1
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
2
|
Korkmaz Y, Dik B. The comparison of the antidiabetic effects of exenatide, empagliflozin, quercetin, and combination of the drugs in type 2 diabetic rats. Fundam Clin Pharmacol 2024; 38:511-522. [PMID: 38149676 DOI: 10.1111/fcp.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Type 2 diabetes, a metabolic disease that involves extended treatment, is rapidly increasing in humans and animals worldwide. OBJECTIVES This study aimed to compare monotherapy and combined therapy of exenatide, empagliflozin, and quercetin in 67 Wistar Albino male rats. METHODS The animals were divided into the following seven groups: healthy control, diabetes control, diabetes + sham, diabetes + exenatide (10 μg/kg), diabetes + empagliflozin (50 mg/kg), diabetes + quercetin (50 mg/kg), and diabetes + combination treatment. The treatments were continued for 8 weeks. RESULTS At the end of the experiment, glucose and HbA1c levels decreased with all monotherapy treatments and the combination treatments, while insulin levels increased with exenatide and combined treatments. Adiponectin levels increased with empagliflozin, quercetin, and combined treatments, while leptin levels decreased only with combined treatments. All monotherapies caused an increase in total antioxidant levels. Exenatide and quercetin treatments reduced low-density lipoprotein (LDL) levels; therewithal, exenatide and combined treatments increased high-density lipoprotein (HDL) levels. Triglyceride levels decreased in all treatment groups. The homeostatic model assessment for insulin resistance (HOMA-IR) level decreased with the combined treatment; on the contrary, the homeostatic model assessment for β-cell activity (HOMA-β) level increased with empagliflozin, exenatide, and combined treatments. CONCLUSION In conclusion, the antidiabetic effects of exenatide were more pronounced than empagliflozin and quercetin, however, the combined treatment had better antidiabetic and antihyperlipidemic effects than monotherapies. Quercetin could be a supportive or food supplement antidiabetic agent. The exenatide treatment can be recommended for monotherapy in type 2 patients, and the combination of empagliflozin, exenatide, and quercetin may be effective in diabetic patients who need combined therapy.
Collapse
Affiliation(s)
- Yasemin Korkmaz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Nouri M, Gargari BP, Ghasempour Z, Sadra V, Jafarabadi MA, Babaei A, Tajfar P, Tarighat-Esfanjani A. The effects of whey protein on anthropometric parameters, resting energy expenditure, oxidative stress, and appetite in overweight/obese women with type 2 diabetes mellitus: A randomized placebo controlled clinical trial. Int J Diabetes Dev Ctries 2024; 44:155-166. [DOI: 10.1007/s13410-023-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/24/2023] [Indexed: 01/04/2025] Open
|
4
|
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023; 15:3821. [PMID: 37686853 PMCID: PMC10490373 DOI: 10.3390/nu15173821] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lycopene is a compound of colored origin that shows strong antioxidant activity. The positive effect of lycopene is the result of its pleiotropic effect. The ability to neutralize free radicals via lycopene is one of the foundations of its pro-health effect, including the ability to inhibit the development of many civilization diseases. Therefore, this study focuses on the importance of the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases, diseases within the nervous system, diabetes, liver diseases, and ulcerative colitis. According to the research mentioned, lycopene supplementation has significant promise for the treatment of illnesses marked by chronic inflammation and oxidative stress. However, the majority of the supporting data for lycopene's health benefits comes from experimental research, whereas the evidence from clinical studies is both scarcer and less certain of any health benefits. Research on humans is still required to establish its effectiveness.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
5
|
Kurhaluk N, Tkachenko H, Tomin V. Invitro impact of a combination of red and infrared LEDs, infrared laser and magnetic field on biomarkers of oxidative stress and hemolysis of erythrocytes sampled from healthy individuals and diabetes patients. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112685. [PMID: 36921401 DOI: 10.1016/j.jphotobiol.2023.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
AIMS Low-intensity infrared laser irradiation with output emissions of the laser and LED for in vitro irradiation of plasma and erythrocyte samples collected from healthy individuals and diabetes mellitus (DM) patients was used in the current study. METHODS The generated emission was in the range 0.85-0.89 nm with pulse duration near 130 ns and repetition rates of pulses 50, 150, 600, and 1500 Hz, average power 0, 50, or 100 mW, in the range of 1-9 min for different 30 variants of irradiation. The levels of 2-thiobarbituric-acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC), acid-induced resistance of erythrocytes, and activities of the main antioxidant enzymes were assessed in erythrocyte and plasma samples after irradiation. RESULTS The low-intensity infrared laser irradiation and low-intensity light emitted by a red LED decreased the lipid peroxidation levels in the erythrocytes of both healthy individuals and DM patients. A statistically significant decrease in TBARS and OMP levels and an increase in the TAC level were observed at the irradiation energy of 34.39 and 68.79 J/cm2 for samples collected from both healthy individuals and DM patients. The effects of the irradiation were accompanied by a statistically significant decrease in catalase activity of both healthy individuals and DM patients. CONCLUSIONS In many variants of the laser irradiation and low-intensity light emitted by a red LED used in our study, a decrease in the percent of hemolyzed erythrocytes was observed, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before the beginning of treatment, especially in DM patients.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
6
|
Orlewska K, Klusek J, Głuszek S, Klusek J, Witczak B, Wawszczak M, Madej Ł, Marzec MT, Orlewska E. Glutathione S-Transferase P1 Genetic Variant's Influence on the HbA1c Level in Type Two Diabetic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1520. [PMID: 36674274 PMCID: PMC9859603 DOI: 10.3390/ijerph20021520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
GST (glutathione S-transferases) are capable of influencing glucose homeostasis, probably through regulation of the response to oxidant stress. The aim of our study was to investigate the relationship between GSTP1 gene polymorphism and glycated hemoglobin (HbA1c) levels in type two diabetic (T2D) patients. A total of 307 T2D patients were included. Analysis of the GSTP1 gene polymorphism (rs1695) was conducted using the TaqMan qPCR method endpoint genotyping. HbA1c was determined using a COBAS 6000 autoanalyzer. A univariable linear regression and multivariable linear regression model were used to investigate the association between mean HbA1c level and GSTP1 gene polymorphism, age at T2D diagnosis, T2D duration, therapy with insulin, gender, BMI, smoking status. GSTP1 Val/Val genotype, age at T2D diagnosis, T2D duration and therapy with insulin were statistically significant contributors to HbA1c levels (p < 0.05). Multivariable regression analysis revealed that GSTP1 (Val/Val vs. Ile/Ile) was associated with higher HbA1c even after adjustment for variables that showed a statistically significant relationship with HbA1c in univariable analyses (p = 0.024). The results suggest that GSTP polymorphism may be one of the risk factors for higher HbA1c in T2D patients. Our study is limited by the relatively small sample size, cross-sectional design, and lack of inclusion of other oxidative stress-related genetic variants.
Collapse
Affiliation(s)
| | - Justyna Klusek
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Stanisław Głuszek
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
- Department of General, Oncological and Endocrinological Surgery, Voivodeship Hospital, 25-736 Kielce, Poland
| | - Jolanta Klusek
- Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Bartosz Witczak
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Monika Wawszczak
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Łukasz Madej
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Michał Tomasz Marzec
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
- Department of Biomedical Sciences, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Ewa Orlewska
- Collegium Medicum, Jan Kochanowski University, 25-516 Kielce, Poland
| |
Collapse
|
7
|
AlRadini FA, El-Sheikh AAK, Al Shahrani AS, Alzamil NM, Fayed AA, Alsayed E, Alharbi SS, Altulihee MA, Andijani SA, AlShaiddi WK, Alamri FA. Independent Association of 25[OH]D Level on Reduced Glutathione and TNF-α in Patients with Diabetes and/or Hypertension. Int J Gen Med 2022; 15:7065-7075. [PMID: 36090702 PMCID: PMC9462432 DOI: 10.2147/ijgm.s375282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Oxidative and inflammatory pathways play a significant role in the pathophysiology of a wide variety of non-communicable diseases such as type 2 diabetes mellitus (T2DM) and hypertension. However, the effect of serum 25-hydroxyvitamin D (25[OH]D) on these pathways is still controversial. To evaluate the association of 25[OH]D on antioxidant and pro-inflammatory biomarkers, reduced glutathione (GSH) and tumor necrosis factor (TNF)-α, in T2DM and hypertensive patients. Patients and Methods This is a cross-sectional study of a consecutive sample of patients attending the the Family Medicine clinic at King Abdullah bin Abdulaziz University Hospital (KAAUH). Participants were screened for eligibility according to the following criteria: aged above 18 years and diagnosed with T2DM and/or hypertension for at least one year. Patients receiving any kind of vitamin D or calcium supplements within the last three months were excluded, as were those with a history of renal failure, cancer, liver, thyroid, or any other chronic inflammatory diseases. Results In total 424 T2DM and/or hypertensive patients (mean age 55±12 years) were recruited. In addition to routine physical and laboratory examinations, levels of serum 25[OH]D, GSH and TNF-α were measured. The prevalence of 25[OH]D deficiency (<50 nmol/L) was 35.1%, which was independent from GSH and TNF-α levels. In T2DM, hypertensive and patients having both diseases, GSH levels were 349.3±19, 355.4±19 and 428.8±20 μmol/L, respectively. Uncontrolled T2DM and hypertension patients showed significantly higher GSH compared with the controlled group. Males showed slightly higher level of TNF-α compared with females and uncontrolled hypertensive patients had relatively higher TNF-α level when evaluated against controlled hypertensive patients. Conclusion 25[OH]D level is independent of oxidative stress and inflammation, assessed by levels of GSH and TNF-α, respectively, in T2DM and hypertensive Saudi patients.
Collapse
Affiliation(s)
- Faten A AlRadini
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Azza A K El-Sheikh
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Abeer S Al Shahrani
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Correspondence: Abeer S Al Shahrani, Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia, Tel +966118239031, Email ;
| | - Norah M Alzamil
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amel A Fayed
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Alsayed
- Department of Clinical Pathology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Shatha S Alharbi
- Department of Family and Community Health, King Abdullah bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Msaad A Altulihee
- Department of Family and Community Health, King Abdullah bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaimaa A Andijani
- Department of Family and Community Health, King Abdullah bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wafa K AlShaiddi
- Department of Pathology and Laboratory Medicine, King Abdullah bin Abdulaziz University Hospital, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad A Alamri
- Global Center of Mass Gathering Medicine, Ministry of Health, Family Medicine, Primary Health Center, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
López-Armas GC, Yessenbekova A, González-Castañeda RE, Arellano-Arteaga KJ, Guerra-Librero A, Ablaikhanova N, Florido J, Escames G, Acuña-Castroviejo D, Rusanova I. Role of c-miR-21, c-miR-126, Redox Status, and Inflammatory Conditions as Potential Predictors of Vascular Damage in T2DM Patients. Antioxidants (Basel) 2022; 11:1675. [PMID: 36139749 PMCID: PMC9495876 DOI: 10.3390/antiox11091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of type 2 diabetes mellitus (T2DM) vascular complications (VCs) is associated with oxidative stress and chronic inflammation and can result in endothelial dysfunctions. Circulating microRNAs play an important role in epigenetic regulation of the etiology of T2DM. We studied 30 healthy volunteers, 26 T2DM patients with no complications, and 26 T2DM patients with VCs, to look for new biomarkers indicating a risk of developing VCs in T2DM patients. Peripheral blood samples were used to determine redox state, by measuring the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; and glucose-6-phosphate dehydrogenase, G6DP) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO). Additionally, inflammatory marker levels (IL-1, IL-6, IL-18, and TNF-α), c-miR-21, and c-miR-126 expression were analyzed. T2DM patients showed the highest oxidative damage with increased GSSG/GSH ratios, LPO, and AOPP levels. In both diabetic groups, we found that diminished SOD activity was accompanied by increased CAT and decreased GRd and G6PD activities. Diabetic patients presented with increased relative expression of c-miR-21 and decreased relative expression of c-miR-126. Overall, c-miR-21, SOD, CAT, and IL-6 had high predictive values for diabetes diagnoses. Finally, our data demonstrated that IL-6 exhibited predictive value for VC development in the studied population. Moreover, c-miR-21 and c-miR-126, along with GPx and AOPP levels, should be considered possible markers for VC development in future studies.
Collapse
Affiliation(s)
- Gabriela C. López-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Rocío E. González-Castañeda
- Laboratorio de Microscopia de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Kevin J. Arellano-Arteaga
- División de Medicina Interna, Nuevo Hospital Civil Juan I. Menchaca, Universidad de Guadalajara, Salvador Quevedo y Subieta 750, Guadalajara 44340, Mexico
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Javier Florido
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria de Granada (Ibs), 18016 Granada, Spain
- Centro de Investigación Biomédica, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| |
Collapse
|
9
|
Liu H, Yu R, Gao Y, Li X, Guan X, Thomas K, Xiu M, Zhang X. Antioxidant Enzymes and Weight Gain in Drug-naive First-episode Schizophrenia Patients Treated with Risperidone for 12 Weeks: A Prospective Longitudinal Study. Curr Neuropharmacol 2022; 20:1774-1782. [PMID: 34544343 PMCID: PMC9881063 DOI: 10.2174/1570159x19666210920090547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Oxidative stress plays an important role in weight gain induced by antipsychotics in schizophrenia (SCZ). However, little is known about how antioxidant enzymes are involved in weight gain caused by risperidone monotherapy in antipsychotics-naïve first-episode (ANFE) patients with SCZ. Therefore, the main purpose of this study was to investigate the effects of risperidone on several antioxidant enzymes in patients with ANFE SCZ and the relationship between weight gain and changes in antioxidant enzyme activities. OBJECTIVE The activities of plasma superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as the levels of malondialdehyde (MDA) were measured in 225 ANFE patients and 125 healthy controls. METHODS Patients were treated with risperidone monotherapy for 12 weeks. Clinical symptoms, antioxidant enzyme activities, and MDA levels were measured at baseline and during follow-up. RESULTS Compared with healthy controls, the patients showed higher activities of SOD and CAT but lower MDA levels and GPx activity. At baseline, the CAT activity was associated with body weight or BMI. Further, based on a 7% weight increase from baseline to follow-up, we found 75 patients in the weight gain (WG) group and 150 patients in the non-WG group. Comparing SOD, CAT, GPx activities and MDA levels between the WG group and the non-WG group at baseline and during the 12-week follow-up, it was found that after treatment, the SOD activity in the WG group increased while the MDA level decreased in the non-WG group. Moreover, baseline SOD and GPx activities were predictors of weight gain at 12-week follow-up. CONCLUSION These results suggest that the antioxidant defense system may have predictive value for the weight gain of ANFE SCZ patients after risperidone treatment.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Rui Yu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Yanan Gao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xiaoni Guan
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China;
| | - Kosten Thomas
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston,Texas;
| | - Meihong Xiu
- Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Tel: (86-10) 64879520; E-mail: ; Peking University HuiLong Guan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; Tel: (86-10) 83024429; E-mail:
| |
Collapse
|
10
|
Kalamkar S, Acharya J, Kolappurath Madathil A, Gajjar V, Divate U, Karandikar-Iyer S, Goel P, Ghaskadbi S. Randomized Clinical Trial of How Long-Term Glutathione Supplementation Offers Protection from Oxidative Damage and Improves HbA1c in Elderly Type 2 Diabetic Patients. Antioxidants (Basel) 2022; 11:antiox11051026. [PMID: 35624890 PMCID: PMC9137531 DOI: 10.3390/antiox11051026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and aged between 30 and 78 years, were recruited. A total of 125 diabetic patients were additionally given 500 mg oral GSH supplementation daily for a period of six months. Fasting and PP glucose, insulin, HbA1c, GSH, oxidized glutathione (GSSG), and 8-hydroxy-2-deoxy guanosine (8-OHdG) were measured upon recruitment and after three and six months of supplementation. Statistical significance and effect size were assessed longitudinally across all arms. Blood GSH increased (Cohen’s d = 1.01) and 8-OHdG decreased (Cohen’s d = −1.07) significantly within three months (p < 0.001) in diabetic individuals. A post hoc sub-group analysis showed that HbA1c (Cohen’s d = −0.41; p < 0.05) and fasting insulin levels (Cohen’s d = 0.56; p < 0.05) changed significantly in diabetic individuals above 55 years. GSH supplementation caused a significant increase in blood GSH and helped maintain the baseline HbA1c overall. These results suggest GSH supplementation is of considerable benefit to patients above 55 years, not only supporting decreased glycated hemoglobin (HbA1c) and 8-OHdG but also increasing fasting insulin. The clinical implication of our study is that the oral administration of GSH potentially complements anti-diabetic therapy in achieving better glycemic targets, especially in the elderly population.
Collapse
Affiliation(s)
- Saurabh Kalamkar
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; (S.K.); (J.A.)
| | - Jhankar Acharya
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; (S.K.); (J.A.)
| | | | - Vijay Gajjar
- Department of Medicine, Jehangir Hospital, Pune 411001, India;
| | - Uma Divate
- Jehangir Clinical Development Centre, Pune 411001, India;
| | | | - Pranay Goel
- Biology Division, Indian Institute of Science Education and Research, Pune 411008, India;
- Correspondence: (P.G.); (S.G.); Tel.: +91-202-569-0617 (S.G.)
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, India; (S.K.); (J.A.)
- Correspondence: (P.G.); (S.G.); Tel.: +91-202-569-0617 (S.G.)
| |
Collapse
|
11
|
Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J Pers Med 2022; 12:jpm12050735. [PMID: 35629157 PMCID: PMC9143828 DOI: 10.3390/jpm12050735] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Sedentary lifestyles, urbanization and improvements in socio-economic status have had serious effects on the burden of diabetes across the world. Diabetes is one of the 10 leading causes of death globally, and individuals with diabetes have a 2–3-fold increased risk of all-cause mortality. Adipose tissue is increasingly understood as a highly active endocrine gland that secretes many biologically active substances, including adipocytokines. However, the exact and discrete pathophysiological links between obesity and T2DM are not yet fully elucidated. Methods: In the current study, we present the association of five diverse adipocytokines, adiponectin, leptin, resistin, visfatin and chemerin, with T2DM in 87 patients (46 males and 41 females) with type 2 diabetes mellitus and 85 healthy controls (44 males and 41 females) from the Asir region of Saudi Arabia. The patients were divided into four groups: normal BMI, overweight, obese and severely obese. The baseline biochemical characteristics, including HbA1c and anthropometric lipid indices, such as BMI and waist–hip ratio, were determined by standard procedures, whereas the selected adipokine levels were assayed by ELISA. Results: The results showed significantly decreased levels of adiponectin in the T2DM patients compared to the control group, and the decrease was more pronounced in obese and severely obese T2DM patients. Serum leptin levels were significantly higher in the females compared to the males in the controls as well as all the four groups of T2DM patients. In the male T2DM patients, a progressive increase was observed in the leptin levels as the BMI increased, although these only reached significantly altered levels in the obese and severely obese patients. The serum leptin levels were significantly higher in the severely obese female patients compared to the controls, patients with normal BMI, and overweight patients. The leptin/adiponectin ratio was significantly higher in the obese and severely obese patients compared to the controls, patients with normal BMI, and overweight patients in both genders. The serum resistin levels did not show any significant differences between the males and females in thr controls or in the T2DM groups, irrespective of the BMI status of the T2DM patients. The visfatin levels did not reveal any significant gender-based differences, but significantly higher levels of visfatin were observed in the T2DM patients, irrespective of their level of obesity, although the higher values were observed in the obese and highly obese patients. Similarly, the serum chemerin levels in the controls, as well as in T2DM patients, did not show any significant gender-based differences. However, in the T2DM patients, the chemerin levels showed a progressive increase, with the increase in BMI reaching highly significant levels in the obese and severely obese patients, respectively. Conclusion: In summary, it is concluded that significantly altered concentrations of four adipokines, adiponectin, leptin, visfatin and chemerin, were found in the T2DM patient group compared to the controls, with more pronounced alterations observed in the obese and highly obese patients. Thus, it can be surmised that these four adipokines play a profound role in the onset, progression and associated complications of T2DM. In view of the relatively small sample size in our study, future prospective studies are needed on a large sample size to explore the in-depth relationship between adipokines and T2DM.
Collapse
|
12
|
Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072335. [PMID: 35408734 PMCID: PMC9000630 DOI: 10.3390/molecules27072335] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Nutrition is of utmost importance in chronic disease management and has often been described as the cornerstone of a variety of non-communicable diseases. In particular, type II diabetes mellitus (T2DM) represents a prevalent and global public health crisis. Lycopene, a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables, has been extensively studied for its biological activities and treatment efficiency in diabetes care. Epidemiological investigations indicate that lycopene has potential antioxidant properties, is capable of scavenging reactive species, and alleviates oxidative stress in T2DM patients. This review aims to summarize the characteristics and mechanisms of action of lycopene as a potent antioxidant for T2DM. In addition, the evidence demonstrating the effects of lycopene on glycemic control and oxidative stress biomarkers in T2DM are also highlighted using animal and human studies as literature approach.
Collapse
|
13
|
Yulianti E, Sunarti, Wahyuningsih MSH. The effect of Kappaphycus alvarezii active fraction on oxidative stress and inflammation in streptozotocin and nicotinamide-induced diabetic rats. BMC Complement Med Ther 2022; 22:15. [PMID: 35027069 PMCID: PMC8759202 DOI: 10.1186/s12906-021-03496-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High glucose concentration increases the glycation process which leads to oxidative stress and inflammation, that can cause complications in diabetes. Several medicinal plants have been used in the treatment of diabetes and its complications. One of them is Kappaphycus alvarezii, an algae that has known antidiabetic abilities. This study aimed to examine the effect of K. alvarezii active fraction on plasma hydrogen peroxide (H2O2) and Tumor Necrosis Factor α (TNFα) levels, renal NADPH oxidase 4 (NOX4) and Nuclear Factor κ B (NFκB) gene expressions. METHODS Active fraction was obtained from bioassay-guided fractionation with antiglycation ability. In vivo study was performed on twenty Wistar male rats. The level of H2O2 was measured using H2O2 Assay Kit, the Optical Density value measured using spectrophotometer at a wavelength of 405 nm. Plasma TNFα level was measured using ELISA. Renal NOX4 and NFκB gene expression was analyzed using qPCR. RESULTS Active fraction significantly reduced plasma H2O2 but not TNFα levels. Furthermore, renal NOX4 gene expression was lower in the diabetic rat group treated with active fraction compared to the untreated group but not NFκB gene expression. CONCLUSIONS K. alvarezii active fraction has an activity to reduce plasma H2O2 as well as renal NOX4 gene expression. Therefore, this fraction could be developed as a potential candidate for diabetes treatment through oxidative stress mechanisms.
Collapse
Affiliation(s)
- Evy Yulianti
- Department of Biology Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
| | - Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Herbal Medical Center, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
14
|
Tota Ł, Matejko B, Morawska-Tota M, Pilch W, Mrozińska S, Pałka T, Klupa T, Malecki MT. Changes in Oxidative and Nitrosative Stress Indicators and Vascular Endothelial Growth Factor After Maximum-Intensity Exercise Assessing Aerobic Capacity in Males With Type 1 Diabetes Mellitus. Front Physiol 2021; 12:672403. [PMID: 34426731 PMCID: PMC8379017 DOI: 10.3389/fphys.2021.672403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 10/26/2022] Open
Abstract
In type 1 diabetes mellitus (T1DM), chronic hyperglycemia causes reactive oxygen and nitrogen species production. Exercise alters the oxidant-antioxidant balance. We evaluated the aerobic capacity and oxidant-antioxidant balance changes after maximum-intensity exercise in T1DM patients. The study involved 30 T1DM participants and 23 controls. The patients' average age was 23.4 ± 5.1 years, with a body mass index of 24.3 ± 3.1 kg m-2 and with satisfactory glycemic control. Among the controls, the respective values equaled 24.7 ± 2.9 years and 22.9 ± 2.1 kg m-2. Aerobic capacity was assessed with a treadmill test. Peak minute oxygen uptake was significantly lower in T1DM compared with the controls (44.7 ± 5.7 vs. 56.0 ± 7.3 mL kg-1 min-1). The total oxidant capacity measured by total oxidative status/total oxidative capacity (TOS/TOC) equaled 321.5 ± 151 μmol L-1 before and 380.1 ± 153 μmol L-1 after exercise in T1DM, and 164.1 ± 75 and 216.6 ± 75 μmol L-1 in the controls (p < 0.05 for all comparisons). A significant difference in the ratio of total antioxidant status/total antioxidant capacity (TAS/TAC) between the groups after the treadmill test was observed (p < 0.05). Nitrosative stress indicators where significantly higher in the T1DM group both before and after the exercise. In conclusion, diabetic patients demonstrated a lower aerobic capacity. The TOS/TOC and nitrosative stress indicators were significantly higher in T1DM before and after the test.
Collapse
Affiliation(s)
- Łukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, Poland
| | - Wanda Pilch
- Institute of Basic Research, Department of Chemistry and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Sandra Mrozińska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
15
|
Radice RP, Limongi AR, Viviano E, Padula MC, Martelli G, Bermano G. Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis. Free Radic Biol Med 2021; 171:156-168. [PMID: 33974978 DOI: 10.1016/j.freeradbiomed.2021.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Obesity is a major risk factor for several diseases, including metabolic syndrome (MetS), non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). The use of natural products, such as astaxanthin (ASX), a potent antioxidant compound produced by the freshwater green microalga Haematococcus pluvialis, has gained particular interest to reduce oxidative stress and inflammation, and to improve redox status, often associated with obesity. A systematic review and meta-analysis was performed to comprehensively examine the effects of ASX in animal models of diet induced obesity-associated diseases in order to inform the design of future human clinical studies for ASX use as supplement or nutraceutical. METHODS Cinahl, Cochraine, MEDLINE, Scopus and Web of Science were searched for English-language manuscripts published between January 2000 and April 2020 using the following key words: astaxanthin, obesity, non-alcoholic fatty liver disease, diabetes mellitus type 2, NAFLD and metabolic. RESULTS Seventeen eligible articles, corresponding to 21 animal studies, were included in the final quantitative analysis. ASX, at different concentrations and administered for different length of time, induced a significant reduction in adipose tissue weight (P = 0.05) and systolic blood pressure (P < 0.0001) in control animals. In animal models of T2D, ASX significantly reduced serum glucose levels (P = 0.04); whereas it improved several disease biomarkers in the blood (e.g. cholesterol, triglycerides, ALT and AST, P < 0.10), and reduced liver (P = 0.0002) and body weight (P = 0.11), in animal models of NAFLD. CONCLUSIONS Supplementation of ASX in the diet has positive effects on symptoms associated with obesity related diseases in animals, by having lipid-lowering, hypo-insulin and hypoglycaemic capacity, protecting organs from oxidative stress and mitigating the immune system, as suggested in this review.
Collapse
Affiliation(s)
- Rosa Paola Radice
- Department of Sciences, University of Basilicata, Potenza, Italy; Bioinnova s.r.l.s., Via Ponte Nove Luci, Potenza, Italy
| | - Antonina Rita Limongi
- Department of Sciences, University of Basilicata, Potenza, Italy; Bioinnova s.r.l.s., Via Ponte Nove Luci, Potenza, Italy
| | - Emanuele Viviano
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Maria Carmela Padula
- Department of Sciences, University of Basilicata, Potenza, Italy; Rheumatology Department of Lucania, Rheumatology Institute of Lucania (IReL), San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | | | - Giovanna Bermano
- Centre for Obesity Research and Education (CORE), School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
16
|
Diane A, Abunada H, Khattab N, Moin ASM, Butler AE, Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res Rev 2021; 67:101313. [PMID: 33676026 DOI: 10.1016/j.arr.2021.101313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) underpins a wide range of metabolic disorders including type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. IR is characterized by a marked reduction in the magnitude and/or delayed onset of insulin to stimulate glucose disposal. This condition is due to defects in one or several intracellular intermediates of the insulin signaling cascade, ranging from insulin receptor substrate (IRS) inactivation to reduced glucose phosphorylation and oxidation. Genetic predisposition, as well as other precipitating factors such as aging, obesity, and sedentary lifestyles are among the risk factors underlying the pathogenesis of IR and its subsequent progression to T2D. One of the cardinal hallmarks of T2D is the impairment of the heat shock response (HSR). Human and animal studies provided compelling evidence of reduced expression of several components of the HSR (i.e. Heat shock proteins or HSPs) in diabetic samples in a manner that correlates with the degree of IR. Interventions that induce the HSR, irrespective of the means to achieve it, proved their effectiveness in enhancing insulin sensitivity and improving glycemic index. However, most of these studies have been focused on HSP70 family. In this review, we will focus on the novel role of DNAJ/HSP40 cochaperone family in metabolic diseases associated with IR.
Collapse
|
17
|
Nunoue T, Yamaguchi S, Teshigawara S, Katayama A, Nakatsuka A, Eguchi J, Niki T, Wada J. Lgals9 deficiency ameliorates obesity by modulating redox state of PRDX2. Sci Rep 2021; 11:5991. [PMID: 33727589 PMCID: PMC7966757 DOI: 10.1038/s41598-021-85080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/25/2021] [Indexed: 01/25/2023] Open
Abstract
The adipose tissue is regarded as an endocrine organ and secretes bioactive adipokines modulating chronic inflammation and oxidative stress in obesity. Gal-9 is secreted out upon cell injuries, interacts with T-cell immunoglobulin-3 (Tim-3) and induces apoptosis in activated Th1 cells. Gal-9 also binds to protein disulfide isomerase (PDI), maintains PDI on surface of T cells, and increases free thiols in the disulfide/thiol cycles. To explore the molecular mechanism of obesity, we investigated Gal-9−/− and Gal-9wt/wt C57BL/6J mice fed with high fat-high sucrose (HFHS) chow. Gal-9−/− mice were resistant to diet-induced obesity associated with reduction of epididymal and mesenteric fat tissues and improved glucose tolerance compared with Gal-9wt/wt mice. However, the number of M1, M2 macrophages, and M1/M2 ratio in epididymal fat were unaltered. Under HFHS chow, Gal-9−/− mice receiving Gal-9−/− or Gal-9wt/wt bone marrow-derived cells (BMCs) demonstrated significantly lower body weight compared with Gal-9wt/wt mice receiving Gal-9−/− BMCs. We identified the binding between Gal-9 and peroxiredoxin-2 (PRDX2) in sugar chain-independent manner by nanoLC-MS/MS, immunoprecipitation, and pull-down assay. In 3T3L1 adipocytes, Gal-9 knockdown shifts PRDX2 monomer (reduced form) dominant from PRDX2 dimer (oxidized form) under oxidative stress with H2O2. The inhibition of Gal-9 in adipocytes may be a new therapeutic approach targeting the oxidative stress and subsequent glucose intolerance in obesity.
Collapse
Affiliation(s)
- Tomokazu Nunoue
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoshi Yamaguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sanae Teshigawara
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
18
|
Ngowi EE, Wang YZ, Khattak S, Khan NH, Mahmoud SSM, Helmy YASH, Jiang QY, Li T, Duan SF, Ji XY, Wu DD. Impact of the factors shaping gut microbiota on obesity. J Appl Microbiol 2021; 131:2131-2147. [PMID: 33570819 DOI: 10.1111/jam.15036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Obesity is considered as a risk factor for chronic health diseases such as heart diseases, cancer and diabetes 2. Reduced physical activities, lifestyle, poor nutritional diet and genetics are among the risk factors associated with the development of obesity. In recent years, several studies have explored the link between the gut microbiome and the progression of diseases including obesity, with the shift in microbiome abundance and composition being the main focus. The alteration of gut microbiome composition affects both nutrients metabolism and specific gene expressions, thereby disturbing body physiology. Specifically, the abundance of fibre-metabolizing microbes is associated with weight loss and that of protein and fat-metabolizing bacteria with weight gain. Various internal and external factors such as genetics, maternal obesity, mode of delivery, breastfeeding, nutrition, antibiotic use and the chemical compounds present in the environment are known to interfere with the richness of the gut microbiota (GM), thus influencing weight gain/loss and ultimately the development of obesity. However, the effectiveness of each factor in potentiating the shift in microbes' abundance to result in significant changes that can lead to obesity is not yet clear. In this review, we will highlight the factors involved in shaping GM, their influence on obesity and possible interventions. Understanding the influence of these factors on the diversity of the GM and how to improve their effectiveness on disease conditions could be keys in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China.,Department of Biological Sciences, Faculty of Science, Dares Salaam University College of Education, Dares Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Salma Sayed Mohamed Mahmoud
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China.,School of Stomatology, Henan University, Kaifeng, Henan, China
| |
Collapse
|
19
|
Anklam CFV, Lissarassa YPS, dos Santos AB, Costa-Beber LC, Sulzbacher LM, Goettems-Fiorin PB, Heck TG, Frizzo MN, Ludwig MS. Oxidative and Cellular Stress Markers in Postmenopause Women with Diabetes: The Impact of Years of Menopause. J Diabetes Res 2021; 2021:3314871. [PMID: 34568498 PMCID: PMC8460375 DOI: 10.1155/2021/3314871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
Women live approximately one-third of their lives in postmenopause. Among postmenopausal women, type 2 diabetes mellitus (DM2) is one of the most prevalent chronic diseases. These conditions promote alterations in the oxidative, metabolic, and immune-inflammatory profiles marked by higher extracellular 72 kDa-heat shock protein (eHSP72). Here, we investigated whether the time of menopause is associated with oxidative cellular stress marker levels in postmenopausal women with DM2. Sixty-four women were recruited (56.7 ± 12.6 years old) in the pre- (n = 22) and postmenopause (n = 42) period, with (n = 19) or without DM2 (n = 45), and a fasting blood collection was made for the evaluation of metabolic, oxidative, and inflammatory markers. We found that menopause and DM2 influenced metabolic and oxidative parameters and presented synergistic effects on the plasma lipoperoxidation levels. Also, postmenopausal women had the highest eHSP72 concentration levels associated with the years in postmenopause. We conclude that the time of menopause impacts the markers of cellular stress and increases the risk of oxidative stress, mainly when it is associated with DM2.
Collapse
Affiliation(s)
- Carolain Felipin Vincensi Anklam
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Yana Picinin Sandri Lissarassa
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Analú Bender dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Postgraduate Program in Mathematical and Computational Modeling (PPGMMC-UNIJUÍ), Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), Rua do Comércio, 3000 Bairro Universitário Ijuí RS, Brazil 98700-000
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
20
|
Diane A, Mahmoud N, Bensmail I, Khattab N, Abunada HA, Dehbi M. Alpha lipoic acid attenuates ER stress and improves glucose uptake through DNAJB3 cochaperone. Sci Rep 2020; 10:20482. [PMID: 33235302 PMCID: PMC7687893 DOI: 10.1038/s41598-020-77621-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Persistent ER stress, mitochondrial dysfunction and failure of the heat shock response (HSR) are fundamental hallmarks of insulin resistance (IR); one of the early core metabolic aberrations that leads to type 2 diabetes (T2D). The antioxidant α-lipoic acid (ALA) has been shown to attenuate metabolic stress and improve insulin sensitivity in part through activation of the heat shock response (HSR). However, these studies have been focused on a subset of heat shock proteins (HSPs). In the current investigation, we assessed whether ALA has an effect on modulating the expression of DNAJB3/HSP40 cochaperone; a potential therapeutic target with a novel role in mitigating metabolic stress and promoting insulin signaling. Treatment of C2C12 cells with 0.3 mM of ALA triggers a significant increase in the expression of DNAJB3 mRNA and protein. A similar increase in DNAJB3 mRNA was also observed in HepG2 cells. We next investigated the significance of such activation on endoplasmic reticulum (ER) stress and glucose uptake. ALA pre-treatment significantly reduced the expression of ER stress markers namely, GRP78, XBP1, sXBP1 and ATF4 in response to tunicamycin. In functional assays, ALA treatment abrogated significantly the tunicamycin-mediated transcriptional activation of ATF6 while it enhanced the insulin-stimulated glucose uptake and Glut4 translocation. Silencing the expression of DNAJB3 but not HSP72 abolished the protective effect of ALA on tunicamycin-induced ER stress, suggesting thus that DNAJB3 is a key mediator of ALA-alleviated tunicamycin-induced ER stress. Furthermore, the effect of ALA on insulin-stimulated glucose uptake is significantly reduced in C2C12 and HepG2 cells transfected with DNAJB3 siRNA. In summary, our results are supportive of an essential role of DNAJB3 as a molecular target through which ALA alleviates ER stress and improves glucose uptake.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Naela Mahmoud
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Namat Khattab
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Hanan A Abunada
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
21
|
Fan C, Guo L, Gu H, Huo Y, Lin H. Alterations in Oral-Nasal-Pharyngeal Microbiota and Salivary Proteins in Mouth-Breathing Children. Front Microbiol 2020; 11:575550. [PMID: 33154739 PMCID: PMC7586306 DOI: 10.3389/fmicb.2020.575550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Mouth breathing induces a series of diseases, while the influence on microbiota of oral cavity and salivary proteins remains unknown. In this study, for the first time, profiles of oral-nasal-pharyngeal microbiota among mouth-breathing children (MB group, n = 10) were compared with paired nose-breathing children (NB group, n = 10) using 16S ribosomal DNA (rDNA) (V3-V4 region) high-throughput sequencing. The differentially expressed salivary proteins were revealed using label-free quantification (LFQ) method, and their associations with bacterial abundance were measured by canonical correspondence analysis (CCA). The overall bacterial profiles differed between the two groups, and the differences were related to the duration of mouth breathing. The diversity of oral-pharyngeal microbiota was significantly higher, and the nasal-pharyngeal species tended to be consistent (unweighted UniFrac, p = 0.38) in the MB group. Opportunistic pathogens were higher in relative abundance as follows: Acinetobacter in the anterior supragingival plaque, Neisseria in unstimulated saliva, Streptococcus pneumoniae in the pharynx, and Stenotrophomonas in the nostrils. The expression level of oxidative-stress-related salivary proteins (lactoylglutathione lyase and peroxiredoxin-5) were upregulated, while immune-related proteins (integrin alpha-M and proteasome subunit alpha type-1) were downregulated in MB group. The differentially expressed proteins were associated with specific bacteria, indicating their potentials as candidate biomarkers for the diagnosis, putatively early intervention, and therapeutic target of mouth breathing. This study showed that mouth breathing influences the oral-nasal-pharyngeal microbiota and enriches certain pathogens, accompanied with the alterations in the salivary environment. Further research on the pathological mechanisms and dynamic changes in longitudinal studies are warranted.
Collapse
Affiliation(s)
- Cancan Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haijing Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yongbiao Huo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Huancai Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
22
|
Vodošek Hojs N, Bevc S, Ekart R, Hojs R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants (Basel) 2020; 9:925. [PMID: 32992565 PMCID: PMC7600946 DOI: 10.3390/antiox9100925] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetes prevalence is increasing worldwide, especially through the increase of type 2 diabetes. Diabetic nephropathy occurs in up to 40% of diabetic patients and is the leading cause of end-stage renal disease. Various factors affect the development and progression of diabetic nephropathy. Hyperglycaemia increases free radical production, resulting in oxidative stress, which plays an important role in the pathogenesis of diabetic nephropathy. Free radicals have a short half-life and are difficult to measure. In contrast, oxidation products, including lipid peroxidation, protein oxidation, and nucleic acid oxidation, have longer lifetimes and are used to evaluate oxidative stress. In recent years, different oxidative stress biomarkers associated with diabetic nephropathy have been found. This review summarises current evidence of oxidative stress biomarkers in patients with diabetic nephropathy. Although some of them are promising, they cannot replace currently used clinical biomarkers (eGFR, proteinuria) in the development and progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (N.V.H.); (S.B.)
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia;
| |
Collapse
|
23
|
Evolution of Inflammatory and Oxidative Stress Markers in Romanian Obese Male Patients with Type 2 Diabetes Mellitus after Laparoscopic Sleeve Gastrectomy: One Year Follow-Up. Metabolites 2020; 10:metabo10080308. [PMID: 32731443 PMCID: PMC7464585 DOI: 10.3390/metabo10080308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Geography is one of the key drivers of the significant variation in the etiopathogenic profile and prevalence of type 2 diabetes mellitus (T2DM) and obesity, therefore geographically based data are fundamental for implementing the appropriate interventions. Presently, the selection criteria of T2DM and obesity patients for laparoscopic sleeve gastrectomy (LSG) have not reached a worldwide consensus—highlighting the need for sharing experts’ guidance in the preoperative evaluation, choice of the interventional procedure, perioperative management and patient long-term care. The aim of the current study was to evaluate the impact of LSG on T2DM (T2DM) remission in Romanian obese male patients, based on a multiparametric, prospective investigation. We have conducted a randomized controlled study on 41 obese male participants with the body mass index (BMI) ≥ 30 kg/m2, aged 30–65 years, which were randomly divided in two study groups: one receiving conventional treatment and the second undergoing LSG. The clinical and anthropometrical parameters, resting metabolic rate, general biochemical status, adipocytes profile, gastrointestinal hormones levels, proinflammatory, oxidant and antioxidant profiles were determined at three time points: V1 (baseline), V2 (after six months) and V3 (after 12 months). Glycated hemoglobin (HbA1c), blood glucose levels, BMI, weight, visceral fat level, HDL-cholesterol, incretin hormones, proinflammatory and the oxidative stress status were significantly improved in the LSG versus conventional treatment group. This is the first study reporting on the evaluation of metabolic surgery impact on Romanian obese male patients with T2DM. Our results confirm that LSG could contribute to T2DM remission in patients with diabesity, but this beneficial effect seems to be critically influenced by the duration of T2DM rather than by the obesity status. Our results show that, in addition to the parameters included in the prediction algorithm, the proinsulin levels, proinsulin/insulin ratio and the visceral fat percentage could bring added value to the assessment of metabolic status.
Collapse
|
24
|
Ma M, Liu H, Yu J, He S, Li P, Ma C, Zhang H, Xu L, Ping F, Li W, Sun Q, Li Y. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis 2020; 19:121. [PMID: 32487177 PMCID: PMC7268278 DOI: 10.1186/s12944-020-01303-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies on the effects of lipotoxicity and oxidative stress on islet beta cell function mainly focused on patients with diabetes, whereas studies on normal glucose tolerance (NGT) are few. The aim of this study was to explore the relationships among triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), oxidative stress indicators, insulin resistance, and beta cell function in populations with different glucose and lipid metabolism states. METHODS A total of 517 individuals were recruited from a rural community in Beijing, China. Glucose metabolism status was defined according to the results of a 75-g oral glucose tolerance test (OGTT). Dyslipidemia was defined as abnormal TG, HDL-c, or LDL-c levels. The population was divided into four groups: individuals with normal glucose and lipid levels (group A, n = 62); those with dyslipidemia alone (group B, n = 82); those with dysglycemia alone (group C, n = 121); and those with dysglycemia and dyslipidemia (group D, n = 247). Oxidative stress indicators, including superoxide dismutase (SOD), glutathione reductase (GR) and 8-hydroxydeoxyguanosine (8-OHdG), were measured. Homeostasis model assessment of insulin resistance (HOMA-IR) and glucose disposition index (DI30, DI120) were calculated to assess insulin resistance and islet beta cell function, respectively. Stratified multiple linear regression analysis was used to explore relationships between TG, HDL-c, LDL-c, oxidative stress indicators, and insulin resistance (natural log transformation of HOMA-IR, LnHOMA-IR) and beta cell function (natural log transformation of DI30, Ln DI30). RESULTS Compared with the control group, populations with dyslipidemia and/or dysglycemia showed significantly increased insulin resistance. Dyslipidemia aggravated insulin resistance and beta cell dysfunction in individuals with dysglycemia. Stratified regression analysis showed that TG positively correlated with LnHOMA-IR in individuals with normal glucose levels (beta = 0.321, 0.327, P = 0.011, 0.003 in groups A and B, respectively) and negatively correlated with LnDI30 in participants with dyslipidemia (beta = - 0.225, - 0.122, P = 0.035, 0.048 in groups B and D, respectively). Reduced serum SOD levels in individuals with dysglycemia plus dyslipidemia were observed, and a negative association between TG and SOD levels was found (r = - 0.461, P < 0.001). CONCLUSION TG correlated with both insulin resistance and beta cell function in individuals with dyslipidemia alone. SOD negatively correlated with TG, indicating a close relationship between oxidative stress and glucose-lipid metabolism. Due to the adverse effect of hypertriglyceridemia on insulin sensitivity and islet beta cell function, more attention should be paid to the detection and management of hypertriglyceridemia.
Collapse
Affiliation(s)
- Minglei Ma
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Haibin Liu
- Department of Basic Physiology, The Health School affiliated with Capital Medical University, Beijing, China
| | - Jie Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Diabetes Research Center of the Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Diabetes Research Center of the Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Qi Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
25
|
Silva GMD, Sandes MDO, Vasconcelos-Filho FSL, Rocha DS, Rocha-e-Silva RCD, Silva CAD, Chaves ECB, Brito IR. RESPONSES OF PLASMA ADIPOKINES TO HIGH INTENSITY INTERVAL TRAINING: SYSTEMATIC REVIEW. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-869220202603213840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT Introduction Obesity is one of the major diseases of modern times. However, the explanation for its pathophysiology is recent and has not yet been fully elucidated. White adipose tissue synthesizes and secretes adipokines that affect several pathologies related to obesity. Excessive growth of this tissue results in increased levels of pro-inflammatory adipokines and a consequent decrease in anti-inflammatory adipokines. Nevertheless, most studies use moderate intensity training, limiting the understanding of high intensity interval training in these proteins. Objective To verify the latest information on the effects of HIIT in improving the profile of circulating adipokines. Methods A search was performed on the databases PUBMED, Lilacs, HighWire, BVS and the Cochrane Database of Systematic Reviews, with the following keywords: HIIT adipokines, HIIT leptin, HIIT adiponectin. Eleven studies were selected, published in English and Portuguese between 2013 and 2017. Results HIIT proved to be effective in increasing adiponectin in the adolescent population and in Olympic athletes, but this depended on a good prescription parameter and exercise intensity. However, maximum or supramaximal intensities were superior to low and moderate intensities. In turn, leptin presented a significant decrease in response to HIIT due to the reduction of adipose tissue, demonstrating a directly proportional relation. Other adipokines, such as omentin-1 and interleukin-10, also responded positively to HIIT, resulting in improved anti-inflammatory status. Conclusion HIIT proved to be an efficient method to reduce inflammation due to obesity, as well as inducing an improvement in sports performance. However, the effects depend on training volume, intensity and prescription method. Level of evidence I; Therapeutic study–Investigating the results of treatment.
Collapse
|
26
|
Găman MA, Epîngeac ME, Diaconu CC, Găman AM. Evaluation of oxidative stress levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence assays and correlations with anthropometric and laboratory parameters. World J Diabetes 2020; 11:193-201. [PMID: 32477455 PMCID: PMC7243484 DOI: 10.4239/wjd.v11.i5.193] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity and diabetes are associated with high levels of oxidative stress. In Romanian patients with obesity and (or) diabetes, this association has not been sufficiently explored. AIM To evaluate oxidative stress in obese and (or) diabetic subjects and to investigate the possible correlations between oxidative stress and anthropometric/biochemical parameters. METHODS Oxidative stress was evaluated from a single drop of capillary blood. Reactive oxygen species (ROS) were evaluated using the free oxygen radical test (FORT). The free oxygen radical defence (FORD) assay was used to measure antioxidant levels. RESULTS FORT levels were higher in obese subjects (3.04 ± 0.36 mmol/L H2O2) vs controls (2.03 ± 0.14 mmol/L H2O2) (P < 0.0001). FORD levels were lower in obese subjects (1.27 ± 0.13 mmol/L Trolox) vs controls (1.87 ± 1.20 mmol/L Trolox) (P = 0.0072). Obese diabetic subjects had higher FORT values (3.16 ± 0.39 mmol/L H2O2) vs non-diabetic counterparts (2.99 ± 0.33 mmol/L H2O2) (P = 0.0233). In obese subjects, FORT values correlated positively with body mass index (BMI) (r = 0.48, P = 0.0000), waist circumference (WC) (r = 0.31, P = 0.0018), fasting plasma glucose (FPG) (r = 0.31, P = 0.0017), total cholesterol (TC) (r = 0.27, P = 0.0068) and uric acid (r = 0.36, P = 0.0001). FORD values correlated negatively with BMI (r = -0.43, P = 0.00001), WC (r = -0.28, P = 0.0049), FPG (r = -0.25, P = 0.0130), TC (r = -0.23, P = 0.0198) and uric acid (r = -0.35, P = 0.0002). In obese diabetic subjects, FORT values correlated positively with BMI (r = 0.49, P = 0.0034) and TC (r = 0.54, P = 0.0217). FORD values were negatively associated with BMI (r = -0.54, P = 0.0217) and TC (r = -0.58, P = 0.0121). CONCLUSION Oxidative stress levels, as measured by the FORT and FORD assays, were higher in obese subjects vs controls. ROS levels were elevated in diabetic obese patients vs obese non-diabetic patients and controls.
Collapse
Affiliation(s)
- Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest 022328, Romania
| | - Mirela Elena Epîngeac
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
| | - Camelia Cristina Diaconu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest 050474, Romania
- Internal Medicine Clinic, Clinical Emergency Hospital of Bucharest, Bucharest 014461, Romania
| | - Amelia Maria Găman
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania
- Clinic of Hematology, Filantropia City Hospital, Craiova 200143, Romania
| |
Collapse
|
27
|
Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S. Synthesis, In Vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[ b]furans against Multiple Targets Linked to Type 2 Diabetes. Biomolecules 2020; 10:E418. [PMID: 32156083 PMCID: PMC7175131 DOI: 10.3390/biom10030418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
Collapse
Affiliation(s)
- Malose J. Mphahlele
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Marole M. Maluleka
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
28
|
Liu W, Zhou X, Li Y, Zhang S, Cai X, Zhang R, Gong S, Han X, Ji L. Serum leptin, resistin, and adiponectin levels in obese and non-obese patients with newly diagnosed type 2 diabetes mellitus: A population-based study. Medicine (Baltimore) 2020; 99:e19052. [PMID: 32028423 PMCID: PMC7015632 DOI: 10.1097/md.0000000000019052] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disturbances in adipocytokine profiles can contribute to peripheral insulin resistance and impairment of insulin production, which are 2 primary pathophysiological mechanisms involved in type 2 diabetes mellitus (T2DM). Previous studies of disturbed adipocytokine profiles have resulted in ambiguous findings; therefore, we conducted the current study comparing leptin, resistin, and adiponectin concentrations in patients with newly diagnosed T2DM who had normal body mass index (BMI) and those who were obese.We studied a population-based cohort of healthy participants and those with newly diagnosed T2DM. A normal BMI group was randomly selected; age- and sex-matched obese participants were recruited. Circulating leptin, resistin, and adiponectin concentrations were measured and compared between groups using analysis of variance; binary logistic regression analysis was then performed to compare the normal BMI and obese groups.In total, 85 healthy participants and 38 patients with diabetes (19 with normal BMI and 17 who were obese) were enrolled. After adjustment for BMI and waist circumference, the median leptin concentration was higher in the obese group (6.77 (3.89-10.73) ng/mL) than in the normal BMI group (1.69 (0.80-3.89) ng/mL) (P = .007), whereas the median adiponectin concentration was lower in the obese group (1.03 (0.75-2.36) μg/mL vs 3.36 (0.59-7.63) μg/mL, P = .03). In addition, the adiponectin/leptin ratio was higher in the normal BMI group (145.6 (41.3-495.9) ng/mL) than in the obese group (20.55 (8.74-36.94) ng/mL, P = .002).Compared with the normal BMI T2DM group, the obese T2DM group exhibited a disturbed adipocytokine profile in the form of a significantly increased leptin concentration and reduced adiponectin level. Further studies are needed to determine the causal relationship for this difference and evaluate its importance for personalized diabetic treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Yufeng Li
- Department of Endocrinology and Metabolism, Pinggu Hospital, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital
| |
Collapse
|
29
|
Oxidative Stress Produced by Hyperthyroidism Status Induces the Antioxidant Enzyme Transcription through the Activation of the Nrf-2 Factor in Lymphoid Tissues of Balb/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7471890. [PMID: 31281590 PMCID: PMC6589208 DOI: 10.1155/2019/7471890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Abstract
Hyperthyroidism is an endocrine disorder characterized by excessive secretion of thyroid hormones T3 and T4. Thyroid hormones exert pleiotropic actions on numerous tissues and induce an overall increase in metabolism, with an increase in energy demand and oxygen consumption. Therefore, the purpose of this study was to investigate the effects of hyperthyroidism on the production of reactive oxygen species (ROS) in lymph node and spleen cells of euthyroid and hyperthyroid mice, analyzing antioxidant mechanisms involved in the restitution of the cellular redox state. For this, thirty female Balb/c (H-2d) mice were randomly divided into two groups: euthyroid (by treatment with placebo) and hyperthyroid (by treatment with 12 mg/l of T4 in drinking water for 30 days). We found a significant increase in ROS and an increase in the genomic and protein expression of the antioxidant enzymes catalase (CAT) and glutathione peroxidase-1 (GPx-1) in lymph node and spleen cells of hyperthyroid mice. In vitro treatment with H2O2 (250 μM) of the lymphoid cells of euthyroid mice increased the expression levels of CAT and GPx-1. The hyperthyroidism increased the phosphorylation levels of Nrf2 (nuclear factor erythroid 2-related factor) and the kinase activity of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). Additionally, we found an increase in the expression of the classic isoenzymes of PKCα, β and γ. In conclusion, these results indicated that the increase in ROS found in the hyperthyroid state induces the antioxidant enzyme transcription through the activation of the Nrf-2 factor in lymphoid tissues. This shows the influence of hyperthyroidism on the regulation of the cellular antioxidant system.
Collapse
|
30
|
Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5953685. [PMID: 31214280 PMCID: PMC6535859 DOI: 10.1155/2019/5953685] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) and its complications constitute a major worldwide public health problem, with high rates of morbidity and mortality. Biomarkers for predicting the occurrence and development of the disease may therefore offer benefits in terms of early diagnosis and intervention. This review provides an overview of human studies on circulating biomarkers of oxidative stress and antioxidant defence systems and discusses their usefulness from a clinical perspective. Most case-control studies documented an increase in biomarkers of oxidative lipid, protein, and nucleic acid damage in patients with prediabetes and in those with a diagnosis of T2DM compared to controls, and similar findings were reported in T2DM with micro- and macrovascular complications compared to those without. The inconsistence of the results regarding antioxidant defence systems renders difficulty to draw a general conclusion. The clinical relevance of biomarkers of oxidative lipid and protein damage for T2DM progression is uncertain, but prospective studies suggest that markers of oxidative nucleic acid damage such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine are promising for predicting macrovascular complications of T2DM. Emerging evidence also points out the relationship between serum PON1 and serum HO1 in T2DM and its complications. Overall, enhanced oxidative damage represents an underlying mechanism of glucose toxicity in T2DM and its related micro- and macrovascular complications suggesting that it may be considered as a potential additional target for pharmacotherapy. Therefore, further studies are needed to understand whether targeting oxidative stress may yield clinical benefits. In this view, the measurement of oxidative stress biomarkers in clinical trials deserves to be considered as an additional tool to currently used parameters to facilitate a more individualized treatment of T2DM in terms of drug choice and patient selection.
Collapse
|
31
|
Arredouani A, Diane A, Khattab N, Bensmail I, Aoude I, Chikri M, Mohammad R, Abou-Samra AB, Dehbi M. DNAJB3 attenuates metabolic stress and promotes glucose uptake by eliciting Glut4 translocation. Sci Rep 2019; 9:4772. [PMID: 30886231 PMCID: PMC6423224 DOI: 10.1038/s41598-019-41244-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Failure of the heat shock response is a key event that leads to insulin resistance and type 2 diabetes. We recently showed that DNAJB3 co-chaperone is downregulated in obese and diabetic patients and that physical exercise restores its normal expression with a significant improvement of the clinical outcomes. In 3T3-L1 adipocytes, DNAJB3 has a role in improving the sensitivity to insulin and glucose uptake. In co-immunoprecipitation assays, DNAJB3 interacts with both JNK1 and IKKβ kinases. However, the functional impact of such interaction on their activities has not been investigated. Here, we assessed the effect of DNAJB3 on the respective activity of JNK1 and IKKβ in cell-based assays. Using JNK1- and IKKβ-dependent luciferase reporters, we show a marked decrease in luciferase activity by DNAJB3 in response to PMA and TNF-α that was consistent with a decrease in the translocation of p65/NF-κB to the nucleus in response to LPS. Furthermore, TNF-α-mediated IL-6 promoter activation and endogenous mRNA expression are significantly abrogated by DNAJB3 both in 3T3-L1 and C2C12 cells. The ability of DNAJB3 to mitigate ER stress and oxidative stress was also investigated and our data show a significant improvement of both forms of stress. Finally, we examined the effect of overexpressing and knocking down the expression of DNAJB3 on glucose uptake in C2C12 as well as the molecular determinants. Accordingly, we provide evidence for a role of DNAJB3 in promoting both basal and insulin-stimulated glucose uptake. Our finding reveals also a novel role of DNAJB3 in eliciting Glut4 translocation to the plasma membrane. These results suggest a physiological role of DNAJB3 in mitigating metabolic stress and improving glucose homeostasis and could therefore represent a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
| | - Abdoulaye Diane
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Ilham Bensmail
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Imad Aoude
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamed Chikri
- Faculty of Medicine & Pharmacy, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Ramzi Mohammad
- The Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Karmanos Cancer Institute, Department Of Oncology, Wayne State University, Detroit, MI, USA
| | - Abdul Badi Abou-Samra
- Qatar Metabolic Institute, Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Dehbi
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
32
|
Aslfalah H, Jamilian M, Khosrowbeygi A. Elevation of the adiponectin/leptin ratio in women with gestational diabetes mellitus after supplementation with alpha-lipoic acid. Gynecol Endocrinol 2019; 35:271-275. [PMID: 30303695 DOI: 10.1080/09513590.2018.1519795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Alpha-lipoic acid (ALA) is a short chain fatty acid and is known as a universal antioxidant. The aim of the current clinical trial study was to explore the effects of ALA supplementation on maternal circulating values of adiponectin (A), leptin (L); and A/L, L/A, adiponectin/homeostatic model assessment for insulin resistance (A/H), and malondialdehyde/total antioxidant capacity (MDA/TAC) ratios in pregnant women with gestational diabetes mellitus (GDM). Sixty women diagnosed as GDM during 24 and 28 weeks of pregnancy were randomly divided into drug (n = 30) and placebo (n = 30) groups. They consumed ALA (100 mg) and cellulose acetate (100 mg) respectively for 8 weeks, per day. The biochemical variables were evaluated before and after the trial. Maternal fasting serum values of glucose (p < .001), HOMA-IR (p < .001), MDA/TAC (p < .001), and L/A (p = .008) were decreased while values of adiponectin (p = .011), A/L (p = .001), and A/H (p < .001) were increased in the drug group after the intervention. In summary, current study had shown that after daily supplementation with 100 mg of ALA for 8 weeks in women with GDM, maternal circulating values of adiponectin, A/L, and A/H were increased while values of L/A and MDA/TAC were decreased.
Collapse
Affiliation(s)
- Hadise Aslfalah
- a Student Research Committee , Arak University of Medical Sciences , Arak , Iran
| | - Mehri Jamilian
- b Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Ali Khosrowbeygi
- c Endocrinology and Metabolism Research Center, Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences , Arak , Iran
| |
Collapse
|
33
|
Gholami M, Zarei P, Sadeghi Sedeh B, Rafiei F, Khosrowbeygi A. Effects of coenzyme Q10 supplementation on serum values of adiponectin, leptin, 8-isoprostane and malondialdehyde in women with type 2 diabetes. Gynecol Endocrinol 2018; 34:1059-1063. [PMID: 29933718 DOI: 10.1080/09513590.2018.1481944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have been known to be suffering from coenzyme Q10 (CoQ10) deficiency which results in some complications in them. The purpose of this clinical trial study was to evaluate the effects of CoQ10 supplementation on serum values of adiponectin (A), leptin (L), 8-isoprostane, malondialdehyde (MDA), the A/L ratio in women with T2DM. Sixty-eight women with T2DM were enrolled in the current study and were randomly divided into drug (n = 34) and placebo (n = 34) groups who were consuming 100 mg CoQ10 and 100 mg cellulose acetate per day for 12 weeks, respectively. Measurements were performed at the beginning and after the intervention. Serum values of adiponectin (p = .001) and the A/L ratio (p = .001) were increased while values of leptin (p = .041), MDA (p = .023), 8-isoprostane (p = .004) were decreased significantly in drug group after intervention. This study had shown that CoQ10 supplementation in women with T2DM was effective in elevation of adiponectin and the A/L ratio and reduction of leptin, MDA and 8-isoprostane which could result in improving insulin resistance and modulating oxidative stress situation.
Collapse
Affiliation(s)
- Mahsa Gholami
- a Iran Student Research Committee , Arak University of Medical Sciences , Arak , Iran
| | - Parvin Zarei
- a Iran Student Research Committee , Arak University of Medical Sciences , Arak , Iran
| | - Bahman Sadeghi Sedeh
- b Endocrinology and Metabolism Research Center, Department of Social Medicine, School of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Fatemeh Rafiei
- c Endocrinology and Metabolism Research Center, Department of Biostatistics, School of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Ali Khosrowbeygi
- d Endocrinology and Metabolism Research Center, Department of Biochemistry and Genetics, School of Medicine , Arak University of Medical Sciences , Arak , Iran
| |
Collapse
|
34
|
An H, Du X, Huang X, Qi L, Jia Q, Yin G, Xiao C, Huang XF, Ning Y, Cassidy RM, Wang L, Soares JC, Zhang XY. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl Psychiatry 2018; 8:258. [PMID: 30498208 PMCID: PMC6265271 DOI: 10.1038/s41398-018-0303-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/05/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Abstract
Antipsychotic pharmacotherapy is strongly obesogenic and is associated with increased oxidative stress in patients with schizophrenia. However, whether these changes reflect psychopathology, antipsychotic efficacy, or some other factor is not known. Our study aims to investigate the degree of oxidative stress in different BMI categories and to identify clinical symptomatology that may be paired with increased oxidative stress in a schizophrenia population. To this end, we performed a cross-sectional study and recruited 89 long-term inpatients with schizophrenia and collected the following variables: plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), routine biochemical analysis, and psychopathology through the Positive and Negative Syndrome Scale (PANSS). The results indicate that the levels of the lipid peroxidation product, MDA, were significantly higher in the high BMI group than the low (normal) BMI group. As expected, high BMI was associated with an atherogenic lipid profile; however, it was also associated with fewer psychopathological symptoms. Multiple regression analysis found that MDA levels, the PANSS general psychopathology subscore, and triglyceride levels (all p < 0.05) were independent contributors to the BMI in patients. These results suggested that oxidative stress may play an important role in antipsychotic-induced weight gain. Further investigations using the longitudinal design in first-episode schizophrenia patients are needed to explore the beneficial effect of antioxidants on the abnormal lipid metabolism mediated by antipsychotic treatment.
Collapse
Affiliation(s)
- Huimei An
- 0000 0001 2256 9319grid.11135.37Beijing Hui-Long-Guan hospital, Peking University, Beijing, China
| | - Xiangdong Du
- 0000 0001 0198 0694grid.263761.7Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province China
| | - Xingbing Huang
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Lingyan Qi
- 0000 0001 2256 9319grid.11135.37Beijing Hui-Long-Guan hospital, Peking University, Beijing, China
| | - Qiufang Jia
- 0000 0001 0198 0694grid.263761.7Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province China
| | - Guangzhong Yin
- 0000 0001 0198 0694grid.263761.7Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu Province China
| | - Chunling Xiao
- 0000 0001 2256 9319grid.11135.37Beijing Hui-Long-Guan hospital, Peking University, Beijing, China
| | - Xu-Feng Huang
- 0000 0004 0486 528Xgrid.1007.6School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW2522 Australia
| | - Yuping Ning
- 0000 0000 8653 1072grid.410737.6The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ryan M Cassidy
- 0000 0000 9206 2401grid.267308.8Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Li Wang
- 0000 0004 1797 8574grid.454868.3Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Jair C. Soares
- 0000 0000 9206 2401grid.267308.8Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Institute of Psychology, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
35
|
Potency of Cape Gooseberry (Physalis Peruviana) Juice in Improving Antioxidant and Adiponectin Level of High Fat Diet Streptozotocin Rat Model. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2018. [DOI: 10.2478/rjdnmd-2018-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background and aims: Quercetin belonging flavonoid has a role to improve diabetic condition. Research aimed to examine and to compare Cape Gooseberry (CG) juice and quercetin supplement on Total Antioxidant Capacity (TAC) and adiponectin level of high fat diet-Streptozotocin (HFD-STZ) induced rat.
Material and method: CG juice 5 ml/kg/d (X1) and 25 ml/kg/d (X2) groups; and quercetin supplement 2.2 mg/kg/d (X3) and 30 mg/kg/d (X4) groups were compared with both of positive (K+) and negative (K-) control. Treatments were given by orally gavage for 28 days to 36 Wistar rats which each group consisted of 6 rats. TAC and adiponectin level were measured by ABTS and ELISA method respectively.
Results: There was significantly increase of TAC in treatment groups compared with K(+) (p<0.05). X2 had TAC level significantly higher than X1 (p=0.025). Moreover, adiponectin level of treatment groups were significantly higher than K(+) (p<0.05). Furthermore, X2 had adiponectin level significantly higher than X3 (p<0.001).
Conclusion: CG juice 25 ml/kg/d presented better effect than CG juice 5 ml/kg/d, although quercetin 30 mg/kg/d showed the best effects toward both of TAC and adiponectin.
Collapse
|
36
|
Nikodemova M, Yee J, Carney PR, Bradfield CA, Malecki KM. Transcriptional differences between smokers and non-smokers and variance by obesity as a risk factor for human sensitivity to environmental exposures. ENVIRONMENT INTERNATIONAL 2018; 113:249-258. [PMID: 29459183 PMCID: PMC5866236 DOI: 10.1016/j.envint.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Obesity has been shown to alter response to air pollution and smoking but underlying biological mechanisms are largely unknown and few studies have explored mechanisms by which obesity increases human sensitivity to environmental exposures. OBJECTIVE Overall study goals were to investigate whole blood gene expression in smokers and non-smokers to examine associations between cigarette smoke and changes in gene expression by obesity status and test for effect modification. METHODS Relative fold-change in mRNA expression levels of 84 genes were analyzed using a Toxicity and Stress PCR array among 50 21-54 year old adults. Data on smoking status was confirmed using urinary cotinine levels. Adjusted models included age, gender, white blood cell count and body-mass index. RESULTS Models comparing gene expression of smokers vs. non-smokers identified six differentially expressed genes associated with smoking after adjustments for covariates. Obesity was associated with 29 genes differentially expressed compared to non-obese. We also identified 9 genes with significant smoking/obesity interactions influencing mRNA levels in adjusted models comparing expression between smokers vs non-smokers for four DNA damage related genes (GADD45A, DDB2, RAD51 and P53), two oxidative stress genes (FTH1, TXN), two hypoxia response genes (BN1P3lL, ARNT), and one gene associated with unfolded protein response (ATF6B). CONCLUSIONS Findings suggest that obesity alters human sensitivity to smoke exposures through several biological pathways by modifying gene expression. Additional studies are needed to fully understand the clinical impact of these effects, but risk assessments should consider underlying phenotypes, such as obesity, that may modulate sensitivity of vulnerable populations to environmental exposures.
Collapse
Affiliation(s)
- Maria Nikodemova
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Jeremiah Yee
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Patrick R Carney
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kristen Mc Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States; The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
37
|
Wu H, Liu Q, Kalavagunta PK, Huang Q, Lv W, An X, Chen H, Wang T, Heriniaina RM, Qiao T, Shang J. Normal diet Vs High fat diet - A comparative study: Behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis 2018; 33:177-190. [PMID: 29101600 DOI: 10.1007/s11011-017-0140-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022]
Abstract
Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD. Our present study is focused to investigate behavioral and metabolic influences of short-term HFD intake in adolescent C57BL/6 mice. HFD caused weight gain, impaired glucose tolerance (IGT) and depression-like behavior as early as after 3 weeks which was clearly proved by a decrease in number of groomings in the open field test (OFT) and an increase in immobility time in the tail suspension test (TST). In the 4th week HFD induced obese model was fully developed and above behavioral symptoms were more dominant (decrease in number of crossings and groomings and increase in immobility time in both FST and TST). At the end of 6th week hippocampal analysis revealed the differences in morphology (reduced Nissl positive neurons and decreased the 5-HT1A receptor expression), neuronal survival (increased cleaved caspase-3 expression), synaptic plasticity (down regulation of p-CREB and BDNF), and inflammatory responses (increase in expression of pro-inflammatory cytokines and decrease in expression of anti-inflammatory cyokines) in HFD mice. Our results demonstrate that, high-fat feeding of adolescent mice could provoke "depression-like" behavior as early as 3 weeks and modulate structure, neuron survival and neuroinflammation in hippocampus as early as 6 weeks proving that adolescent age is much prone to adverse effects of HFD, which causes obesity, behavioral differences, memory and learning deficiencies.
Collapse
Affiliation(s)
- Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiongzhen Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Praveen Kumar Kalavagunta
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiaoling Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenting Lv
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaohong An
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haijuan Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, QingHai Province, 810008, China
| | - Tao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rakotomalala Manda Heriniaina
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tong Qiao
- Vascular Surgery Department, Nanjing Drum Tower Hospital, Nanjing, 210008, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, QingHai Province, 810008, China.
| |
Collapse
|
38
|
Kocot J, Dziemidok P, Kiełczykowska M, Hordyjewska A, Szcześniak G, Musik I. Adipokine Profile in Patients with Type 2 Diabetes Depends on Degree of Obesity. Med Sci Monit 2017; 23:4995-5004. [PMID: 29049270 PMCID: PMC5659140 DOI: 10.12659/msm.904318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The fast pace of life, promoting fast food consumption and low physical activity, has resulted in obesity and/or diabetes as being serious social problems. The aim of the present study was to evaluate concentrations of selected adipokines (leptin, adiponectin, resistin, and visfatin) and to assess the leptin/adiponectin ratio in plasma of type 2 diabetes (T2D) patients in relation to degree of obesity. Material/Methods The study comprised 92 T2D subjects divided into 4 groups according to BMI value – I (normal body weight), II (overweight), III (obesity), and IV (severe obesity) – and 20 healthy volunteers (control group). Each group was divided into male and female subgroups. Plasma concentrations of adipokines were determined by enzyme-linked immunosorbent assay. Results In women, leptin concentration was significantly higher in group IV, whereas in men it was higher in groups III and IV than in the control group and groups I and II. Irrespective of sex, a significant decrease in adiponectin level was observed in group III vs. control. There was no significant difference in resistin levels. In women visfatin was markedly enhanced in group III, whereas in men in groups II, III and IV vs. control. Leptin/adiponectin ratio was increased in groups III and IV vs. control in women, whereas in men vs. both control and group I. Conclusions The obese type 2 diabetic patients presented a disturbed adipokine profile, which seems to be an important link between obesity and T2D. The future studies concerning the question if regulating of adipokines’ concentrations could be a promising approach for managing metabolic disorders seem to be well-grounded.
Collapse
Affiliation(s)
- Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Piotr Dziemidok
- Institute of Public Health, Pope John Paul II State School of Higher Education, Biała Podlaska, Poland
| | | | - Anna Hordyjewska
- Chair and Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| | | | - Irena Musik
- Chair and Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
Bakhtiari A, Hajian-Tilaki K, Omidvar S, Nasiri Amiri F. Association of lipid peroxidation and antioxidant status with metabolic syndrome in Iranian healthy elderly women. Biomed Rep 2017; 7:331-336. [PMID: 28928971 DOI: 10.3892/br.2017.964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 01/24/2023] Open
Abstract
The interconnection between aging and metabolic syndrome (MetS) and their effect on oxidative stress (OxS) status lacks adequate information. Additionally, the age-related changes of antioxidant defenses and OxS in senior women with MetS in comparison to healthy senior women are not yet established. We analyzed the correlation between oxidative defense status and OxS with MetS components. Through further examination of MetS and aging, we aimed to determine their independent effects on OxS and oxidative defense status. This community-based cross-sectional study was conducted in the rural area of Babol, Iran. A total of 75 women of ≥60 years of age with MetS along with 89 women with similar conditions without the MetS, serving as the control group, were studied. Blood glucose, lipid profile, malondialdehyde (MDA) and total antioxidant capacity (TAC) were determined. Data were analyzed using multiple linear regression, ANOVA and independent t-tests. MDA and TAC levels independently showed a significant correlation with triglyceride (TG), waist circumference, fasting blood glucose and high-density lipoprotein cholesterol (HDL-C). As suggested by the standardized B (0.810, -0.783, P<0.001; -0.052, P<0.001, 0.047, P<0.01), TG followed by HDL-C were the most strongly correlated factors with MDA and TAC. Furthermore, MetS and age were independent risk factors for antioxidant activity reduction and OxS. However, MetS had a much higher predictive power than age (standardized B 0.573 for MetS and 0.376 for age, P<0.001). Aging and MetS, both lead to OxS, but the impact of MetS on this disorder was far greater than the effect of age. However, their cumulative effects can lead to a worsening of the situation. Therefore, early diagnosis and treatment of MetS, especially in the elderly can prevent any adverse impact of MetS.
Collapse
Affiliation(s)
- Afsaneh Bakhtiari
- Department of Midwifery, Faculty of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Karimolla Hajian-Tilaki
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Shabnam Omidvar
- Department of Midwifery, Faculty of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Nasiri Amiri
- Department of Midwifery, Faculty of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran.,Infertility and Health Reproductive Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
| |
Collapse
|