1
|
Kamble SSM, Bodake SM, Marelli UK. Peptide-Triazolobenzodiazepine Hybrids: A Catalyst-Free on-Resin Strategy to Build Complex Therapeutic Motifs Into Peptides. Chemistry 2025:e202500836. [PMID: 40237132 DOI: 10.1002/chem.202500836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
The merger of peptide and heterocyclic chemistry presents significant opportunities for enhancing the structural and functional diversity of therapeutic agents. In this study, we introduce a streamlined on-resin method to modify peptides at the N-terminus amines and the side chain amines of Lys/Orn amino acids by incorporating the biologically active triazolobenzodiazepine scaffold. In the presented solid-phase peptide synthesis (SPPS), the triazolobenzodiazepine core is formed on-resin through a combination of N-alkylation, amide bond formation, and an alkyne-azide 1,3-dipolar cycloaddition, of which the latter two happen as a single-step one-pot reaction- proceeding under mild conditions without metal catalysts. This protocol tolerates a wide variety of amino acids and functional groups, providing a versatile method for synthesizing peptide-triazolobenzodiazepine hybrids. Using orthogonal protection group strategies, we further demonstrate the method's adaptability for two site modifications in peptides involving both the N-terminus and Lys side chain amines. These modifications enhance the scope of "peptide medicinal chemistry" by creating multifunctional peptides with potential therapeutic applications. The method's compatibility with SPPS, room temperature conditions, and elimination of metal catalysis make it an efficient and powerful tool for peptide modification.
Collapse
Affiliation(s)
- Sandip Sushila Mohan Kamble
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Supriya Mahadev Bodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Udaya Kiran Marelli
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Central NMR Facility, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Yang M, Dai Y, Zhou F, Zhou X, Qiu Y, Tan Y, Zhao S, Xue D, Zhao F, Tao H. Peptide-Scaffolded Detergents for Membrane Protein Studies. Chemistry 2025; 31:e202404520. [PMID: 39777805 DOI: 10.1002/chem.202404520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Detergents are essential for preserving the structural integrity and functionality of membrane proteins (MPs) outside the biological membrane or in aqueous solution, and thus ensuring accurate biochemical and structural analyses. Here, we introduce peptide-scaffolded detergents, a novel class of hybrid molecules formed by preassembling detergent monomers with peptides of varying lengths, mediated via Click chemistry. These detergents are characterized by scalable, straightforward synthesis and enhanced solubility. Among the variants, A4B2 emerged as the optimal detergent, demonstrating superior thermal stabilization across a range of G protein-coupled receptors, including A2AAR, SMO and GLP-1R. Additionally, A4B2 exhibits a low critical micelle concentration and small micelle size, together making it particularly effective for electron microscopy studies of A2AAR. This innovative design leverages the benefits of peptide-based and traditional detergents, offering new insights for the development of advanced detergents in MP research.
Collapse
Affiliation(s)
- Meifang Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yili Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xin Zhou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanli Qiu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Tan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Dongxiang Xue
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Houchao Tao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Lei X, Yang Y, Zheng J, Liang L, Cheng L, Dong Y, Qiu B, Bikker FJ, Forouzanfar T, Cheng B, Wu G, Yang B. The cyclization of human salivary Histatin 1 via click chemistry for skin wound healing. Eur J Pharm Sci 2025; 204:106978. [PMID: 39631632 DOI: 10.1016/j.ejps.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Acute skin injuries can result in the breakdown of the skin barrier, heightening the risk of infections and complications. Histatin 1 (Hst1) promotes the adhesion, spreading, and migration of various skin-related cells, thus encouraging wound healing. However, Hst1 is extensively degraded upon exposure to wound exudates. Cyclized hst1 (Cyclic-hst1) has a much higher resistance to protease degradation than Hst1, thus increasing its stability and half-life. Herein, we synthesized Cyclic-hst1 via a click reaction and explored its efficacy in wound healing via cellular and animal experiments. Cyclic-hst1, at a 100-fold lower concentration than Hst1, effectively promoted acute skin wound healing. In addition, Cyclic-hst1 had a superior effect to Hst1 in terms of its anti-inflammatory, re-epithelialization, collagen deposition, and angiogenic effects, thus significantly promoting skin wound healing. Consequently, Cyclic-hst1 could represent a favorable treatment to manage acute skin wound healing, providing a promising experimental basis for clinical transformation and application.
Collapse
Affiliation(s)
- Xiaoxuan Lei
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yu Yang
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China; Department of Plastic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Judun Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Liwen Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Liuhanghang Cheng
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Biying Qiu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Biao Cheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Gang Wu
- Savaid Stomatology School, Hangzhou Medical college, Hangzhou, Zhejiang Province, PR China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Halford-McGuff JM, Richardson TM, McKay AP, Peschke F, Burley GA, Watson AJB. Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling. Beilstein J Org Chem 2024; 20:3198-3204. [PMID: 39669442 PMCID: PMC11635283 DOI: 10.3762/bjoc.20.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
We report the synthesis of germanyl triazoles formed via a copper-catalysed azide-alkyne cycloaddition (CuAAC) of germanyl alkynes. The reaction is often high yielding, functional group tolerant, and compatible with complex molecules. The installation of the Ge moiety enables further diversification of the triazole products, including chemoselective transition metal-catalysed cross-coupling reactions using bifunctional boryl/germyl species.
Collapse
Affiliation(s)
- John M Halford-McGuff
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas M Richardson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Frederik Peschke
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Glenn A Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
5
|
Maroto A, Boqué R, Jeanne Dit Fouque D, Memboeuf A. Energy-Resolved Mass Spectrometry and Mid-Infrared Spectroscopy for Purity Assessment of a Synthetic Peptide Cyclised by Intramolecular Huisgen Click Chemistry. Methods Protoc 2024; 7:97. [PMID: 39728617 DOI: 10.3390/mps7060097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Cyclic peptides have higher stability and better properties as therapeutic agents than their linear peptide analogues. Consequently, intramolecular click chemistry is becoming an increasingly popular method for the synthesis of cyclic peptides from their isomeric linear peptides. However, assessing the purity of these cyclic peptides by mass spectrometry is a significant challenge, as the linear and cyclic peptides have identical masses. In this paper, we have evaluated the analytical capabilities of energy-resolved mass spectrometry (ER MS) and mid-infrared microscopy (IR) to address this challenge. On the one hand, mixtures of both peptides were subjected to collision-induced dissociation tandem mass spectrometry (CID MS/MS) experiments in an ion trap mass spectrometer at several excitation energies. Two different calibration models were used: a univariate model (at a single excitation voltage) and a multivariate model (using multiple excitation voltages). The multivariate model demonstrated slightly enhanced analytical performance, which can be attributed to more effective signal averaging when multiple excitation voltages are considered. On the other hand, IR microscopy was used for the quantification of the relative amount of linear peptide. This was achieved through univariate calibration, based on the absorbance of an alkyne band specific to the linear peptide, and through Partial Least Squares (PLS) multivariate calibration. The PLS calibration model demonstrated superior performance in comparison to univariate calibration, indicating that consideration of the full IR spectrum is preferable to focusing on the specific peak of the linear peptide. The advantage of IR microscopy is that it is linear across the entire working interval, from linear peptide molar ratios of 0 (equivalent to pure cyclic peptide) up to 1 (pure linear peptide). In contrast, the ER MS calibration models exhibited linearity only up to 0.3 linear peptide molar ratio. However, ER MS showed better performances in terms of the limit of detection, intermediate precision and the root-mean-square-error of calibration. Therefore, ER MS is the optimal choice for the detection and quantification of the lowest relative amounts of linear peptides.
Collapse
Affiliation(s)
- Alicia Maroto
- Univ Brest, CEMCA, CNRS, UMR 6521, 29238 Brest, France
| | - Ricard Boqué
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel⋅lí Domingo 1, 43007 Tarragona, Spain
| | | | | |
Collapse
|
6
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
7
|
Deng H, Xu Q, Li XT, Huang X, Liu JY, Yan R, Quan ZS, Shen QK, Guo HY. Design, synthesis, and evaluation of antitumor activity in Pseudolaric acid B Azole derivatives: Novel and potent angiogenesis inhibitor via regulation of the PI3K/AKT and MAPK mediated HIF-1/VEGF signaling pathway. Eur J Med Chem 2024; 278:116813. [PMID: 39226705 DOI: 10.1016/j.ejmech.2024.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Tumor proliferation and metastasis are intricately linked to blood vessel formation, with vascular endothelial growth factor (VEGF) playing a pivotal role in orchestrating angiogenesis throughout tumor progression. Pseudolaric acid B (PAB) has emerged as a potent inhibitor of tumor cell proliferation, migration, and angiogenesis. In efforts to enhance its efficacy, 37 derivatives of PAB were synthesized and assessed for their capacity to suppress VEGF secretion in SiHa cells under hypoxic conditions. Notably, majority of these derivatives exhibited significant inhibition of VEGF protein secretion without inducing cytotoxicity. Among them, compound M2 displayed the most potent inhibitory activity, with an IC50 value of 0.68 μM, outperforming the lead compound PAB (IC50 = 5.44 μM). Compound M2 not only curbed the migration and angiogenesis of HUVECs under hypoxic conditions but also hindered the invasion of SiHa cells. Mechanistic investigations unveiled that compound M2 may impede the accumulation and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) in SiHa cells, thereby downregulating VEGF expression. This inhibitory effect on HIF-1α was corroborated by experiments utilizing the protease inhibitor MG-132 and protein synthesis inhibitor CHX, indicating that compound M2 diminishes HIF-1α levels by reducing its synthesis. Furthermore, compound M2 was observed to modulate the PI3K/AKT/mTOR and MAPK signaling pathways in tumor cells, thereby regulating HIF-1α translation and synthesis. In vivo studies demonstrated that compound M2 exhibited low toxicity and effectively curbed tumor growth. Immunohistochemistry analyses validated that compound M2 effectively suppressed the expression of HIF-1α and VEGF in tumor tissues, underscoring its potential as a promising therapeutic agent for targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiao-Ting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
8
|
Roman JA, Girgis MY, Prisby RS, Araujo RP, Russo P, Oktay E, Luchini A, Liotta LA, Veneziano R, Haymond A. A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein-Protein Interactions in the Tumor Microenvironment. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300159. [PMID: 39328775 PMCID: PMC11423619 DOI: 10.1002/anbr.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein-protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, we introduce a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semi-rigid DNA scaffold. Herein, we describe a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure. Using peptides that mimic the specific high energy "hotspot" residues with which the IL-33/ST2 co-receptor, IL-1RAcP, interacts with the initial binary complex, we show this platform to effectively bind IL-33/ST2 with aK D of 110 nM. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.
Collapse
Affiliation(s)
- Jessica A Roman
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Michael Y Girgis
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Rocìo S Prisby
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Esra Oktay
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Remi Veneziano
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
9
|
Cunha M, de Freitas V, Borges J, Mano JF, Rodrigues JMM, Cruz L. Acidochromic Free-Standing Multilayered Chitosan-Pyranoflavylium/Alginate Membranes toward Food Smart Packaging Applications. ACS APPLIED POLYMER MATERIALS 2024; 6:6820-6830. [PMID: 38903401 PMCID: PMC11186008 DOI: 10.1021/acsapm.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
Food smart packaging has emerged as a promising technology to address consumer concerns regarding food conservation and food safety. In this context, we report the rational design of azide-containing pyranoflavylium-based pH-sensitive dye for subsequent click chemistry conjugation toward a chitosan-modified alkyne. The chitosan-pyranoflavylium conjugate was characterized by infrared (ATR-FTIR), ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) spectroscopies, and dynamic light scattering (DLS), as well as its thermodynamic parameters related to their pH-dependent chromatic features. The fabrication of thin-films through electrostatic-driven layer-by-layer (LbL) assembly technology was first screened by quartz crystal microbalance with dissipation monitoring (QCM-D) onto gold substrates, and then free-standing (FS) multilayered membranes from polypropylene substrate were obtained using a homemade automatic dipping robot. The membranes' characterization included morphology analysis and thickness evaluation, assessed by scanning electron microscopy (SEM), pH-responsive color change performance tests using buffer solutions at different pH levels, and biogenic amines-enriched model solutions, demonstrating the feasibility and effectiveness of the chitosan-pyranoflavylium/alginate biomembranes for food spoilage monitoring. This work provides insights toward the development of innovative pH-responsive smart biomaterials for advanced and sustainable technological packaging solutions, which could significantly contribute to ensuring food safety and quality, while reducing food waste.
Collapse
Affiliation(s)
- Mariana Cunha
- REQUIMTE/LAQV,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - João Borges
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - João M. M. Rodrigues
- CICECO
- Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Cruz
- REQUIMTE/LAQV,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| |
Collapse
|
10
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
11
|
Machida H, Kanemoto K. N-Terminal-Specific Dual Modification of Peptides through Copper-Catalyzed [3+2] Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202320012. [PMID: 38282290 DOI: 10.1002/anie.202320012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Site-specific introduction of multiple components into peptides is greatly needed for the preparation of densely functionalized and structurally uniform peptides. In this regard, N-terminal-specific peptide modification is attractive, but it can be difficult due to the presence of highly nucleophilic lysine ϵ-amine. In this work, we developed a method for the N-terminal-specific dual modification of peptides through a three-component [3+2] cycloaddition with aldehydes and maleimides under mild copper catalysis. This approach enables exclusive functionalization at the glycine N-terminus of iminopeptides, regardless of the presence of lysine ϵ-amine, thus affording the cycloadducts in excellent yields. Tolerating a broad range of functional groups and molecules, the present method provides the opportunity to rapidly construct doubly functionalized peptides using readily accessible aldehyde and maleimide modules.
Collapse
Affiliation(s)
- Haruka Machida
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Tashrifi Z, Khanaposhtani MM, Bahadorikhalili S, Larijani B, Mahdavi M. Intramolecular Click Cycloaddition Reactions: Synthesis of 1,2,3-Triazoles. Curr Org Synth 2024; 21:166-194. [PMID: 37026493 DOI: 10.2174/1570179420666230407103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 04/08/2023]
Abstract
Click Chemistry, as a powerful tool, has been used for the synthesis of a variety of 1,2,3-triazoles. Among click cycloaddition reactions, intramolecular click reactions carried out in azido-alkyne precursors has not been thoroughly reviewed. Hence, in this review, we have summarized and categorised the recent literature (from 2012 on) based on the azidoalkynyl precursor's type and a brief and concise description of the involved mechanisms is presented. Accordingly, we have classified the relevant literature into three categories: (1) substitution precursors (2) addition and (3) multi-component reaction (MCR) products.
Collapse
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Suzuki H, Akiyama Y, Yamashina M, Tanaka Y, Toyota S. Transformation of Highly Hydrophobic Triarylphosphines into Amphiphiles via Staudinger Reaction with Hydrophilic Trichlorophenyl Azide. Chemistry 2023; 29:e202303017. [PMID: 37766651 DOI: 10.1002/chem.202303017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Owing to its hydrophobic properties and reactivity, triarylphosphines (PAr3 ) are promising precursors for the development of new amphiphiles. However, an efficient and reliable synthetic method for amphiphiles based on highly hydrophobic PAr3 is still required. Herein, a straightforward transformation of highly hydrophobic PAr3 into amphiphiles via the Staudinger reaction is reported. By simply mixing PAr3 and a hydrophilic trichlorophenyl azide containing two hydrophilic chains, amphiphiles bearing a N=P bond (i. e., an azaylide moiety) were quantitatively formed. The obtained azaylide-based amphiphiles were remarkably water-soluble, enabling their spontaneous self-assembly into 2 nm-sized micelles composed of 4-5 molecules in water with a low critical micelle concentration (up to 0.05 mM or less) due to the effective intermolecular interactions among the hydrophobic surfaces. Although the azaylide moiety is easily hydrolyzed in the presence of water, the azaylide in the amphiphiles displayed notable stability in water even at 60 h, which stems from the LUMO modulation induced by the presence of three electron-withdrawing chloro groups and two twisted alkoxycarbonyl groups, according to DFT calculations. An amphiphile having a large hydrophobic surface solubilized various hydrophobic organic dyes through efficient intermolecular interactions, resulting in the dyes exhibiting either monomer or excimer emissions in water.
Collapse
Affiliation(s)
- Hayate Suzuki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yoshimori Akiyama
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
14
|
Jaiswal MK, Tiwari VK. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. CHEM REC 2023; 23:e202300167. [PMID: 37522634 DOI: 10.1002/tcr.202300167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Click Chemistry, a modular, rapid, and one of the most reliable tool for the regioselective 1,2,3-triazole forming [3+2] reaction of organic azide and terimal alkyne is widely explored in various emerging domains of research ranging from chemical biology to catalysis and medicinal chemistry to material science. This regioselective reaction from a diverse range of azido-alkyne scaffolds has been well performed in both intermolecular as well as intramolecular fashions. In comparison to the intermolecular metal (Cu/Ru/Ni) variant of 'Click Chemistry', the intramolecular click tool is little addressed. The intramolecular click chemistry is exemplified as a mordern tool of cyclization which involves metal-catalyzed (CuAAC/RuAAC) cyclization, organo-catalyzed cyclization, and thermal-induced topochemical reaction. Thus, we report herein the recent approaches on intramolecular azide-alkyne cycloaddition 'Click Chemistry' with their wide-spread emerging applications in the developement of a diverse range of molecules including fused-heterocycles, well-defined peptidomemics, and macrocyclic architectures of various notable features.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
15
|
Wu T, Liu C, Kannan RM. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration. Pharmaceutics 2023; 15:2428. [PMID: 37896188 PMCID: PMC10609940 DOI: 10.3390/pharmaceutics15102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, "clickable" linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery.
Collapse
Affiliation(s)
| | | | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (T.W.); (C.L.)
| |
Collapse
|
16
|
Kaspute G, Arunagiri BD, Alexander R, Ramanavicius A, Samukaite-Bubniene U. Development of Essential Oil Delivery Systems by 'Click Chemistry' Methods: Possible Ways to Manage Duchenne Muscular Dystrophy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6537. [PMID: 37834674 PMCID: PMC10573547 DOI: 10.3390/ma16196537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Recently, rare diseases have received attention due to the need for improvement in diagnosed patients' and their families' lives. Duchenne muscular dystrophy (DMD) is a rare, severe, progressive, muscle-wasting disease. Today, the therapeutic standard for treating DMD is corticosteroids, which cause serious adverse side effects. Nutraceuticals, e.g., herbal extracts or essential oils (EOs), are possible active substances to develop new drug delivery systems to improve DMD patients' lives. New drug delivery systems lead to new drug effects, improved safety and accuracy, and new therapies for rare diseases. Herbal extracts and EOs combined with click chemistry can lead to the development of safer treatments for DMD. In this review, we focus on the need for novel drug delivery systems using EOs as the therapy for DMD and the potential use of click chemistry for drug delivery systems. New EO complex drug delivery systems may offer a new approach for improving muscle conditions and mental health issues associated with DMD. However, further research should identify the potential of these systems in the context of DMD. In this review, we discuss possibilities for applying EOs to DMD before implementing expensive research in a theoretical way.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Bharani Dharan Arunagiri
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Rakshana Alexander
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| | - Urte Samukaite-Bubniene
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekis av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (B.D.A.); (R.A.)
| |
Collapse
|
17
|
Agarwal DS, Sakhuja R, Beteck RM, Legoabe LJ. Steroid-triazole conjugates: A brief overview of synthesis and their application as anticancer agents. Steroids 2023:109258. [PMID: 37330161 DOI: 10.1016/j.steroids.2023.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Steroids are biomolecules that play pivotal roles in various physiological and drug discovery processes. Abundant research has been fuelled towards steroid-heterocycles conjugates over the last few decades as potential therapeutic agents against various diseases especially as anticancer agents. In this context various steroid-triazole conjugates have been synthesized and studied for their anticancer potential against various cancer cell lines. A thorough search of the literatures revealed that a concise review pertaining the present topic is not compiled. Therefore, in thus review we summarize the synthesis, anticancer activity against various cancer cell lines and structure activity relationship (SAR) of various steroid-triazole conjugates. This review can lay down the path towards the development of various steroid-heterocycles conjugates with lesser side effects and profound efficacy.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
18
|
Yadav M, Kumar A, Lal K, Singh MB, Kumari K. Facile synthesis, antimicrobial screening and docking studies of pyrrole-triazole hybrids as potential antimicrobial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Cellot G, Jacquemin L, Reina G, Franceschi Biagioni A, Fontanini M, Chaloin O, Nishina Y, Bianco A, Ballerini L. Bonding of Neuropeptide Y on Graphene Oxide for Drug Delivery Applications to the Central Nervous System. ACS APPLIED NANO MATERIALS 2022; 5:17640-17651. [PMID: 36583122 PMCID: PMC9791619 DOI: 10.1021/acsanm.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 05/20/2023]
Abstract
Nanoscale graphene-based materials (GBMs) enable targeting subcellular structures of the nervous system, a feature crucial for the successful engineering of alternative nanocarriers to deliver drugs and to treat neurodisorders. Among GBMs, graphene oxide (GO) nanoflakes, showing good dispersibility in water solution and being rich of functionalizable oxygen groups, are ideal core structures for carrying biological active molecules to the brain, such as the neuropeptide Y (NPY). In addition, when unconjugated, these nanomaterials have been reported to modulate neuronal function per se. Although some GBM-based nanocarriers have been tested both in vitro and in vivo, a thorough characterization of covalent binding impact on the biological properties of the carried molecule and/or of the nanomaterial is still missing. Here, a copper(I)-catalyzed alkyne-azide cycloaddition strategy was employed to synthesize the GO-NPY complex. By investigating through electrophysiology the impact of these conjugates on the activity of hippocampal neurons, we show that the covalent modification of the nanomaterial, while making GO an inert platform for the vectorized delivery, enhances the duration of NPY pharmacological activity. These findings support the future use of GO for the development of smart platforms for nervous system drug delivery.
Collapse
Affiliation(s)
- Giada Cellot
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Lucas Jacquemin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Giacomo Reina
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | | | - Mario Fontanini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Olivier Chaloin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Yuta Nishina
- Graduate
School of Natural Science and Technology and Research Core for Interdisciplinary
Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama700-8530, Japan
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Laura Ballerini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| |
Collapse
|
20
|
Visible‐Light‐Mediated Synthesis of 1‐Oxa‐4‐aza‐spiro Oxazolines by Spiroannulation of Quinones with Vinyl Azides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
22
|
Baylon JL, Ursu O, Muzdalo A, Wassermann AM, Adams GL, Spale M, Mejzlik P, Gromek A, Pisarenko V, Hancharyk D, Jenkins E, Bednar D, Chang C, Clarova K, Glick M, Bitton DA. PepSeA: Peptide Sequence Alignment and Visualization Tools to Enable Lead Optimization. J Chem Inf Model 2022; 62:1259-1267. [PMID: 35192366 DOI: 10.1021/acs.jcim.1c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Therapeutic peptides offer potential advantages over small molecules in terms of selectivity, affinity, and their ability to target "undruggable" proteins that are associated with a wide range of pathologies. Despite their importance, current molecular design capabilities that inform medicinal chemistry decisions on peptide programs are limited. More specifically, there are unmet needs for structure-activity relationship (SAR) analysis and visualization of linear, cyclic, and cross-linked peptides containing non-natural motifs, which are widely used in drug discovery. To bridge this gap, we developed PepSeA (Peptide Sequence Alignment and Visualization), an open-source, freely available package of sequence-based tools (https://github.com/Merck/PepSeA). PepSeA enables multiple sequence alignment of non-natural amino acids and enhanced visualization with the hierarchical editing language for macromolecules (HELM). Via stepwise SAR analysis of a ChEMBL peptide data set, we demonstrate the utility of PepSeA to accelerate decision making in lead optimization campaigns in pharmaceutical setting. PepSeA represents an initial attempt to expand cheminformatics capabilities for therapeutic peptides and to enable rapid and more efficient design-make-test cycles.
Collapse
Affiliation(s)
- Javier L Baylon
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Oleg Ursu
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Anja Muzdalo
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Anne Mai Wassermann
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Gregory L Adams
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Martin Spale
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Petr Mejzlik
- AI & Big Data Analytics, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Anna Gromek
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Viktor Pisarenko
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Dzianis Hancharyk
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Esteban Jenkins
- Foundational Data and Analytics, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - David Bednar
- Foundational Data and Analytics, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| | - Charlie Chang
- Discovery Research IT, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kamila Clarova
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Meir Glick
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Danny A Bitton
- R&D Informatics Solutions, MSD Czech Republic s.r.o., Prague 150 00, Czech Republic
| |
Collapse
|
23
|
Turkmen Y, Yagiz Erdemir G, Yuksel Mayda P, Akdemir A, Gunaydin Akyildiz A, Altundas A. Synthesis, anti‐TB activities, and molecular docking studies of 4‐(1,2,3‐triazoyl)arylmethanone derivatives. J Biochem Mol Toxicol 2022; 36:e22998. [DOI: 10.1002/jbt.22998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yunus Turkmen
- Department of Chemistry, Faculty of Science Gazi University Ankara Turkey
| | | | - Pelin Yuksel Mayda
- Faculty of Health Science Kocaeli Health and Technology University Kocaeli Turkey
| | - Atilla Akdemir
- Computer‐aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy Bezmialem Vakıf University Istanbul Turkey
| | - Aysenur Gunaydin Akyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy Bezmialem Vakif University Istanbul Turkey
| | - Aliye Altundas
- Department of Chemistry, Faculty of Science Gazi University Ankara Turkey
| |
Collapse
|
24
|
Sanapala P, Pola S, Nageswara Rao Reddy N, Pallaval VB. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. MARINE BIOMATERIALS 2022:307-349. [DOI: 10.1007/978-981-16-5374-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Said MA, Khan DJO, Al-blewi FF, Al-Kaff NS, Ali AA, Rezki N, Aouad MR, Hagar M. New 1,2,3-Triazole Scaffold Schiff Bases as Potential Anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects. Vaccines (Basel) 2021; 9:vaccines9091012. [PMID: 34579249 PMCID: PMC8472185 DOI: 10.3390/vaccines9091012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Schiff bases encompassing a 1,2,3-triazole motif were synthesized using an efficient multi-step synthesis. The formations of targeted Schiff base ligands were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analysis). The spectral data analysis revealed that the newly designed hydrazones exist as a mixture of trans-E and cis-E diastereomers. Densityfunctional theory calculations (DFT) for the Schiff bases showed that the trans-trans form has the lowest energy structure with maximum stability compared to the other possible geometrical isomers that could be present due to the orientation of the amidic NH-C=O group. The energy differences between the trans-trans on one side and syn-syn and syn-trans isomers on the other side were 9.26 and 5.56 kcal/mol, respectively. A quantitative structure-activity relationship investigation was also performed in terms of density functional theory. The binding affinities of the newly synthesized bases are, maybe, attributed to the presence of hydrogen bonds together with many hydrophobic interactions between the ligands and the active amino acid residue of the receptor. The superposition of the inhibitor N3 and an example ligand into the binding pocket of 7BQY is also presented. Further interesting comparative docking analyses were performed. Quantitative structure-activity relationship calculations are presented, illustrating possible inhibitory activity. Further computer-aided cytotoxicity analysis by Drug2Way and PASS online software was carried out for Schiff base ligands against various cancer cell lines. Overall, the results of this study suggest that these Schiff base derivatives may be considered for further investigation as possible therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- Musa A. Said
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Daoud J. O. Khan
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Fawzia F. Al-blewi
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadia S. Al-Kaff
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Adeeb A. Ali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Mohamed Reda Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
26
|
Bellavita R, Casciaro B, Di Maro S, Brancaccio D, Carotenuto A, Falanga A, Cappiello F, Buommino E, Galdiero S, Novellino E, Grossmann TN, Mangoni ML, Merlino F, Grieco P. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J Med Chem 2021; 64:11675-11694. [PMID: 34296619 PMCID: PMC8389922 DOI: 10.1021/acs.jmedchem.1c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Bruno Casciaro
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
| | - Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi
Vanvitelli”, Caserta 81100, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Annarita Falanga
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Portici 80055, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Elisabetta Buommino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Tom N. Grossmann
- Department
of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, Naples 80131, Italy
| |
Collapse
|
27
|
Russo L, Mascanzoni F, Farina B, Dolga AM, Monti A, Caporale A, Culmsee C, Fattorusso R, Ruvo M, Doti N. Design, Optimization, and Structural Characterization of an Apoptosis-Inducing Factor Peptide Targeting Human Cyclophilin A to Inhibit Apoptosis Inducing Factor-Mediated Cell Death. J Med Chem 2021; 64:11445-11459. [PMID: 34338510 DOI: 10.1021/acs.jmedchem.1c00777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking the interaction between the apoptosis-inducing factor (AIF) and cyclophilin A (CypA) by the AIF fragment AIF(370-394) is protective against glutamate-induced neuronal cell death and brain injury in mice. Starting from AIF(370-394), we report the generation of the disulfide-bridged and shorter variant AIF(381-389) and its structural characterization by nuclear magnetic resonance (NMR) in the free and CypA-bound state. AIF(381-389) in both the free and bound states assumes a β-hairpin conformation similar to that of the fragment in the AIF protein and shows a highly reduced conformational flexibility. This peptide displays a similar in vitro affinity for CypA, an improved antiapoptotic activity in cells and an enhanced proteolytic stability compared to the parent peptide. The NMR-based 3D model of the AIF(381-389)/CypA complex provides a better understanding of the binding hot spots on both the peptide and the protein and can be exploited to design AIF/CypA inhibitors with improved pharmacokinetic and pharmacodynamics features.
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Fabiola Mascanzoni
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Biancamaria Farina
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Amalia Mihaela Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB)-CNR, Via Mezzocannone, 16, 80134 Napoli, Italy
| |
Collapse
|
28
|
Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug Chem 2021; 32:1455-1471. [PMID: 34319077 DOI: 10.1021/acs.bioconjchem.1c00247] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a modular and bio-orthogonal approach that is being adopted for the efficient synthesis of organic and bioorganic compounds. It leads to the selective formation of 1,4-disubstituted 1,2,3-triazole units connecting readily accessible building blocks via a stable and biocompatible linkage. The vast array of the bioconjugation applications of click chemistry has been attributed to its fast reaction kinetics, quantitative yields, minimal byproducts, and high chemospecificity and regioselectivity. These combined advantages make click reactions quite suitable for the lead identification and the development of pharmaceutical agents in the fields of medicinal chemistry and drug discovery. In this review, we have outlined the key aspects, the mechanistic details and merits and demerits of the click reaction. In addition, we have also discussed the recent pharmaceutical applications of click chemistry, ranging from the development of anticancer, antibacterial, and antiviral agents to that of biomedical imaging agents and clinical therapeutics.
Collapse
Affiliation(s)
- Jasleen Kaur
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Mokshika Saxena
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida 201313, Uttar Pradesh, India
| |
Collapse
|
29
|
Synthesis, Characterization, and Antioxidant and Anticancer Activity of 1,4-Disubstituted 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Tombling BJ, Lammi C, Bollati C, Anoldi A, Craik DJ, Wang CK. Increased Valency Improves Inhibitory Activity of Peptides Targeting Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). Chembiochem 2021; 22:2154-2160. [PMID: 33755275 DOI: 10.1002/cbic.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating hypercholesterolemia. Peptide-based PCSK9 inhibitors have attracted pharmaceutical interest, but the effect of multivalency on bioactivity is poorly understood. Here we designed bivalent and tetravalent dendrimers, decorated with the PCSK9 inhibitory peptides Pep2-8[RRG] or P9-38, to study relationships between peptide binding affinity, peptide valency, and PCSK9 inhibition. Increased valency resulted in improved PCSK9 inhibition for both peptides, with activity improvements of up to 100-fold achieved for the P9-38-decorated dendrimers compared to monomeric P9-38 in in vitro competition binding assays. Furthermore, the P9-38-decorated dendrimers showed improved potency at restoring functional low-density lipoprotein (LDL) receptor levels and internalizing LDL in the presence of PCSK9, demonstrating significant cell-based activity at picomolar concentrations. This study demonstrates the potential of increasing valency as a strategy for increasing the efficacy of peptide-based PCSK9 therapeutics.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Carlotta Bollati
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - Anna Anoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133, Milan, Italy
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
31
|
Alavi SE, Cabot PJ, Raza A, Moyle PM. Developing GLP-1 Conjugated Self-Assembling Nanofibers Using Copper-Catalyzed Alkyne-Azide Cycloaddition and Evaluation of Their Biological Activity. Bioconjug Chem 2021; 32:810-820. [PMID: 33843208 DOI: 10.1021/acs.bioconjchem.1c00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glucagon-like peptide-1 GLP-1 is a gut-derived peptide secreted from pancreatic β-cells that reduces blood glucose levels and body weight; however, native GLP-1 (GLP-1(7-36)-NH2 and GLP-1(7-37)) have short in vivo circulation half-lives (∼2 min) due to proteolytic degradation and rapid renal clearance due to its low molecular weight (MW; 3297.7 Da). This study aimed to improve the proteolytic stability and delivery properties of glucagon-like peptide-1 (GLP-1) through modifications that form nanostructures. For this purpose, N- (NtG) and C-terminal (CtG), and Lys26 side chain (K26G) alkyne-modified GLP-1 analogues were conjugated to an azide-modified lipidic peptide (L) to give N-L, C-L, and K-26-L, respectively; or CtG was conjugated with a fibrilizing self-assembling peptide (SAP) (AEAEAKAK)3 to yield C-S, using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). N-L demonstrated the best serum stability (t1/2 > 48 h) compared to K-26-L (44 h), C-L (20 h), C-S (27 h), and the parental GLP-1(7-36;A8G)-NH2 (A8G) (19 h) peptides. Each conjugate demonstrated subnanomolar hGLP-1RA potency, and none demonstrated toxicity toward PC-3 cells at concentrations up to 1 μM. Each analogue was observed by transmission electron microscopy to form fibrils in solution. K-26-L demonstrated among the best human serum stability (t1/2 = 44 h) and similar hGLP-1RA potency (EC50 48 pM) to C-S. In conclusion, this study provided an alternative to lipid modification, i.e., fibrillizing peptides, that could improve pharmacokinetic parameters of GLP-1.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| |
Collapse
|
32
|
Meiners A, Bäcker S, Hadrović I, Heid C, Beuck C, Ruiz-Blanco YB, Mieres-Perez J, Pörschke M, Grad JN, Vallet C, Hoffmann D, Bayer P, Sánchez-García E, Schrader T, Knauer SK. Specific inhibition of the Survivin-CRM1 interaction by peptide-modified molecular tweezers. Nat Commun 2021; 12:1505. [PMID: 33686072 PMCID: PMC7940618 DOI: 10.1038/s41467-021-21753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.
Collapse
Affiliation(s)
- Annika Meiners
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sandra Bäcker
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Inesa Hadrović
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Heid
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Joel Mieres-Perez
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Marius Pörschke
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Jean-Noël Grad
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sánchez-García
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
33
|
Özdemir Z, Šaman D, Bertula K, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Wimmer Z. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2693-2706. [PMID: 33595317 DOI: 10.1021/acs.langmuir.0c03335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2-4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Collapse
Affiliation(s)
- Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kia Bertula
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
34
|
|
35
|
Anterbedy J, Mokenapelli S, Thalari G. Facial synthesis of novel 3-(2-methylbenzofuran-3-yl)-5-((4-(phenoxymethyl)-1H-1,2,3-triazole-1-yl)methyl)-1,2,4-oxadiazole derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1884881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jagram Anterbedy
- Natural Products Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sudhakar Mokenapelli
- Natural Products Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Gangadhar Thalari
- Natural Products Laboratory, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
36
|
Design, synthesis, anticancer and antioxidant activities of amide linked 1,4-disubstituted 1,2,3-triazoles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Al Sheikh Ali A, Khan D, Naqvi A, Al-blewi FF, Rezki N, Aouad MR, Hagar M. Design, Synthesis, Molecular Modeling, Anticancer Studies, and Density Functional Theory Calculations of 4-(1,2,4-Triazol-3-ylsulfanylmethyl)-1,2,3-triazole Derivatives. ACS OMEGA 2021; 6:301-316. [PMID: 33458482 PMCID: PMC7807778 DOI: 10.1021/acsomega.0c04595] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 05/07/2023]
Abstract
New conjugates of substituted 1,2,3-triazoles linked to 1,2,4-triazoles were synthesized starting from the appropriate S-propargylated 1,2,4-triazoles 7 and 8. Ligation of 1,2,4-triazoles to the 1,2,3-triazole core was performed through Cu(I)-catalyzed cycloaddition of 1,2,4-triazole-based alkyne side chain 7 and/or 8 with several un/functionalized alkyl- and/or aryl-substituted azides 9-15 to afford the desired 1,4-disubstituted 1,2,3-triazoles 16-27, using both classical and microwave methods. After their spectroscopic characterization (infrared, 1H, 13C nuclear magnetic resonance, and elemental analyses), an anticancer screening was carried out against some cancer cell lines including human colon carcinoma (Caco-2 and HCT116), human cervical carcinoma (HeLa), and human breast adenocarcinoma (MCF-7). The outcomes of this exploration revealed that compounds 17, 22, and 25 had a significant anticancer activity against MCF-7 and Caco-2 cancer cell lines with IC50 values of 0.31 and 4.98 μM, respectively, in relation to the standard reference drug, doxorubicin. Enzyme-docking examination was executed onto cyclin-dependent kinase 2; a promising aim for cancer medication. Synthesized compounds acquiring highest potency showcased superior interactions with the active site residue of the target protein and exhibited minimum binding energy. Finally, the density functional theory (DFT) calculations were carried out to confirm the outcomes of the molecular docking and the experimental findings. The chemical reactivity descriptors such as softness (δ), global hardness (η), electronegativity (χ), and electrophilicity were calculated from the levels of the predicted frontier molecular orbitals and their energy gap. The DFT results and the molecular docking calculation results explained the activity of the most expectedly active compounds 17, 22, and 25.
Collapse
Affiliation(s)
- Adeeb Al Sheikh Ali
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Daoud Khan
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Arshi Naqvi
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Fawzia Faleh Al-blewi
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Nadjet Rezki
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Mohamed Reda Aouad
- Department
of Chemistry, Faculty of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Mohamed Hagar
- Chemistry
Department, College of Sciences, Yanbu, Taibah University, Yanbu 30799, Saudi Arabia
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| |
Collapse
|
38
|
Qiu G, Nava P, Martinez A, Colomban C. A tris(benzyltriazolemethyl)amine-based cage as a CuAAC ligand tolerant to exogeneous bulky nucleophiles. Chem Commun (Camb) 2021; 57:2281-2284. [DOI: 10.1039/d0cc08005e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The canonical CuAAC–ligand TBTA was capped with a bowl-shaped unit yielding the cage Hm-TBTA. The shielded structure does not suffer from product inhibition effect and is remarkably tolerant to the biological CuAAC-inhibitor Glutathione.
Collapse
Affiliation(s)
- Gege Qiu
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Paola Nava
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | | | | |
Collapse
|
39
|
Ge D, Wang X, Chu XQ. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org Chem Front 2021. [DOI: 10.1039/d1qo00798j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in SOMOphilic alkynylation reactions by using acetylenic sulfones as functional reagents are summarized.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
40
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
41
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
42
|
Singh V, Hada RS, Uddin A, Aneja B, Abid M, Pandey KC, Singh S. Inhibition of Hemoglobin Degrading Protease Falcipain-2 as a Mechanism for Anti-Malarial Activity of Triazole-Amino Acid Hybrids. Curr Top Med Chem 2020; 20:377-389. [PMID: 32000644 DOI: 10.2174/1568026620666200130162347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Novel drug development against malaria parasite over old conventional antimalarial drugs is essential due to rapid and indiscriminate use of drugs, which led to the emergence of resistant strains. METHODS In this study, previously reported triazole-amino acid hybrids (13-18) are explored against Plasmodium falciparum as antimalarial agents. Among six compounds, 15 and 18 exhibited antimalarial activity against P. falciparum with insignificant hemolytic activity and cytotoxicity towards HepG2 mammalian cells. In molecular docking studies, both compounds bind into the active site of PfFP-2 and block its accessibility to the substrate that leads to the inhibition of target protein further supported by in vitro analysis. RESULTS Antimalarial half-maximal inhibitory concentration (IC50) of 15 and 18 compounds were found to be 9.26 μM and 20.62 μM, respectively. Blood stage specific studies showed that compounds, 15 and 18 are effective at late trophozoite stage and block egress pathway of parasites. Decreased level of free monomeric heme was found in a dose dependent manner after the treatment with compounds 15 and 18, which was further evidenced by the reduction in percent of hemoglobin hydrolysis. Compounds 15 and 18 hindered hemoglobin degradation via intra- and extracellular cysteine protease falcipain-2 (PfFP-2) inhibitory activity both in in vitro and in vivo in P. falciparum. CONCLUSION We report antimalarial potential of triazole-amino acid hybrids and their role in the inhibition of cysteine protease PfFP-2 as its mechanistic aspect.
Collapse
Affiliation(s)
- Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rahul Singh Hada
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar UP, 201314, India
| | - Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.,Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Kailash C Pandey
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi 110077, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
43
|
Jethava DJ, Borad MA, Bhoi MN, Acharya PT, Bhavsar ZA, Patel HD. New dimensions in triazolo[4,3-a]pyrazine derivatives: The land of opportunity in organic and medicinal chemistry. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
44
|
Godin É, Nguyen Thanh S, Guerrero-Morales J, Santandrea J, Caron A, Minozzi C, Beaucage N, Rey B, Morency M, Abel-Snape X, Collins SK. Synthesis and Diversification of Macrocyclic Alkynediyl Sulfide Peptides. Chemistry 2020; 26:14575-14579. [PMID: 32886838 DOI: 10.1002/chem.202003655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The synthesis of rare macrocyclic alkynediyl sulfides by a Cu-catalyzed Csp -S cross-coupling is presented. The catalytic protocol (Cu(MeCN)4 PF6 /dtbbpy) promotes macrocyclization of peptides, dipeptides and tripeptides at ambient temperature (14 examples, 23→73 % yields) via thiols and bromoalkynes, and is chemoselective with regards to terminal alkynes. Importantly, the underexplored alkynediyl sulfide functionality incorporates a rigidifying structural element and opens new opportunities for diversification of macrocyclic frameworks through S oxidation, halide addition and azide-alkyne cycloaddition chemistries to integrate sulfones, halides or valuable fluorophores (7 examples, 37→92 % yields).
Collapse
Affiliation(s)
- Éric Godin
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Sacha Nguyen Thanh
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Javier Guerrero-Morales
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Jeffrey Santandrea
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Antoine Caron
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Clémentine Minozzi
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Noémie Beaucage
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Bastien Rey
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Xavier Abel-Snape
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Shawn K Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| |
Collapse
|
45
|
Gomes A, Bessa LJ, Correia P, Fernandes I, Ferraz R, Gameiro P, Teixeira C, Gomes P. "Clicking" an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability. Int J Mol Sci 2020; 21:E6174. [PMID: 32859111 PMCID: PMC7504088 DOI: 10.3390/ijms21176174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
A covalent conjugate between an antibacterial ionic liquid and an antimicrobial peptide was produced via "click" chemistry, and found to retain the parent peptide's activity against multidrug-resistant clinical isolates of Gram-negative bacteria, and antibiofilm action on a resistant clinical isolate of Klebsiella pneumoniae, while exhibiting much improved stability towards tyrosinase-mediated modifications. This unprecedented communication is a prelude for the promise held by ionic liquids -based approaches as tools to improve the action of bioactive peptides.
Collapse
Affiliation(s)
- Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Lucinda J. Bessa
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Patrícia Correia
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Politécnico do Porto, P-4200-072 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, P-4169-007 Porto, Portugal; (A.G.); (L.J.B.); (P.C.); (I.F.); (R.F.); (P.G.); (C.T.)
| |
Collapse
|
46
|
Weterings J, Rijcken CJF, Veldhuis H, Meulemans T, Hadavi D, Timmers M, Honing M, Ippel H, Liskamp RMJ. TMTHSI, a superior 7-membered ring alkyne containing reagent for strain-promoted azide-alkyne cycloaddition reactions. Chem Sci 2020; 11:9011-9016. [PMID: 34123155 PMCID: PMC8163418 DOI: 10.1039/d0sc03477k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/08/2020] [Indexed: 12/25/2022] Open
Abstract
We describe the development of TMTH-SulfoxImine (TMTHSI) as a superior click reagent. This reagent combines a great reactivity, with small size and low hydrophobicity and compares outstandingly with existing click reagents. TMTHSI can be conveniently functionalized with a variety of linkers allowing attachment of a diversity of small molecules and (peptide, nucleic acid) biologics.
Collapse
Affiliation(s)
- Jimmy Weterings
- Cristal Therapeutics Oxfordlaan 55 6229 EV Maastricht The Netherlands
| | | | | | | | - Darya Hadavi
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Matt Timmers
- Cristal Therapeutics Oxfordlaan 55 6229 EV Maastricht The Netherlands
| | - Maarten Honing
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Hans Ippel
- Department of Biochemistry, CARIM, Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Rob M J Liskamp
- Cristal Therapeutics Oxfordlaan 55 6229 EV Maastricht The Netherlands
- Department of Biochemistry, CARIM, Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
- School of Chemistry, Joseph Black Building, University of Glasgow University Avenue Glasgow G12 8QQ UK
- Chemical Biology and Drug Discovery, Department of Pharmaceutics, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
47
|
Rečnik LM, Kandioller W, Mindt TL. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. Molecules 2020; 25:E3576. [PMID: 32781656 PMCID: PMC7465391 DOI: 10.3390/molecules25163576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.
Collapse
Affiliation(s)
- Lisa-Maria Rečnik
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Thomas L. Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna, 1090 Vienna, Austria;
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
- Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
48
|
Caselli E, Fini F, Introvigne ML, Stucchi M, Taracila MA, Fish ER, Smolen KA, Rather PN, Powers RA, Wallar BJ, Bonomo RA, Prati F. 1,2,3-Triazolylmethaneboronate: A Structure Activity Relationship Study of a Class of β-Lactamase Inhibitors against Acinetobacter baumannii Cephalosporinase. ACS Infect Dis 2020; 6:1965-1975. [PMID: 32502340 PMCID: PMC7458062 DOI: 10.1021/acsinfecdis.0c00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Boronic acid transition state inhibitors (BATSIs) are known reversible covalent
inhibitors of serine β-lactamases. The selectivity and high potency of specific
BATSIs bearing an amide side chain mimicking the β-lactam’s amide side
chain are an established and recognized synthetic strategy. Herein, we describe a new
class of BATSIs where the amide group is replaced by a bioisostere triazole; these
compounds were designed as molecular probes. To this end, a library of 26
α-triazolylmethaneboronic acids was synthesized and tested against the clinically
concerning Acinetobacter-derived cephalosporinase, ADC-7. In steady
state analyses, these compounds demonstrated
Ki values ranging from 90 nM to 38
μM (±10%). Five compounds were crystallized in complex with ADC-7
β-lactamase, and all the crystal structures reveal the triazole is in the putative
amide binding site, thus confirming the triazole–amide bioisosterism. The easy
synthetic access of these new inhibitors as prototype scaffolds allows the insertion of
a wide range of chemical groups able to explore the enzyme binding site and provides
insights on the importance of specific residues in recognition and catalysis. The best
inhibitor identified, compound 6q
(Ki 90 nM), places a tolyl group near
Arg340, making favorable cation−π interactions. Notably, the structure of
6q does not resemble the natural substrate of the β-lactamase yet
displays a pronounced inhibition activity, in addition to lowering the minimum
inhibitory concentration (MIC) of ceftazidime against three bacterial strains expressing
class C β-lactamases. In summary, these observations validate the
α-triazolylboronic acids as a promising template for further inhibitor design.
Collapse
Affiliation(s)
- Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Francesco Fini
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Maria Luisa Introvigne
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Mattia Stucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Magdalena A. Taracila
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio 44106, United States
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Erin R. Fish
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Kali A. Smolen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Philip N. Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322 United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Bradley J. Wallar
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106, United States
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| |
Collapse
|
49
|
Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020; 26:4112-4150. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 11/22/2022]
Abstract
Neglected parasitic diseases are a group of infections currently considered as a worldwide concern. This fact can be attributed to the migration of these diseases to developed and developing countries, associated with therapeutic insufficiency resulted from the low investment in the research and development of new drugs. In order to overcome this situation, bioprospecting supports medicinal chemistry in the identification of new scaffolds with therapeutically appropriate physicochemical and pharmacokinetic properties. Among them, we highlight the nitrogenous heterocyclic compounds, as they are secondary metabolites of many natural products with potential biological activity. The objective of this work was to review studies within a 10-year timeframe (2009- 2019), focusing on the pharmacological application of nitrogen bioprospectives (pyrrole, pyridine, indole, quinoline, acridine, and their respective derivatives) against neglected parasitic infections (malaria, leishmania, trypanosomiases, and schistosomiasis), and their application as a template for semi-synthesis or total synthesis of potential antiparasitic agents. In our studies, it was observed that among the selected articles, there was a higher focus on the attempt to identify and obtain novel antimalarial compounds, in a way that an extensive amount of studies involving all heterocyclic nitrogen nuclei were found. On the other hand, the parasites with the lowest number of publications up until the present date have been trypanosomiasis, especially those caused by Trypanosoma cruzi, and schistosomiasis, where some heterocyclics have not even been cited in recent years. Thus, we conclude that despite the great biodiversity on the planet, little attention has been given to certain neglected tropical diseases, especially those that reach countries with a high poverty rate.
Collapse
Affiliation(s)
- Sonaly L Albino
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Jamire M da Silva
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Michelangela S de C Nobre
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Yvnni M S de M E Silva
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Mirelly B Santos
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Rodrigo S A de Araújo
- Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Maria do C A de Lima
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| | - Martine Schmitt
- Universite de Strasbourg, CNRS, LIT UMR 7200, Laboratoire d'innovation therapeutique, Illkirch, France
| | - Ricardo O de Moura
- Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
50
|
Chinn AJ, Hwang J, Kim B, Parish CA, Krska SW, Miller SJ. Application of High-Throughput Competition Experiments in the Development of Aspartate-Directed Site-Selective Modification of Tyrosine Residues in Peptides. J Org Chem 2020; 85:9424-9433. [PMID: 32614587 DOI: 10.1021/acs.joc.0c01147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report a Cu-catalyzed, site-selective functionalization of peptides that employs an aspartic acid (Asp) as a native directing motif, which directs the site of O-arylation at a proximal tyrosine (Tyr) residue. Through a series of competition studies conducted in high-throughput reaction arrays, effective conditions were identified that gave high selectivity for the proximal Tyr in Asp-directed Tyr modification. Good levels of site-selectivity were achieved in the O-arylation at a proximal Tyr residue in a number of cases, including a peptide-small molecule hybrid.
Collapse
Affiliation(s)
- Alex J Chinn
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Jaeyeon Hwang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Byoungmoo Kim
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Craig A Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shane W Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott J Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|