1
|
Singh Y, Rawat P, Kumar A, Singh SK, Mishra DK, Kanojiya S. Exploration of new and alternative sources of targeted bioflavonoids using ultra‐performance liquid chromatography‐tandem mass spectrometry. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
| | - Priyanka Rawat
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Akhilesh Kumar
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sumit K. Singh
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Dipak K. Mishra
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
2
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|
3
|
The use of ecological analytical tools as an unconventional approach for untargeted metabolomics data analysis: the case of Cecropia obtusifolia and its adaptive responses to nitrate starvation. Funct Integr Genomics 2022; 22:1467-1493. [PMID: 36199002 DOI: 10.1007/s10142-022-00904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Plant metabolomics studies haves revealed new bioactive compounds. However, like other omics disciplines, the generated data are not fully exploited, mainly because the commonly performed analyses focus on elucidating the presence/absence of distinctive metabolites (and/or their precursors) and not on providing a holistic view of metabolomic changes and their participation in organismal adaptation to biotic and abiotic stress conditions. Therefore, spectral libraries generated from Cecropia obtusifolia cell suspension cultures in a previous study were considered as a case study and were reanalyzed herein. These libraries were obtained from a time-course experiment under nitrate starvation conditions using both electrospray ionization modes. The applied methodology included the use of ecological analytical tools in a systematic four-step process, including a population analysis of metabolite α diversity, richness, and evenness (i); a chemometrics analysis to identify discriminant groups (ii); differential metabolic marker identification (iii); and enrichment analyses and annotation of active metabolic pathways enriched by differential metabolites (iv). Our species α diversity results referring to the diversity of metabolites represented by mass-to-charge ratio (m/z) values detected at a specific retention time (rt) (an uncommon way to analyze untargeted metabolomic data) suggest that the metabolome is dynamic and is modulated by abiotic stress. A total of 147 and 371 m/z_rt pairs was identified as differential markers responsive to nitrate starvation in ESI- and ESI+ modes, respectively. Subsequent enrichment analysis showed a high degree of completeness of biosynthetic pathways such as those of brassinosteroids, flavonoids, and phenylpropanoids.
Collapse
|
4
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Kim SR, Park Y, Li M, Kim YK, Lee S, Son SY, Lee S, Lee JS, Lee CH, Park HH, Lee JY, Hong S, Cho YC, Kim JW, Yoo HM, Cho N, Lee HS, Lee SH. Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114258. [PMID: 34271112 DOI: 10.1016/j.jep.2021.114258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Activated astrocytes are involved in the progression of neurodegenerative diseases. Traditionally, Ailanthus altissima (Mill.) Swingle, widely distributed in East Asia, has been used as a medicine for the treatment of fever, gastric diseases, and inflammation. Although A. altissima has been reported to play an anti-inflammatory role in peripheral tissues or cells, its role in the central nervous system (CNS) remains unclear. AIM OF THE STUDY In the present study, we investigated the anti-inflammatory effects and mechanism of action of A. altissima in primary astrocytes stimulated by lipopolysaccharide (LPS). MATERIALS AND METHODS A nitrite assay was used to measure nitric oxide (NO) production, and the tetrazolium salt 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to determine cytotoxicity. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) were determined with western blotting. Reverse-transcription PCR was used to assess the expression of inflammatory cytokines. The levels of reactive oxygen species were measured using 2,7-dichlorodihydrofluorescein diacetate. Luciferase assay and immunocytochemistry were used for assessing nuclear factor-kappa B (NF-κB) transcription and p65 localization, respectively. Memory and social interaction were analyzed using the Y-maze and three-chamber tests, respectively. RESULTS The ethanol extract of A. altissima leaves (AAE) inhibited iNOS and COX-2 expression in LPS-stimulated astrocytes. Moreover, AAE reduced the transcription of various proinflammatory mediators, hindered NF-κB activation, and suppressed extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activation without p38 activation. Ultra-high performance liquid chromatography with mass spectrometry analysis revealed that AAE comprised ethyl gallate, quercetin, and kaempferol, along with luteolin, which has anti-inflammatory properties, and repressed LPS-induced nitrite levels and the nuclear translocation of p65. Finally, oral administration of AAE attenuated LPS-induced memory and social impairment in mice and repressed LPS-induced ERK and JNK activation in the cortices of mice. CONCLUSION AAE could have therapeutic uses in the treatment of neuroinflammatory diseases via suppression of astrocyte activation.
Collapse
Affiliation(s)
- Sung Rae Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yongun Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Mo Li
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yeong Kyeong Kim
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, 42 Hwangyeong-ro, Seo-gu, Incheon, 22755, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun Ho Park
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji-Yun Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungguan Hong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Min Yoo
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hoon Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
6
|
Nontargeted Metabolomics as a Screening Tool for Estimating Bioactive Metabolites in the Extracts of 50 Indigenous Korean Plants. Metabolites 2021; 11:metabo11090585. [PMID: 34564401 PMCID: PMC8468114 DOI: 10.3390/metabo11090585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Many indigenous Korean plants have been used in medicinal preparations and health-promoting foods. These plant species contain beneficial metabolites with various bioactivities, such as antioxidant and anti-inflammatory activities. Herein, we suggest a new screening strategy using metabolomics to explore the bioactive compounds in 50 Korean plants. Secondary metabolites were analyzed using UHPLC-LTQ-Orbitrap-MS/MS. The plant extracts were subjected to antioxidant and anti-inflammatory assays. We identified metabolites that contributed to bioactivities according to the results of bioassays and multivariate analyses. Using Pearson’s correlation, phenolics (e.g., casuarictin, 3-O-methylellagic acid) showed positive correlation with antioxidant activity, while biflavonoids (e.g., amentoflavone, rosbustaflavone) were correlated with nitric oxide (NO) inhibition activity. To compensate for the limitation of this new strategy, we further validated these by investigating three parts (branches, fruits, leaves) of Platycladus orientalis which showed high activities on both bioassays. Unlike the above observation, we identified significantly different metabolites from different parts, which was not the results of bioassays. In these validation steps, interestingly, biflavonoids (e.g., robustaflavone, sciadopitysin) contributed to both activities in P. orientalis. The findings of this work suggest that new strategy could be more beneficial in the identification of bioactive plant species as well as that of their corresponding bioactive compounds that impart the bioactivity.
Collapse
|
7
|
Kim MJ, Son SY, Jeon SG, Kim JG, Lee CH. Metabolite Profiling of Dioscorea (Yam) Leaves to Identify Bioactive Compounds Reveals Their Potential as Renewable Resources. PLANTS 2021; 10:plants10081751. [PMID: 34451796 PMCID: PMC8399132 DOI: 10.3390/plants10081751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Yams (Dioscorea spp.) are cultivated and consumed as edible tubers, while their leaves are discarded as waste or burned with negative environmental impact. Herein, the metabolites of two yam species (Danma, DAN; Dunggeunma, DUN), harvested in June, July, and August, were profiled using GC-TOF-MS and UHPLC-LTQ-Orbitrap-MS/MS and the antioxidant activity of the extracts was evaluated to stimulate the utilization of yam leaves as a by-product. We observed that the relative levels of amino acids, organic acids, sugars, and saponins decreased linearly with prolonged harvest time, while fatty acid, phenanthrene, and flavonoid levels gradually increased. Furthermore, the leaf extracts obtained in August exhibited the highest antioxidant activity. To determine the antioxidant-contributing metabolites, OPLS-DA was performed for the leaf metabolites of DAN and DUN leaves harvested in August. Hydroxytyrosol-glucoside, apigenin-rhamnoside, and rutin were more abundant in DUN, while luteolin, phenanthrene derivatives, epicatechin, and kaempferide were relatively higher in DAN and their respective metabolites were positively correlated with the antioxidant activity. Moreover, secondary metabolites were more abundant in the leaves than in the roots, and consequently, the antioxidant activity of the former was also higher. Overall, the potential value of yam leaves as a renewable source of bioactive compounds is proposed.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.-J.K.); (S.-Y.S.)
| | - Su-Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.-J.K.); (S.-Y.S.)
| | - Su-Gyeong Jeon
- Insititute for Bioresources Research, Gyeongsangbuk-do Agricultural Research and Extension Services, Andong 36614, Korea;
| | - Jeong-Gu Kim
- Genomics Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: (J.-G.K.); (C.-H.L.); Tel.: +82-2-2049-6177 (C.-H.L.)
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.-J.K.); (S.-Y.S.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
- MetaMass Co. Ltd., Seoul 05029, Korea
- Correspondence: (J.-G.K.); (C.-H.L.); Tel.: +82-2-2049-6177 (C.-H.L.)
| |
Collapse
|
8
|
Characterization of Endophytic Fungi, Acremonium sp., from Lilium davidii and Analysis of Its Antifungal and Plant Growth-Promoting Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9930210. [PMID: 34395628 PMCID: PMC8358427 DOI: 10.1155/2021/9930210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 μg ml−1 to 167.71 ± 7.12 μg ml−1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.
Collapse
|
9
|
Song DH, Chun BH, Lee S, Son SY, Reddy CK, Mun HI, Jeon CO, Lee CH. Comprehensive Metabolite Profiling and Microbial Communities of Doenjang (Fermented Soy Paste) and Ganjang (Fermented Soy Sauce): A Comparative Study. Foods 2021; 10:foods10030641. [PMID: 33803678 PMCID: PMC8003076 DOI: 10.3390/foods10030641] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Doenjang and ganjang are secondary fermented soybean products from meju (primary fermented product) following a complex fermentation process that separates the products into solid (doenjang) and liquid (ganjang) states. We performed a comparative study on gas chromatography mass spectrometry-(GC-MS) and liquid chromatography mass spectrometry-(LC-MS) based metabolite profiling with fungal and bacterial microbial community analysis of doenjang and ganjang during fermentation. Metabolite profiling and microbial community data showed distinct patterns, depending on the fermentation process. The relative levels of metabolic patterns were similar and most of the microorganisms produced halophilic or halotolerant microbes during the fermentation period in doenjang and ganjang. In the doenjang end products, isoflavones, soyasaponins, and amino acids were largely distributed and Debaryomyces and Staphylococcus were dominant, whereas the biogenic amine and phenylpropanoid contents were highly distributed in the ganjang end products, with higher levels of Meyerozyma and Tetragenococcus. Our results demonstrate that the quality of doenjang and ganjang is predominantly influenced by the microbiome and by metabolite changes during fermentation. Moreover, the present study provides a platform for comparing samples in different states.
Collapse
Affiliation(s)
- Da Hye Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea;
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
| | - Chagam Koteswara Reddy
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
| | - Ha In Mun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (C.O.J.); (C.H.L.); Tel.: +82-2-820-5864 (C.O.J.); +82-2-2049-6177 (C.H.L.)
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (S.L.); (S.Y.S.); (C.K.R.); (H.I.M.)
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
- Correspondence: (C.O.J.); (C.H.L.); Tel.: +82-2-820-5864 (C.O.J.); +82-2-2049-6177 (C.H.L.)
| |
Collapse
|
10
|
Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum. Cells 2021; 10:cells10030644. [PMID: 33805842 PMCID: PMC7999030 DOI: 10.3390/cells10030644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Plants show an extraordinary diversity in chemical composition and are characterized by different functional traits. However, relationships between the foliar primary and specialized metabolism in terms of metabolite numbers and composition as well as links with the leaf economics spectrum have rarely been explored. We investigated these relationships in leaves of 20 woody species from the Mediterranean region grown as saplings in a common garden, using a comparative ecometabolomics approach that included (semi-)polar primary and specialized metabolites. Our analyses revealed significant positive correlations between both the numbers and relative composition of primary and specialized metabolites. The leaf metabolomes were highly species-specific but in addition showed some phylogenetic imprints. Moreover, metabolomes of deciduous species were distinct from those of evergreens. Significant relationships were found between the primary metabolome and nitrogen content and carbon/nitrogen ratio, important traits of the leaf economics spectrum, ranging from acquisitive (mostly deciduous) to conservative (evergreen) leaves. A comprehensive understanding of various leaf traits and their coordination in different plant species may facilitate our understanding of plant functioning in ecosystems. Chemodiversity is thereby an important component of biodiversity.
Collapse
|
11
|
Pyo YH, Noh YH, Lee DB, Lee YW, Yoon SM, Lee AR, Song DH. Profile chemical compounds and antioxidant activity of Korean commercial vinegars produced by traditional fermentation. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Song DH, Chun BH, Lee S, Reddy CK, Jeon CO, Lee CH. Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities. J Microbiol Biotechnol 2020; 30:1697-1705. [PMID: 32876067 PMCID: PMC9728299 DOI: 10.4014/jmb.2007.07026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.
Collapse
Affiliation(s)
- Da Hye Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chagam Koteswara Reddy
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
13
|
Menezes R, Foito A, Jardim C, Costa I, Garcia G, Rosado-Ramos R, Freitag S, Alexander CJ, Outeiro TF, Stewart D, Santos CN. Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9090789. [PMID: 32858836 PMCID: PMC7576474 DOI: 10.3390/antiox9090789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.
Collapse
Affiliation(s)
- Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexandre Foito
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | - Carolina Jardim
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Gonçalo Garcia
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rita Rosado-Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sabine Freitag
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
| | | | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettinge, 37073 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| | - Derek Stewart
- Environmental and Biochemical Science Group, The James Hutton Institute, Dundee DD2 5DA, UK; (A.F.); (S.F.); (D.S.)
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (R.M.); (R.R.-R.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (C.J.); (I.C.); (G.G.)
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
14
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
15
|
Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Moe TS, Munir I, Xue J, Zhang X. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. J Microbiol Biotechnol 2020; 30:668-680. [PMID: 32482932 PMCID: PMC9728359 DOI: 10.4014/jmb.1910.10021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse 05151, Myanmar
| | - Iqbal Munir
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| |
Collapse
|
16
|
Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8650957. [PMID: 32190683 PMCID: PMC7064867 DOI: 10.1155/2020/8650957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.
Collapse
|
17
|
Gao Y, Wang JQ, Fu YQ, Yin JF, Shi J, Xu YQ. Chemical composition, sensory properties and bioactivities of Castanopsis lamontii buds and mature leaves. Food Chem 2020; 316:126370. [PMID: 32062229 DOI: 10.1016/j.foodchem.2020.126370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022]
Abstract
Castanopsis lamontii is used as functional herbal tea in southwest China. Usually, only buds rather than mature leaves are applied. To figure out whether mature leaves were suitable for producing herbal tea, chemical composition, sensory properties and bioactivities of Castanopsis lamontii bud infusion (CLB) and mature leaf infusion (CLM) were investigated. According to the results, CLB and CLM had similar non-volatile composition, but in different proportion. Meanwhile, CLB contained more types of volatiles than CLM, leading to distinguishable volatile profiles between them. Sensory assessment showed that CLB had sweet aftertaste and floral aroma. CLM tasted astringent and smelled grassy. Bioactivity evaluation indicated that CLB exhibited higher activities in scavenging free radicals and suppressing lipopolysaccharide-induced inflammation. Taken together, CLB had better overall acceptability in sensory quality and higher bioactivity, implying that Castanopsis lamontii buds were more suitable for producing herbal tea.
Collapse
Affiliation(s)
- Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Yan-Qing Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center for Tea Processing, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.
| |
Collapse
|
18
|
Lee S, Oh DG, Singh D, Lee JS, Lee S, Lee CH. Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. BMC PLANT BIOLOGY 2020; 20:39. [PMID: 31992195 PMCID: PMC6986006 DOI: 10.1186/s12870-019-2231-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants have been used as an important source of indispensable bioactive compounds in various cosmetics, foods, and medicines. However, the subsequent functional annotation of these compounds seems arduous because of the largely uncharacterized, vast metabolic repertoire of plant species with known biological phenotypes. Hence, a rapid multi-parallel screening and characterization approach is needed for plant functional metabolites. RESULTS Fifty-one species representing three plant families, namely Asteraceae, Fabaceae, and Rosaceae, were subjected to metabolite profiling using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultrahigh-performance liquid chromatography quadrupole orbitrap ion trap tandem mass spectrometry (UHPLC-Q-orbitrap-MS/MS) as well as multivariate analyses. Partial least squares discriminant analysis (PLS-DA) of the metabolite profiling datasets indicated a distinct clustered pattern for 51 species depending on plant parts (leaves and stems) and relative phylogeny. Examination of their relative metabolite contents showed that the extracts from Fabaceae plants were abundant in amino acids, fatty acids, and genistein compounds. However, the extracts from Rosaceae had higher levels of catechin and ellagic acid derivatives, whereas those from Asteraceae were higher in kaempferol derivatives and organic acids. Regardless of the different families, aromatic amino acids, branch chain amino acids, chlorogenic acid, flavonoids, and phenylpropanoids related to the shikimate pathway were abundant in leaves. Alternatively, certain amino acids (proline, lysine, and arginine) as well as fatty acids levels were higher in stem extracts. Further, we investigated the associated phenotypes, i.e., antioxidant activities, affected by the observed spatial (leaves and stem) and intra-family metabolomic disparity in the plant extracts. Pearson's correlation analysis indicated that ellagic acid, mannitol, catechin, epicatechin, and quercetin derivatives were positively correlated with antioxidant phenotypes, whereas eriodictyol was positively correlated with tyrosinase inhibition activity. CONCLUSIONS This work suggests that metabolite profiling, including multi-parallel approaches and integrated bioassays, may help the expeditious characterization of plant-derived metabolites while simultaneously unraveling their chemodiversity.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Dong-Gu Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22755 Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22755 Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 143-701 Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
19
|
Lee S, Oh DG, Singh D, Lee HJ, Kim GR, Lee S, Lee JS, Lee CH. Untargeted Metabolomics Toward Systematic Characterization of Antioxidant Compounds in Betulaceae Family Plant Extracts. Metabolites 2019; 9:metabo9090186. [PMID: 31527409 PMCID: PMC6780370 DOI: 10.3390/metabo9090186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 11/17/2022] Open
Abstract
Plant species have traditionally been revered for their unparalleled pharmacognostic applications. We outline a non-iterative multi-parallel metabolomic-cum-bioassay-guided methodology toward the functional characterization of ethanol extracts from the Betulaceae family plants (n = 10). We performed mass spectrometry (MS)-based multivariate analyses and bioassay-guided (ABTS antioxidant activity and cytoprotective effects against H2O2-induced cell damage) analyses of SPE fractions. A clearly distinct metabolomic pattern coupled with significantly higher bioactivities was observed for 40% methanol SPE eluate. Further, the 40% SPE eluate was subjected to preparative high-performance liquid chromatography (prep-HPLC) analysis, yielding 72 sub-fractions (1 min−1), with the highest antioxidant activities observed for the 15 min and 31 min sub-fractions. We simultaneously performed hyphenated-MS-based metabolite characterization of bioactive components for both the 40% methanol SPE fraction and its prep-HPLC sub-fraction (15 min and 31 min). Altogether, 19 candidate metabolites were mainly observed to contribute toward the observed bioactivities. In particular, ethyl gallate was mainly observed to affect the antioxidant activities of SPE and prep-HPLC fractions of Alnus firma extracts. We propose an integrated metabolomic-cum-bioassay-guided approach for the expeditious selection and characterization of discriminant metabolites with desired phenotypes or bioactivities.
Collapse
Affiliation(s)
- Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Dong-Gu Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Hye Jin Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Ga Ryun Kim
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Sarah Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Jong Seok Lee
- Department of Biological Resources Utilization, National Institute of Biological Resources, Environmental Research Complex, Incheon 22755, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
20
|
Comprehensive Chemical Profiling in the Ethanol Extract of Pluchea indica Aerial Parts by Liquid Chromatography/Mass Spectrometry Analysis of Its Silica Gel Column Chromatography Fractions. Molecules 2019; 24:molecules24152784. [PMID: 31370202 PMCID: PMC6696005 DOI: 10.3390/molecules24152784] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Pluchea indica Less. is a medicine and food dual-use plant, which belongs to the Pluchea genus, Asteraceae family. Its main constituents are quinic acids, flavonoids, thiophenes, phenolic acids, as well as sesquiterpenes. In order to provide a comprehensive chemical profiling of P. indica, an orthogonal chromatography combining reverse-phase chromatography BEHC18 column with a normal-phase chromatography silica column as the separation system and a ESI-Q-Orbitrap MS as the detector in both positive and negative ion modes were used. According to the retention time (tR) and the exact mass-to-charge ratio (m/z), 67 compounds were unambiguously identified by comparing to the standard references. Moreover, 47 compounds were tentatively speculated on the basis of the rules of MS/MS fragmentation pattern and chromatographic elution order generalized from the above-mentioned reference standards. Among them, 10 of them were potentially novel.
Collapse
|
21
|
Won JY, Son SY, Lee S, Singh D, Lee S, Lee JS, Lee CH. Strategy for Screening of Antioxidant Compounds from Two Ulmaceae Species Based on Liquid Chromatography-Mass Spectrometry. Molecules 2018; 23:molecules23071830. [PMID: 30041442 PMCID: PMC6100396 DOI: 10.3390/molecules23071830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics implies that annotated metabolites can serve as potential markers of the associated bioactivities of plant extracts. Firstly, we selected Aphananthe aspera and Zelkova serrata (Family: Ulmaceae) from 16 Korean plant species based on their distinct principal component analysis (PCA) patterns in LC-MS datasets and antioxidant activity assays. Further, we chose 40% solid-phase extraction (SPE) extracts of the two species displaying the highest antioxidant activities coupled with distinct PCA patterns. Examining the metabolite compositions of the 40% SPE extracts, we observed relatively higher abundances of quercetin, kaempferol, and isorhamnetin O-glucosides for A. aspera, whereas quercetin, isorhamnetin O-glucuronides, and procyanidin dimer were relatively higher in Z. serrata. These metabolites were clearly distinguished in pathway map and displayed strong positive correlations with antioxidant activity. Further, we performed preparative high-performance liquid chromatography (prep-HPLC) analysis coupled with the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay to validate their functional correlations. As a result, quercetin O-sophoroside was determined as the main antioxidant in A. aspera, while isorhamnetin O-glucuronide and procyanidin dimer were the primary antioxidants in Z. serrata. The current study suggests that the LC-MS-based untargeted metabolomics strategy can be used to illuminate subtle metabolic disparities as well as compounds associated with bioactivities.
Collapse
Affiliation(s)
- Joong Yeun Won
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea.
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
22
|
Strehmel N, Strunk D, Strehmel V. White Birch Trunk Extracts as a Source of Organic Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201700368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nadine Strehmel
- Department of Stress and Developmental Biology; Leibniz Institute of Plant Biochemistry; Weinberg 3 D-06120 Halle (Saale) Germany
- Federal Institute of Forensic and Social Medicine; Turmstraße 21 D-10559 Berlin Germany
| | - David Strunk
- Institute for Coatings and Surface Chemistry; Niederrhein University of Applied Sciences; Adlerstrasse 32 D-47798 Krefeld Germany
| | - Veronika Strehmel
- Institute for Coatings and Surface Chemistry; Niederrhein University of Applied Sciences; Adlerstrasse 32 D-47798 Krefeld Germany
| |
Collapse
|
23
|
Spínola V, Castilho PC. Phytochemical Profile, Chemotaxonomic Studies, andIn VitroAntioxidant Activities of Two Endemisms from Madeira Archipelago:Melanoselinum decipiensandMonizia edulis(Apiaceae). Chem Biodivers 2016; 13:1290-1306. [DOI: 10.1002/cbdv.201600039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Vítor Spínola
- CQM - Centro de Química da Madeira; Universidade da Madeira; Campus da Penteada PT-9020-105 Funchal
| | - Paula C. Castilho
- CQM - Centro de Química da Madeira; Universidade da Madeira; Campus da Penteada PT-9020-105 Funchal
| |
Collapse
|
24
|
Son SY, Kim NK, Lee S, Singh D, Kim GR, Lee JS, Yang HS, Yeo J, Lee S, Lee CH. Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families. PLANT CELL REPORTS 2016; 35:1917-31. [PMID: 27344340 DOI: 10.1007/s00299-016-2006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/26/2016] [Indexed: 05/12/2023]
Abstract
A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.
Collapse
Affiliation(s)
- Su Young Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Na Kyung Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Ga Ryun Kim
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Jong Seok Lee
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Joohong Yeo
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Inchon, 22689, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
25
|
Lee DE, Lee S, Jang ES, Shin HW, Moon BS, Lee CH. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation. Molecules 2016; 21:molecules21060773. [PMID: 27314317 PMCID: PMC6273993 DOI: 10.3390/molecules21060773] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
Rice koji, used early in the manufacturing process for many fermented foods, produces diverse metabolites and enzymes during fermentation. Using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultrahigh-performance liquid chromatography linear trap quadrupole ion trap tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS), and multivariate analysis we generated the metabolite profiles of rice koji produced by fermentation with Aspergillus oryzae (RK_AO) or Bacillus amyloliquefaciens (RK_BA) for different durations. Two principal components of the metabolomic data distinguished the rice koji samples according to their fermenter species and fermentation time. Several enzymes secreted by the fermenter species, including α-amylase, protease, and β-glucosidase, were assayed to identify differences in expression levels. This approach revealed that carbohydrate metabolism, serine-derived amino acids, and fatty acids were associated with rice koji fermentation by A. oryzae, whereas aromatic and branched chain amino acids, flavonoids, and lysophospholipids were more typical in rice koji fermentation by B. amyloliquefaciens. Antioxidant activity was significantly higher for RK_BA than for RK_AO, as were the abundances of flavonoids, including tricin, tricin glycosides, apigenin glycosides, and chrysoeriol glycosides. In summary, we have used MS-based metabolomics and enzyme activity assays to evaluate the effects of using different microbial species and fermentation times on the nutritional profile of rice koji.
Collapse
Affiliation(s)
- Da Eun Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Sunmin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Eun Seok Jang
- Foods Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Hye Won Shin
- Foods Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Byoung Seok Moon
- Foods Research Institute, CJ CheilJedang Corp., Suwon 16495, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
26
|
Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus cereus. Appl Environ Microbiol 2016; 82:3940-3946. [PMID: 27107124 DOI: 10.1128/aem.00848-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A novel bacterial aldehyde dehydrogenase (ALDH) that converts retinal to retinoic acid was first identified in Bacillus cereus The amino acid sequence of ALDH from B. cereus (BcALDH) was more closely related to mammalian ALDHs than to bacterial ALDHs. This enzyme converted not only small aldehydes to carboxylic acids but also the large aldehyde all-trans-retinal to all-trans-retinoic acid with NAD(P)(+) We newly found that BcALDH and human ALDH (ALDH1A1) could reduce all-trans-retinal to all-trans-retinol with NADPH. The catalytic residues in BcALDH were Glu266 and Cys300, and the cofactor-binding residues were Glu194 and Glu457. The E266A and C300A variants showed no oxidation activity. The E194S and E457V variants showed 15- and 7.5-fold higher catalytic efficiency (kcat/Km) for the reduction of all-trans-retinal than the wild-type enzyme, respectively. The wild-type, E194S variant, and E457V variant enzymes with NAD(+) converted 400 μM all-trans-retinal to 210 μM all-trans-retinoic acid at the same amount for 240 min, while with NADPH, they converted 400 μM all-trans-retinal to 20, 90, and 40 μM all-trans-retinol, respectively. These results indicate that BcALDH and its variants are efficient biocatalysts not only in the conversion of retinal to retinoic acid but also in its conversion to retinol with a cofactor switch and that retinol production can be increased by the variant enzymes. Therefore, BcALDH is a novel bacterial enzyme for the alternative production of retinoic acid and retinol. IMPORTANCE Although mammalian ALDHs have catalyzed the conversion of retinal to retinoic acid with NAD(P)(+) as a cofactor, a bacterial ALDH involved in the conversion is first characterized. The biotransformation of all-trans-retinal to all-trans-retinoic acid by BcALDH and human ALDH was altered to the biotransformation to all-trans-retinol by a cofactor switch using NADPH. Moreover, the production of all-trans-retinal to all-trans-retinol was changed by mutations at positions 194 and 457 in BcALDH. The alternative biotransformation of retinoids was first performed in the present study. These results will contribute to the biotechnological production of retinoids, including retinoic acid and retinol.
Collapse
|