin, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Martos G, Bedu M, Josephs RD, Westwood S, Wielgosz RI. Quantification of SARS-CoV-2 monoclonal IgG mass fraction by isotope dilution mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05205-z. [PMID: 38427100 DOI: 10.1007/s00216-024-05205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
The availability of serology assays to measure antibodies against the SARS coronavirus 2 (SARS-CoV-2) expanded rapidly during the Covid-19 pandemic. The interchangeable use of such assays to monitor disease progression and immune protection requires their standardization, for which suitably characterized monoclonal antibody materials can be useful. The methods, based on isotope dilution mass spectrometry, to value assign the mass fraction of such a material in solution within the context of an international interlaboratory comparison study (CCQM-P216) are described. The mass fraction in solution of a humanized IgG monoclonal antibody (mAb) against the SARS-CoV-2 Spike glycoprotein in the study sample has been value assigned through a combination of liquid chromatography, isotope dilution mass spectrometry (LC-ID-MS) methods and size exclusion chromatography with UV detection (SEC-UV). The former were developed for the quantification of amino acids and proteotypic peptides as surrogate analytes of the mAb while the latter was applied for the determination of the relative monomeric mass fraction. High-resolution mass spectrometry (hrMS) allowed the molecular weight evaluation and ruled out the presence of significant impurities. Method trueness was assessed using a subclass homologous IgG1 material value assigned by amino acid analysis. The assigned mass fraction of monomeric SARS-CoV-2 IgG in solution was 390 ± 16 mg/g. The associated expanded uncertainty originated mainly from acid hydrolysis variability and Trypsin/Lys-C digestion variability and efficiency.
Collapse
Affiliation(s)
- G Martos
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France.
| | - M Bedu
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R D Josephs
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - S Westwood
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| | - R I Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Sèvres, France
| |
Collapse
|
3
|
Graninger M, Jani CM, Reuberger E, Prüger K, Gaspar P, Springer DN, Borsodi C, Weidner L, Rabady S, Puchhammer-Stöckl E, Jungbauer C, Höltl E, Aberle JH, Stiasny K, Weseslindtner L. Comprehensive Comparison of Seven SARS-CoV-2-Specific Surrogate Virus Neutralization and Anti-Spike IgG Antibody Assays Using a Live-Virus Neutralization Assay as a Reference. Microbiol Spectr 2023; 11:e0231422. [PMID: 36622205 PMCID: PMC9927416 DOI: 10.1128/spectrum.02314-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.
Collapse
Affiliation(s)
| | | | | | - Katja Prüger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Philipp Gaspar
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | - Lisa Weidner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Susanne Rabady
- Karl Landsteiner University of Health Sciences, Department of General Health Studies, Division General and Family Medicine, Krems, Austria
| | | | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria, and Burgenland, Vienna, Austria
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
4
|
Bauer G, Struck F, Staschik E, Maile J, Wochinz‐Richter K, Motz M, Soutschek E. Differential avidity determination of IgG directed towards the receptor-binding domain (RBD) of SARS-CoV-2 wild-type and its variants in one assay: Rational tool for the assessment of protective immunity. J Med Virol 2022; 94:5294-5303. [PMID: 35851961 PMCID: PMC9349558 DOI: 10.1002/jmv.28006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The avidity (binding strength) of IgG directed towards the receptor-binding domain (RBD) of spike protein has been recognized as a central marker in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology. It seems to be linked to increased infection-neutralization potential and therefore might indicate protective immunity. Using a prototype line assay based on the established recomLine SARS-CoV-2 assay, supplemented with RBD of the delta and the omicron variant, differential avidity determination of IgG directed towards RBD of wild-type (WT) SARS-CoV-2 and distinct variants was possible within one assay. Our data confirm that natural SARS-CoV-2 infection or one vaccination step lead to low avidity IgG, whereas further vaccination steps gradually increase avidity to high values. High avidity is not reached by infection alone. After infection with WT SARS-CoV-2 or vaccination based on mRNA WT, the avidity of cross-reacting IgG directed towards RBD of the delta variant only showed marginal differences compared to IgG directed towards RBD WT. In contrast, the avidity of IgG cross-reacting with RBD of the omicron variant was always much lower than for IgG RBD WT, except after the third vaccination step. Therefore, parallel avidity testing of RBD WT and omicron seems to be mandatory for a significant assessment of protective immunity towards SARS-CoV-2.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | | | | | | | | | | |
Collapse
|
5
|
Saggau C, Martini GR, Rosati E, Meise S, Messner B, Kamps AK, Bekel N, Gigla J, Rose R, Voß M, Geisen UM, Reid HM, Sümbül M, Tran F, Berner DK, Khodamoradi Y, Vehreschild MJGT, Cornely O, Koehler P, Krumbholz A, Fickenscher H, Kreuzer O, Schreiber C, Franke A, Schreiber S, Hoyer B, Scheffold A, Bacher P. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 2022; 55:1924-1939.e5. [PMID: 35985324 PMCID: PMC9372089 DOI: 10.1016/j.immuni.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Elisa Rosati
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Berith Messner
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ann-Kristin Kamps
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Nicole Bekel
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Johannes Gigla
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf M Geisen
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hayley M Reid
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Dennis K Berner
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Claudia Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Bimba Hoyer
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany.
| |
Collapse
|
6
|
Korodi M, Horváth I, Rákosi K, Jenei Z, Hudák G, Kákes M, Dallos-Fejér K, Simai E, Páll O, Staver N, Briciu V, Lupșe M, Flonta M, Almaș A, Birlutiu V, Daniela Lupu C, Magdalena Ghibu A, Pianoschi D, Terza LM, Fejer SN. Longitudinal determination of BNT162b2 vaccine induced strongly binding SARS-CoV-2 IgG antibodies in a cohort of Romanian healthcare workers. Vaccine 2022; 40:5445-5451. [PMID: 35931634 PMCID: PMC9339977 DOI: 10.1016/j.vaccine.2022.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 12/09/2022]
Abstract
Mass vaccination against the disease caused by the novel coronavirus (COVID-19) was a crucial step in slowing the spread of SARS-CoV-2 in 2021. Even in the face of new variants, it still remains extremely important for reducing hospitalizations and COVID-19 deaths. In order to better understand the short- and long-term dynamics of humoral immune response, we present a longitudinal analysis of post-vaccination IgG levels in a cohort of 166 Romanian healthcare workers vaccinated with BNT162b2 with weekly follow-up until 35 days past the first dose and monthly follow-up up to 6 months post-vaccination. A subset of the patients continued with follow-up after 6 months and either received a booster dose or got infected during the Delta wave in Romania. Tests were carried out on 1694 samples using a CE-marked IgG ELISA assay developed in-house, containing S1 and N antigens of the wild type virus. Participants infected with SARS-CoV-2 before vaccination mount a quick immune response, reaching peak IgG levels two weeks after the first dose, while IgG levels of previously uninfected participants mount gradually, increasing abruptly after the second dose. Overall higher IgG levels are maintained for the previously infected group throughout the six month primary observation period (e.g. 36–65 days after the first dose, the median value in the previously infected group is 5.29 AU/ml, versus 3.58 AU/ml in the infection naïve group, p less than 0.001). The decrease of IgG levels is gradual, with lower median values in the infection naïve cohort even 7–8 months after vaccination, compared to the previously infected cohort (0.7 AU/ml versus 1.29 AU/ml, p = 0.006). Administration of a booster dose yielded higher median IgG antibody levels than post second dose in the infection naïve group and comparable levels in the previously infected group.
Collapse
|
7
|
Heireman L, Boelens J, Coorevits L, Verhasselt B, Vandendriessche S, Padalko E. Different long-term avidity maturation for IgG anti-spike and anti-nucleocapsid SARS-CoV-2 in hospitalized COVID-19 patients. Acta Clin Belg 2022; 77:653-657. [PMID: 34152944 DOI: 10.1080/17843286.2021.1943231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The high variability of SARS-CoV-2 serological response after COVID-19 infection hampers its use as indicator of the timing of infection. A potential alternative method is the determination of affinity maturation of SARS-CoV-2 IgG, expressed as the SARS-CoV-2 IgG avidity. METHODS SARS-CoV-2 IgG concentration and avidity were measured in sera of hospitalized COVID-19 patients sampled at two weeks and ≥12 weeks post symptom onset using an in-house developed protocol based on EUROIMMUN (anti-spike) and EDI™ (anti-nucleocapsid) SARS-CoV-2 IgG ELISA protocols. RESULTS We included 68 confirmed COVID-19 patients that tested positive for SARS-CoV-2 IgG in both the initial and follow-up specimen sampled at a median of 14 (range 10-18) days and 120 (range 84-189) days, respectively, post symptom onset. The median anti-spike and anti-nucleocapsid SARS-CoV-2 IgG avidity response was 40% (range 9-93%) and 72% (range 27-104%), respectively, for the first sample, and 66% (range 28-90%) and 57% (range 25-94%), respectively, for the second sample. The proportion of SARS-CoV-2 IgG avidity results ≥60% was significantly lower for anti-spike compared to anti-nucleocapsid IgG for initial samples (p< 0.01) and vice versa for follow-up samples (p< 0.01). CONCLUSION Anti-nucleocapsid SARS-CoV-2 IgG maturation occurs faster and avidity decreases faster than anti-spike IgG, indicating different kinetics of anti-spike and anti-nucleocapsid IgG. Further, affinity maturation after SARS-CoV-2 infection is frequently incomplete.
Collapse
Affiliation(s)
- Laura Heireman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Liselotte Coorevits
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Elizaveta Padalko
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Salahandish R, Haghayegh F, Ayala-Charca G, Hyun JE, Khalghollah M, Zare A, Far B, Berenger BM, Niu YD, Ghafar-Zadeh E, Sanati-Nezhad A. Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosens Bioelectron 2022; 203:114018. [PMID: 35114466 PMCID: PMC8786409 DOI: 10.1016/j.bios.2022.114018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
Abstract
Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Giancarlo Ayala-Charca
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada
| | - Jae Eun Hyun
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Behrouz Far
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Byron M Berenger
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada
| | - Yan Dong Niu
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
9
|
Zhai B, Clarke K, Bauer DL, Moehling Geffel KK, Kupul S, Schratz LJ, Nowalk MP, McElroy AK, McLachlan JB, Zimmerman RK, Alcorn JF. SARS-CoV-2 Antibody Response Is Associated with Age and Body Mass Index in Convalescent Outpatients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1711-1718. [PMID: 35321882 PMCID: PMC8976825 DOI: 10.4049/jimmunol.2101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 has had an unprecedented global impact on human health. Understanding the Ab memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum Ab concentrations, microneutralization activity, and enumerated SARS-CoV-2-specific B cells in convalescent human blood specimens. Serum Ab concentrations were variable, allowing for stratification of the cohort into high and low responders. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein-specific B cells correlated with serum Ab concentration. Serum Ab concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest Ab level. These data suggest that young adult outpatients did not generate as robust Ab memory, compared with older adults. Body mass index was also positively correlated with serum Ab levels. Multivariate analyses showed that participant age and body mass index were independently associated with Ab levels. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding Ab memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.
Collapse
Affiliation(s)
- Bo Zhai
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Karen Clarke
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | | | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Lucas J Schratz
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - M Patricia Nowalk
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anita K McElroy
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA; and
| | - Richard K Zimmerman
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA;
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Adams O, Andrée M, Rabl D, Ostermann PN, Schaal H, Lehnert E, Ackerstaff S, Müller L, Fischer JC. Humoral response to SARS-CoV-2 and seasonal coronaviruses in COVID-19 patients. J Med Virol 2022; 94:1096-1103. [PMID: 34716706 PMCID: PMC8662174 DOI: 10.1002/jmv.27427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
We used enzyme-linked immunoassay methods to measure the prevalence and the levels of antibody responses to the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV 229E, and HCoV-NL63) in a cohort of 115 convalescent plasma donors infected with SARS-CoV-2 (1-61 days after symptom onset) compared to antibody levels in 114 individuals with no evidence of a recent infection with SARS-CoV-2. In the humoral response to the four seasonal coronaviruses, only HCoV-HKU1- and HCoV-229E-assays showed slightly elevated antibody levels in the COVID group compared to the control group. While in the COVID-group the levels of SARS-CoV-2 antibodies correlated significantly with disease severity, no association was found in the levels of antibodies against the seasonal coronaviruses. The most striking result in both groups was that the levels of antibodies against all tested coronaviruses, including the new SARS-CoV-2 showed a highly significant correlation with each other. There seems to be an individual predisposition to a weaker or stronger humoral immune response against all known seasonal human coronaviruses including the new SARS-CoV-2, which could lead to a definition of low and high responders against human coronaviruses with potential impact on the assessment of postinfection antibody levels and protection.
Collapse
Affiliation(s)
- Ortwin Adams
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Marcel Andrée
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Denise Rabl
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Philipp N. Ostermann
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Heiner Schaal
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Erik Lehnert
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Stefanie Ackerstaff
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Lisa Müller
- Institute for Virology, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| | - Johannes C. Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical FacultyHeinrich‐Heine‐University of DuesseldorfDüsseldorfGermany
| |
Collapse
|
11
|
Šošić L, Paolucci M, Duda A, Hasler F, Walton SM, Kündig TM, Johansen P. Kinetics and persistence of anti-SARS-CoV-2 neutralisation and antibodies after BNT162b2 vaccination in a Swiss cohort. Immun Inflamm Dis 2022; 10:e583. [PMID: 34965032 PMCID: PMC8926495 DOI: 10.1002/iid3.583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), substantial effort has been made to gain knowledge about the immunity elicited by infection or vaccination. Methods We studied the kinetics of antibodies and virus neutralisation induced by vaccination with BNT162b2 in a Swiss cohort of SARS‐CoV‐2 naïve (n = 40) and convalescent (n = 9) persons. Blood sera were analysed in a live virus neutralisation assay and specific IgG and IgA levels were measured by enzyme‐linked immunoassay and analysed by descriptive statistics. Results Virus neutralisation was detected in all individuals 2–4 weeks after the second vaccine. Both neutralisation and antibodies remained positive for >4 months. Neutralisation and antibodies showed positive correlation, but immunoglobulin G (IgG) and immunoglobulin A (IgA) seroconversion took place 2–4 weeks faster than neutralisation. Spike‐protein specific IgG levels rose significantly faster and were more stable over time than virus neutralisation titres or IgA responses. For naïve but not convalescent persons, a clear boosting effect was observed. Convalescent individuals showed faster, more robust and longer‐lasting immune responses after vaccination compared to noninfected persons. No threshold could be determined for spike protein‐specific IgG or IgA that would confer protection in the neutralisation assay, implicating the need for a better correlate of protection then antibody titres alone. Conclusions This study clearly shows the complex translation of antibody data and virus neutralisation, while supporting the evidence of a single dose being sufficient for effective antibody response in convalescent individuals.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Fabio Hasler
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - Senta M Walton
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Research & Development, Saiba Biotech, Pfaeffikon, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Rose R, Neumann F, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Humoral immune response after different SARS-CoV-2 vaccination regimens. BMC Med 2022; 20:31. [PMID: 35057798 PMCID: PMC8776512 DOI: 10.1186/s12916-021-02231-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The humoral immune response after primary immunisation with a SARS-CoV-2 vector vaccine (AstraZeneca AZD1222, ChAdOx1 nCoV-19, Vaxzevria) followed by an mRNA vaccine boost (Pfizer/BioNTech, BNT162b2; Moderna, m-1273) was examined and compared with the antibody response after homologous vaccination schemes (AZD1222/AZD1222 or BNT162b2/BNT162b2). METHODS Sera from 59 vaccinees were tested for anti-SARS-CoV-2 immunoglobulin G (IgG) and virus-neutralising antibodies (VNA) with three IgG assays based on (parts of) the SARS-CoV-2 spike (S)-protein as antigen, an IgG immunoblot (additionally contains the SARS-CoV-2 nucleoprotein (NP) as an antigen), a surrogate neutralisation test (sVNT), and a Vero-cell-based virus-neutralisation test (cVNT) with the B.1.1.7 variant of concern (VOC; alpha) as antigen. Investigation was done before and after heterologous (n = 30 and 42) or homologous booster vaccination (AZD1222/AZD1222, n = 8/9; BNT162b2/BNT162b2, n = 8/8). After the second immunisation, a subgroup of 26 age- and gender-matched sera (AZD1222/mRNA, n = 9; AZD1222/AZD1222, n = 9; BNT162b2/BNT162b2, n = 8) was also tested for VNA against VOC B.1.617.2 (delta) in the cVNT. The strength of IgG binding to separate SARS-CoV-2 antigens was measured by avidity. RESULTS After the first vaccination, the prevalence of IgG directed against the (trimeric) SARS-CoV-2 S-protein and its receptor binding domain (RBD) varied from 55-95% (AZD1222) to 100% (BNT162b2), depending on the vaccine regimen and the SARS-CoV-2 antigen used. The booster vaccination resulted in 100% seroconversion and the occurrence of highly avid IgG, which is directed against the S-protein subunit 1 and the RBD, as well as VNA against VOC B.1.1.7, while anti-NP IgGs were not detected. The results of the three anti-SARS-CoV-2 IgG tests showed an excellent correlation to the VNA titres against this VOC. The agreement of cVNT and sVNT results was good. However, the sVNT seems to overestimate non- and weak B.1.1.7-neutralising titres. The anti-SARS-CoV-2 IgG concentrations and the B.1.1.7-neutralising titres were significantly higher after heterologous vaccination compared to the homologous AZD1222 scheme. If VOC B.1.617.2 was used as antigen, significantly lower VNA titres were measured in the cVNT, and three (33.3%) vector vaccine recipients had a VNA titre < 1:10. CONCLUSIONS Heterologous SARS-CoV-2 vaccination leads to a strong antibody response with anti-SARS-CoV-2 IgG concentrations and VNA titres at a level comparable to that of a homologous BNT162b2 vaccination scheme. Irrespective of the chosen immunisation regime, highly avid IgG antibodies can be detected just 2 weeks after the second vaccine dose indicating the development of a robust humoral immunity. The reduction in the VNA titre against VOC B.1.617.2 observed in the subgroup of 26 individuals is remarkable and confirms the immune escape of the delta variant.
Collapse
Affiliation(s)
- Ruben Rose
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany
| | - Franziska Neumann
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Olaf Grobe
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Thomas Lorentz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany
| | - Andi Krumbholz
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig Holstein, Campus Kiel, Brunswiker Straße 4, D-24105, Kiel, Germany.
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106, Kiel, Germany.
| |
Collapse
|
13
|
Long-term decay of anti-RBD IgG titers after BNT162b2 vaccination is not mirrored by loss of neutralizing bioactivity against SARS-CoV-2. Clin Chim Acta 2022; 524:11-17. [PMID: 34843705 PMCID: PMC8630423 DOI: 10.1016/j.cca.2021.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Long-term kinetics of anti-RBD IgG and neutralizing antibodies were analyzed in a cohort of COVID-19 naïve health care workers (HCW) undergoing SARS-CoV-2 vaccination. METHODS An anti-RBD IgG immunoassay and a surrogate virus neutralization test (sVNT) were performed at different time points up to 6 months after vaccination in 57 HCWs. Values of anti-RBD IgG predicting an high neutralizing bioactivity (>60%) were also calculated. RESULTS Mean (range) values of anti-RBD IgG were 294.7 (11.6-1554), 2583 (398-8391), 320.4 (42.3-1134) BAU/mL at T1 (21 days after the 1st dose [T0]), T2 (30 days after the 2nd dose) and T3 (+180 days after T0), respectively. Mean (range) percentages of neutralization (NS%) were 24 (0-76), 86 (59-96) and 82 (52-99) at T1, T2 and T3, respectively. Anti-RBD IgG values and NS% were positively correlated at T2 and T3 while anti-RBD IgG value predicting a NS% > 60 markedly differed at T2 and T3 (594 vs. 108 BAU/mL, respectively). CONCLUSION While a high neutralizing bioactivity was maintained at least 6 months after vaccination in almost all individuals, the mean values of anti-RBD-IgG showed a marked decline at 6 months. The absolute value of anti-RBD IgG is a poor marker of neutralizing bioactivity.
Collapse
|
14
|
Struck F, Schreiner P, Staschik E, Wochinz‐Richter K, Schulz S, Soutschek E, Motz M, Bauer G. Vaccination versus infection with SARS-CoV-2: Establishment of a high avidity IgG response versus incomplete avidity maturation. J Med Virol 2021; 93:6765-6777. [PMID: 34387884 PMCID: PMC8427118 DOI: 10.1002/jmv.27270] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Avidity is defined as the binding strength of immunoglobulin G (IgG) toward its target epitope. Avidity is directly related to affinity, as both processes are determined by the best fit of IgG to epitopes. We confirm and extend data on incomplete avidity maturation of IgG toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (NP), spike protein-1 (S1), and its receptor-binding domain (RBD) in coronavirus disease 2019 (COVID-19) patients. In SARS-CoV-2-infected individuals, an initial rise in avidity maturation was ending abruptly, leading to IgG of persistently low or intermediate avidity. Incomplete avidity maturation might facilitate secondary SARS-CoV-2 infections and thus prevent the establishment of herd immunity. Incomplete avidity maturation after infection with SARS-CoV-2 (with only 11.8% of cases showing finally IgG of high avidity, that is, an avidity index > 0.6) was contrasted by regular and rapid establishment of high avidity in SARS-CoV-2 naïve individuals after two vaccination steps with the BioNTech messenger RNA (mRNA) Vaccine (78% of cases with high avidity). One vaccination step was not sufficient for induction of complete avidity maturation in vaccinated SARS-CoV-2 naïve individuals, as it induced high avidity only in 2.9% of cases within 3 weeks. However, one vaccination step was sufficient to induce high avidity in individuals with previous SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Bauer
- Institute of VirologyMedical Center–University of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
15
|
Zhai B, Clarke K, Bauer DL, Kupul S, Schratz LJ, Nowalk MP, McElroy AK, McLachlan JB, Zimmerman RK, Alcorn JF. SARS-CoV-2 Antibody Response is Associated with Age in Convalescent Outpatients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34790986 DOI: 10.1101/2021.11.08.21265888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 has had an unprecedented global impact on human health. Understanding the antibody memory responses to infection is one tool needed to effectively control the pandemic. Among 173 outpatients who had virologically confirmed SARS-CoV-2 infection, we evaluated serum antibody concentrations, microneutralization activity, and enumerated SARS-CoV-2 specific B cells in convalescent blood specimens. Serum antibody concentrations were variable, allowing for stratification of the cohort into high and low responders. Serum antibody concentration was positively associated with microneutralization activity and participant age, with participants under the age of 30 showing the lowest antibody level. Neither participant sex, the timing of blood sampling following the onset of illness, nor the number of SARS-CoV-2 spike protein specific B cells correlated with serum antibody concentration. These data suggest that young adult outpatients did not generate as robust antibody memory, compared with older adults. Further, serum antibody concentration or neutralizing activity trended but did not significantly correlate with the number of SARS-CoV-2 memory B cells. These findings have direct implications for public health policy and current vaccine efforts. Knowledge gained regarding antibody memory following infection will inform the need for vaccination in those previously infected and allow for a better approximation of population-wide protective immunity.
Collapse
|
16
|
Dynamics of IgG-avidity and antibody levels after Covid-19. J Clin Virol 2021; 144:104986. [PMID: 34563862 PMCID: PMC8451979 DOI: 10.1016/j.jcv.2021.104986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A potentially important aspect of the humoral immune response to Covid-19 is avidity, the overall binding strength between antibody and antigen. As low avidity is associated with a risk of re- infection in several viral infections, avidity might be of value to predict risk for reinfection with covid-19. OBJECTIVES The purpose of this study was to describe the maturation of IgG avidity and the antibody-levels over time in patients with PCR-confirmed non-severe covid-19. STUDY DESIGN Prospective longitudinal cohort study including patients with RT-PCR confirmed covid-19. Blood samples were drawn 1, 3 and 6 months after infection. Antibody levels and IgG-avidity were analysed. RESULTS The majority had detectable s- and n-antibodies (88,1%, 89,1%, N = 75). The level of total n-antibodies significantly increased from 1 to 3 months (median value 28,3 vs 39,3 s/co, p<0.001) and significantly decreased from 3 to 6 months (median value 39,3 vs 17,1 s/co, p<0.001). A significant decrease in the IgG anti-spike levels (median value 37,6, 24,1 and 18,2 RU/ml, p<0.001) as well as a significant increase in the IgG-avidity index (median values 51,6, 66,0 and 71,0%, p<0.001) were seen from 1 to 3 to 6 months. CONCLUSION We found a significant ongoing increase in avidity maturation after Covid-19 whilst the levels of antibodies were declining, suggesting a possible aspect of long-term immunity.
Collapse
|
17
|
Carreño JM, Mendu DR, Simon V, Shariff MA, Singh G, Menon V, Krammer F. Longitudinal analysis of severe acute respiratory syndrome coronavirus 2 seroprevalence using multiple serology platforms. iScience 2021; 24:102937. [PMID: 34368647 PMCID: PMC8324485 DOI: 10.1016/j.isci.2021.102937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological tests are based on the full-length spike (S), the receptor-binding domain (RBD), or the nucleoprotein (NP) as substrates. Here, we used samples from healthcare workers (HCWs) to perform a longitudinal analysis of the antibody responses using a research-grade RBD and spike-based enzyme-linked immunosorbent assay (ELISA), a commercial RBD and spike-based ELISA, and a commercial NP-based chemiluminescent microparticle immunoassay. Seroprevalence ranged around 28% early during the pandemic and a good correlation was observed between RBD and spike-based ELISAs. Modest correlations were observed between NP and both RBD and spike-based assays. The antibody levels in HCWs declined over time; however, the overall seroprevalence measured by RBD and spike-based assays remained unchanged, while the seroprevalence of NP-reactive antibodies significantly declined. Moreover, RBD and spike-based assays effectively detected seroconversion in vaccinees. Overall, our results consolidate the strength of different serological assays to assess the magnitude and duration of antibodies to SARS-CoV-2.
Collapse
Affiliation(s)
- Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Damodara Rao Mendu
- Clinical Microbiology Laboratory, Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masood A. Shariff
- Department of Internal Medicine, NYC Health + Hospitals/Lincoln, The Bronx, NY 10451, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vidya Menon
- Department of Internal Medicine, NYC Health + Hospitals/Lincoln, The Bronx, NY 10451, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Struck F, Schreiner P, Staschik E, Wochinz-Richter K, Schulz S, Soutschek E, Motz M, Bauer G. Incomplete IgG avidity maturation after seasonal coronavirus infections. J Med Virol 2021; 94:186-196. [PMID: 34427932 DOI: 10.1002/jmv.27291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
In classical viral infections, the avidity of immunoglobulin G (IgG) is low during acute infection and high a few months later. As recently reported, SARS-CoV-2 infections are not following this scheme, but they are rather characterized by incomplete avidity maturation. This study was performed to clarify whether infection with seasonal coronaviruses also leads to incomplete avidity maturation. The avidity of IgG toward the nucleoprotein (NP) of the seasonal coronaviruses 229E, NL63, OC43, HKU1 and of SARS-CoV-2 was determined in the sera from 88 healthy, SARS-CoV-2-negative subjects and in the sera from 70 COVID-19 outpatients, using the recomLine SARS-CoV-2 assay with recombinant antigens. In the sera from SARS-CoV-2-negative subjects, incomplete avidity maturation (persistent low and intermediate avidity indices) was the lowest for infections with the alpha-coronaviruses 229E (33.3%) and NL63 (61.3%), and the highest for the beta-coronaviruses OC43 (77.5%) and HKU1 (71.4%). In the sera from COVID-19 patients, the degree of incomplete avidity maturation of IgG toward NP of 223E, OC43, and HKU1 was not significantly different from that found in SARS-CoV-2-negative subjects, but a significant increase in avidity was observed for IgG toward NP of NL63. Though there was no cross-reaction between SARS-CoV-2 and seasonal coronaviruses, higher concentrations of IgG directed toward seasonal coronaviruses seemed to indirectly increase avidity maturation of IgG directed toward SARS-CoV-2. Our data show that incomplete IgG avidity maturation represents a characteristic consequence of coronavirus infections. This raises problems for the serological differentiation between acute and past infections and may be important for the biology of coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Bubba L, Simmonds P, Fischer TK, Harvala H. Mapping of serological testing and SARS-CoV-2 seroprevalence studies performed in 20 European countries, March-June 2020. J Glob Health 2021; 11:05014. [PMID: 34408857 PMCID: PMC8364255 DOI: 10.7189/jogh.11.05014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The SARS-CoV-2 pandemic spread across Europe from February 2020. While robust SARS-CoV-2 serological assays were quickly developed, only limited information on applied serological testing is available. We describe the extent and nature of SARS-CoV-2 serological testing used in Europe and assess the links between epidemiology, mitigation strategies applied and seroprevalence. Methods An online questionnaire on SARS-CoV-2 serology was sent to the European Society of Clinical Virology and European Non-Polio Enterovirus Network members in September 2020. Data were analysed by comparing mitigation approaches, serological methods and seroprevalance studies performed. Results About 100 000 laboratory confirmed cases identified between March and June 2020 were reported by 36 participating laboratories from 20 countries. All responders experienced mitigation strategies including lockdowns and other closures. All except one participant had introduced serological testing; most had validated their assays (n = 29), but some had had difficulties in obtaining reference material. Most used commercial assays (n = 35), measuring IgG response against the spike antigen. Serology was used primarily for diagnostic purposes (n = 22) but also for convalescent plasma (n = 13) and research studies (n = 30). Seroprevalence studies targeted mainly health care workers (n = 20; seroprevalance 5% to 22%) and general population (n = 16; seroprevalance 0.88% to 5.6%). Basic demographic and clinical information were collected by most laboratories (n = 28), whereas data on long-term outcomes were rarely collected. Conclusions This is first study gathering systematic information on serological testing approaches implemented during the first pandemic wave in Europe.
Collapse
Affiliation(s)
- Laura Bubba
- Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thea K Fischer
- Department of Clinical Research, University hospital of Nordsjaelland, Hilleroed, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK.,Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
20
|
Performance of Three SARS-CoV-2 Immunoassays, Three Rapid Lateral Flow Tests, and a Novel Bead-Based Affinity Surrogate Test for the Detection of SARS-CoV-2 Antibodies in Human Serum. J Clin Microbiol 2021; 59:e0031921. [PMID: 33962959 DOI: 10.1128/jcm.00319-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For the control of immunity in COVID-19 survivors and vaccinated subjects, there is an urgent need for reliable and rapid serological assays. Based on samples from 63 COVID-19 survivors up to 7 months after symptom onset, and on 50 serum samples taken before the beginning of the pandemic, we compared the performances of three commercial immunoassays for the detection of SARS-CoV-2 IgA and IgG antibodies (Euroimmun SARS-COV-2 IgA/IgG, Mikrogen recomWell SARS-CoV-2 IgA/IgG, and Serion ELISA agile SARS-CoV-2 IgA/IgG) and three rapid lateral flow (immunochromatographic) tests (Abbott PanBio COVID-19 IgG/IgM, Nadal COVID-19 IgG/IgM, and Cleartest Corona 2019-nCOV IgG/IgM) with a 50% plaque-reduction neutralization test (PRNT50) representing the gold standard. Fifty-seven out of 63 PCR-confirmed COVID-19 patients (90%) showed neutralizing antibodies. The sensitivity of the seven assays ranged from 7.0% to 98.3%, and the specificity ranged from 86.0% to 100.0%. Only one commercial immunoassay showed a sensitivity and specificity of greater than 98%.
Collapse
|
21
|
Hober S, Hellström C, Olofsson J, Andersson E, Bergström S, Jernbom Falk A, Bayati S, Mravinacova S, Sjöberg R, Yousef J, Skoglund L, Kanje S, Berling A, Svensson AS, Jensen G, Enstedt H, Afshari D, Xu LL, Zwahlen M, von Feilitzen K, Hanke L, Murrell B, McInerney G, Karlsson Hedestam GB, Lendel C, Roth RG, Skoog I, Svenungsson E, Olsson T, Fogdell-Hahn A, Lindroth Y, Lundgren M, Maleki KT, Lagerqvist N, Klingström J, Da Silva Rodrigues R, Muschiol S, Bogdanovic G, Arroyo Mühr LS, Eklund C, Lagheden C, Dillner J, Sivertsson Å, Havervall S, Thålin C, Tegel H, Pin E, Månberg A, Hedhammar M, Nilsson P. Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay. Clin Transl Immunology 2021; 10:e1312. [PMID: 34295471 PMCID: PMC8288725 DOI: 10.1002/cti2.1312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Objective The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
Collapse
|
22
|
Neumann F, Rose R, Römpke J, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Development of SARS-CoV-2 Specific IgG and Virus-Neutralizing Antibodies after Infection with Variants of Concern or Vaccination. Vaccines (Basel) 2021; 9:700. [PMID: 34202276 PMCID: PMC8310178 DOI: 10.3390/vaccines9070700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
The humoral immunity after SARS-CoV-2 infection or vaccination was examined. Convalescent sera after infection with variants of concern (VOCs: B.1.1.7, n = 10; B.1.351, n = 1) and sera from 100 vaccinees (Pfizer/BioNTech, BNT162b2, n = 33; Moderna, mRNA-1273, n = 11; AstraZeneca, ChAdOx1 nCoV-19/AZD1222, n = 56) were tested for the presence of immunoglobulin G (IgG) directed against the viral spike (S)-protein, its receptor-binding domain (RBD), the nucleoprotein (N) and for virus-neutralizing antibodies (VNA). For the latter, surrogate assays (sVNT) and a Vero-cell based neutralization test (cVNT) were used. Maturity of IgG was determined by measuring the avidity in an immunoblot (IB). Past VOC infection resulted in a broad reactivity of anti-S IgG (100%), anti-RBD IgG (100%), and anti-N IgG (91%), while latter were absent in 99% of vaccinees. Starting approximately two weeks after the first vaccine dose, anti-S IgG (75-100%) and particularly anti-RBD IgG (98-100%) were detectable. After the second dose, their titers increased and were higher than in the convalescents. The sVNT showed evidence of VNA in 91% of convalescents and in 80-100%/100% after first/second vaccine dose, respectively. After the second dose, an increase in VNA titer and IgGs of high avidity were demonstrated by cVNT and IB, respectively. Re-vaccination contributes to a more robust immune response.
Collapse
Affiliation(s)
- Franziska Neumann
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Ruben Rose
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| | - Janine Römpke
- Städtisches Krankenhaus Kiel, Chemnitzstraße 33, D-24116 Kiel, Germany;
| | - Olaf Grobe
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Thomas Lorentz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| | - Andi Krumbholz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, D-24106 Kiel, Germany; (F.N.); (O.G.); (T.L.)
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, D-24105 Kiel, Germany; (R.R.); (H.F.)
| |
Collapse
|
23
|
Reiners N, Schnurra C, Trawinski H, Kannenberg J, Hermsdorf T, Aebischer A, Schöneberg T, Reiche S, Jassoy C. Performance of a SARS CoV-2 antibody ELISA based on simultaneous measurement of antibodies against the viral nucleoprotein and receptor-binding domain. Eur J Clin Microbiol Infect Dis 2021; 40:2645-2649. [PMID: 34085159 PMCID: PMC8175097 DOI: 10.1007/s10096-021-04284-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
SARS CoV-2 antibody assays measure antibodies against the viral nucleoprotein (NP) or spike protein. The study examined if testing of antibodies against both antigens increases the diagnostic sensitivity. Sera (N=98) from infected individuals were tested with ELISAs based on the NP, receptor-binding domain (RBD), or both proteins. The AUROCs were 0.958 (NP), 0.991 (RBD), and 0.992 (NP/RBD). The RBD- and NP/RBD-based ELISAs showed better performance than the NP-based assay. Simultaneous testing for antibodies against NP and RBD increased the number of true and false positives. If maximum diagnostic sensitivity is required, the NP/RBD-based ELISA is preferable. Otherwise, the RBD-based ELISA is sufficient.
Collapse
Affiliation(s)
- Nina Reiners
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Carolin Schnurra
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Henning Trawinski
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital, Leipzig, Germany
| | - Judith Kannenberg
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Thomas Hermsdorf
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103, Leipzig, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany
| | - Christian Jassoy
- Institute for Medical Microbiology and Virology, Leipzig University Hospital and Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
24
|
Bauer G. The potential significance of high avidity immunoglobulin G (IgG) for protective immunity towards SARS-CoV-2. Int J Infect Dis 2021; 106:61-64. [PMID: 33713819 PMCID: PMC7944804 DOI: 10.1016/j.ijid.2021.01.061] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Avidity is defined as the strength of binding between immunoglobulin G (IgG) and its specific target epitope. IgG of high avidity is established during affinity maturation. Failure to achieve high avidity IgG may result in a lack of protective immunity towards infection and disease. It is known that the interaction between SARS-CoV-2 spike protein and its cellular receptor is driven by high affinity. Therefore, it is predictable that protective antibodies towards SARS-CoV-2 should show high affinity/avidity. AVIDITY AFTER SARS-COV-2 INFECTION: Recent findings by several groups demonstrate that the serological response towards infection with SARS-CoV-2 and seasonal coronaviruses is characterized by incomplete avidity maturation, followed by a decline of the serological response. This response might facilitate reinfection, prevent herd immunity and potentially allow repeated cycles of infection. CONSEQUENCES FOR VACCINATION TOWARDS SARS-COV-2: Therefore, the sole focus on antibody titers reached after vaccination towards SARS-CoV-2 might not be sufficient to evaluate the degree of achieved protection. Rather, it is suggested to include avidity determination to optimize vaccination protocols and achieve high avidity IgG directed towards SARS-CoV-2 through vaccination. Avidity determination might also be useful to control for truly protective immunity towards SARS-CoV-2 in individual cases.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
Bauer G. Comment to the manuscript by William P. Hausdorff and Jorge Flores: Low-dose and oral exposure to SARS-CoV-2 may help us understand and prevent severe COVID-19, IJID 103 (2021) 37-41. Int J Infect Dis 2021; 107:251. [PMID: 33819603 PMCID: PMC8016728 DOI: 10.1016/j.ijid.2021.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Georg Bauer
- Institute of Virology, Medical Center-University of Freiburg, Hermann-Herder Str. 11, D-79104 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
26
|
Kasztelewicz B, Janiszewska K, Burzyńska J, Szydłowska E, Migdał M, Dzierżanowska-Fangrat K. Prevalence of IgG antibodies against SARS-CoV-2 among healthcare workers in a tertiary pediatric hospital in Poland. PLoS One 2021; 16:e0249550. [PMID: 33793673 PMCID: PMC8016271 DOI: 10.1371/journal.pone.0249550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/20/2021] [Indexed: 12/22/2022] Open
Abstract
Data on the prevalence of the SARS-CoV-2 antibody in healthcare workers (HCWs) is scarce, especially in pediatric settings. The purpose of this study was to evaluate SARS-CoV-2 IgG-positivity among HCWs of a tertiary pediatric hospital. In addition, follow-up of the serological response in the subgroup of seropositive HCWs was analysed, to gain some insight on the persistence of IgG antibodies to SARS-CoV-2. We performed a retrospective analysis of voluntary SARS-CoV-2 IgG testing, which was made available free of charge to HCWs of the Children's Memorial Health Institute in Warsaw (Poland). Plasma samples were collected between July 1 and August 9, 2020, and tested using the Abbott SARS-CoV-2 IgG assay. Of 2,282 eligible participants, 1,879 (82.3%) HCWs volunteered to undergo testing. Sixteen HCWs tested positive for SARS-CoV-2 IgG, corresponding to a seroprevalence of 0.85%. Among seropositive HCWs, three HCWs had confirmed COVID-19. Nine (56.3%) of the seropositive HCWs reported neither symptoms nor unprotected contact with confirmed SARS-CoV-2 cases in the previous months. A decline in the IgG index was observed at a median time of 86.5 days (range:84‒128 days) after symptom onset or RT-PCR testing. Further studies are necessary to elucidate the duration of persistence of anti-SARS-CoV-2 antibodies, as well as the correlation between seropositivity and protective immunity against reinfection. Regardless of the persistence of antibodies and their protective properties, such low prevalence indicates that this population is vulnerable to a second wave of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Beata Kasztelewicz
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
- * E-mail:
| | - Katarzyna Janiszewska
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Julia Burzyńska
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Emilia Szydłowska
- Department of Clinical Microbiology and Immunology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Marek Migdał
- Department of Anaesthesiology and Intensive Care, The Children’s Memorial Health Institute, Warsaw, Poland
| | | |
Collapse
|
27
|
Bauer G, Struck F, Schreiner P, Staschik E, Soutschek E, Motz M. The challenge of avidity determination in SARS-CoV-2 serology. J Med Virol 2021; 93:3092-3104. [PMID: 33565617 PMCID: PMC8013859 DOI: 10.1002/jmv.26863] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The serological responses towards severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) nucleoprotein, receptor‐binding domain (RBD), and spike protein S1 are characterized by incomplete avidity maturation. Analysis with varying concentrations of urea allows to determine distinct differences in avidity maturation, though the total process remains at an unusually low level. Despite incomplete avidity maturation, this approach allows to define early and late stages of infection. It therefore can compensate for the recently described irregular kinetic patterns of immunoglobulin M and immunoglobulin G (IgG) directed towards SARS‐CoV‐2 antigens. The serological responses towards seasonal coronaviruses neither have a negative nor positive impact on SARS‐CoV‐2 serology in general. Avidity determination in combination with measurement of antibody titers and complexity of the immune response allows to clearly differentiate between IgG responses towards seasonal coronaviruses and SARS‐CoV‐2. Cross‐reactions seem to occur with very low probability. They can be recognized by their pattern of response and through differential treatment with urea. As high avidity has been shown to be essential in several virus systems for the protective effect of neutralizing antibodies, it should be clarified whether high avidity of IgG directed towards RBD indicates protective immunity. If this is the case, monitoring of avidity should be part of the optimization of vaccination programs. Avidity maturation of immunoglobulin G (IgG) towards severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) antigens is distinct, but incomplete in most cases
Nevertheless, avidity determination allows to differentiate between acute and past SARS CoV‐infection
Avidity maturation is instrumental for differentiation between IgG responses towards SARS‐CoV‐2 and seasonal coronaviruses
It is suggested to clarify whether high avidity is required for and indicative of protective immunity.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of VirologyMedical Center, University of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | | | | | | | | |
Collapse
|
28
|
Comparison of Five Serological Assays for the Detection of SARS-CoV-2 Antibodies. Diagnostics (Basel) 2021; 11:diagnostics11010078. [PMID: 33418886 PMCID: PMC7825051 DOI: 10.3390/diagnostics11010078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Serological assays can contribute to the estimation of population proportions with previous immunologically relevant contact with the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) virus. In this study, we compared five commercially available diagnostic assays for the diagnostic identification of SARS-CoV-2-specific antibodies. Depending on the assessed immunoglobulin subclass, recorded sensitivity ranged from 17.0% to 81.9% with best results for immunoglobulin G. Specificity with blood donor sera ranged from 90.2% to 100%, with sera from EBV patients it ranged from 84.3% to 100%. Agreement from fair to nearly perfect was recorded depending on the immunoglobulin class between the assays, the with best results being found for immunoglobulin G. Only for this immunoglobulin class was the association between later sample acquisition times (about three weeks after first positive PCR results) and positive serological results in COVID-19 patients confirmed. In conclusion, acceptable and comparable reliability for the assessed immunoglobulin G-specific assays could be shown, while there is still room for improvement regarding the reliability of the assays targeting the other immunoglobulin classes.
Collapse
|
29
|
Strömer A, Rose R, Schäfer M, Schön F, Vollersen A, Lorentz T, Fickenscher H, Krumbholz A. Performance of a Point-of-Care Test for the Rapid Detection of SARS-CoV-2 Antigen. Microorganisms 2020; 9:E58. [PMID: 33379279 PMCID: PMC7823488 DOI: 10.3390/microorganisms9010058] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The rapid detection of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is necessary in the ongoing pandemic. Antigen-specific point-of-care tests (POCT) may be useful for this purpose. Here, such a POCT (SARS-CoV-2 NADAL® COVID-19 Ag) was compared to a laboratory-developed triplex real-time polymerase chain reaction (RT-PCR) designed for the detection of viral nucleoprotein gene and two control targets. This RT-PCR served as a reference to investigate POCT sensitivity by re-testing upper respiratory tract (URT) samples (n = 124) exhibiting different SARS-CoV-2 loads in terms of RT-PCR threshold cycle (Ct) values. The optical intensities of the antigen bands were compared to the Ct values of the RT-PCR. The infectivity of various virus loads was estimated by inoculating Vero cells with URT samples (n = 64, Ct 17-34). POCT sensitivity varied from 100% (Ct < 25) to 73.1% (Ct ≤ 30); higher SARS-CoV-2 loads correlated with higher band intensities. All samples with a Ct > 30 were negative; among SARS-CoV-2 free samples (n = 10) no false-positives were detected. A head-to-head comparison with another POCT (Abbott, Panbio™ COVID-19 Ag Rapid Test) yielded similar results. Isolation of SARS-CoV-2 in cell-culture was successful up to a Ct value of 29. The POCT reliably detects high SARS-CoV-2 loads and rapidly identifies infectious individuals.
Collapse
Affiliation(s)
- Annabelle Strömer
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105 Kiel, Germany; (A.S.); (R.R.); (H.F.)
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105 Kiel, Germany; (A.S.); (R.R.); (H.F.)
| | - Miriam Schäfer
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany; (M.S.); (F.S.); (A.V.); (T.L.)
| | - Frieda Schön
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany; (M.S.); (F.S.); (A.V.); (T.L.)
| | - Anna Vollersen
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany; (M.S.); (F.S.); (A.V.); (T.L.)
| | - Thomas Lorentz
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany; (M.S.); (F.S.); (A.V.); (T.L.)
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105 Kiel, Germany; (A.S.); (R.R.); (H.F.)
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105 Kiel, Germany; (A.S.); (R.R.); (H.F.)
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany; (M.S.); (F.S.); (A.V.); (T.L.)
| |
Collapse
|