1
|
Zhao Y, Han Y, Liu J, Niu H, Wang P, Li Y, Liang J, Gong W. Efficacy and safety of baihe gujin decoction as an adjunct to chemotherapy in pulmonary tuberculosis: A systematic review and meta-analysis. Front Pharmacol 2025; 16:1538692. [PMID: 40432886 PMCID: PMC12106383 DOI: 10.3389/fphar.2025.1538692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background Pulmonary tuberculosis (PTB), an ancient affliction, continues to present significant challenges in modern medicine. Baihe Gujin Decoction, a traditional Chinese botanical drug remedy, has been widely utilized in clinical practice for tuberculosis treatment, yet its efficacy has been inconsistent. This meta-analysis aims to ascertain its effectiveness and contribute to evidence-based medicine. Methods A comprehensive search was conducted across multiple databases, including PubMed, Embase, The Cochrane Library, China Science and Technology Journal Database, Wanfang Database, China Biomedical Literature Database, and China National Knowledge Infrastructure, to identify relevant randomized controlled trials from January 2010 to February 2024. The risk of bias in the included studies was assessed using the Cochrane Collaboration's tool, and meta-analyses were performed using Review Manager and Stata to evaluate the comparative outcomes. Results This meta-analysis encompassed 32 studies. The control group exhibited a notably higher clinical overall efficacy rate [OR = 5.50, 95%CI (4.18, 7.24), P < 0.05], lesion absorption rate [OR = 5.83, 95%CI (4.08, 8.33), P < 0.05], cavity change rate [OR = 2.35, 95%CI (1.50, 3.69), P < 0.05], and sputum negative conversion rate [OR = 2.85, 95%CI (2.12, 3.83), P < 0.05]. In contrast, the treatment group demonstrated an increase in CD4+ T lymphocyte subset levels post-treatment, with a weighted mean difference of [OR = 4.87, (95%CI (1.91, 7.83), P < 0.05]. Furthermore, safety indices, including the incidence of total adverse reactions, liver function abnormalities, and gastrointestinal reactions, were significantly lower in the treatment group. Conclusion The combination of Baihe Gujin Decoction with biomedicine is more efficacious than biomedicine alone for treating PTB. This superiority is evident in improved clinical efficacy rates, lesion absorption, cavity changes, sputum negative conversion rates, and immune indices, alongside a reduced incidence of adverse reactions. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42023462056.
Collapse
Affiliation(s)
- Yilu Zhao
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Yiran Han
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jia Liu
- Department of Infectious Disease, Beijing Geriatric Hospital, Beijing, China
| | - Honghong Niu
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peilong Wang
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yuxi Li
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Wenping Gong
- Institute of Tuberculosis, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Gao P, Li X, Ding J, Peng B, Munir M, Liu F, Chao L, Li C, Wang L, Ma J, Zhang G. Antiviral and Immune Enhancement Effect of Platycodon grandiflorus in Viral Diseases: A Potential Broad-Spectrum Antiviral Drug. Molecules 2025; 30:831. [PMID: 40005144 PMCID: PMC11858313 DOI: 10.3390/molecules30040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Traditional Chinese medicine offers potential therapeutic options for viral infections. Platycodon grandiflorus (PG) is a perennial herb known for its efficacy in treating respiratory infections, including asthma, cough, and bronchitis, making it a key focus in antiviral drug research. The purpose of the study is to provide a basis for functional studies on PG and generate new insights for treating viral diseases. METHODS Research articles from 1990 to 2024 related to PG and viruses were obtained from databases, such as PubMed, Web of Science, and Science Direct, and systematically analysed. RESULTS PG demonstrates inhibitory effects on viruses such as severe acute respiratory syndrome coronavirus and porcine reproductive and respiratory syndrome virus by blocking various stages of viral proliferation or activating the host immune system. It also reduces inflammation through NF-κB, PI3K/AKT, MAPK, and other signalling pathways, enhancing T cell and macrophage function and increasing host immunity. PG exhibits diverse pharmacological effects with promising clinical applications for antiviral and immune modulation. Given its medicinal significance, PG holds substantial potential for further exploration and development. CONCLUSION PG, due to its antiviral, anti-inflammatory, and immune-boosting properties, can be used as an antiviral drug.
Collapse
Affiliation(s)
- Pei Gao
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou 450002, China;
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Xinshan Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Jianlei Ding
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Bosen Peng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA14YW, UK
| | - Fei Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Limin Chao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Chengfei Li
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Li Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou 450002, China;
- Henan International Joint Laboratory of Animal Health Breeding and Disease Prevention and Control, Xinxiang 453003, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450002, China
- School of Advanced Agricultural Science, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zhao S, Zhu H, Tang X, Wang D, Gao P, Chen B, Huang M, Liu J. Effects of electron beam irradiation on microbial load, physicochemical properties, sensory quality, stability of active components, and antioxidant activity of Platycodon grandiflorum (Jacq.) A. DC. Appl Radiat Isot 2025; 216:111450. [PMID: 39571394 DOI: 10.1016/j.apradiso.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/18/2024] [Indexed: 12/10/2024]
Abstract
Platycodon grandiflorum (Jacq.) A. DC. (PG) is an edible and medicinal plant. This study aimed to investigate the potential of electron beam (EB) irradiation for preserving PG. EB irradiation at doses of 2-8 kGy were applied to PG, and the effects on microbial content, sensory qualities, chemical qualities, and EB penetration were examined. Results showed that irradiation with 6 kGy effectively maintained the microbiological quality of PG when packing thickness was ≤6.3 cm during a 360-day storage period. The physicochemical properties, color, active ingredient contents, and antioxidant capacities of PG remained unaffected. However, total flavonoid and platycodin D (PD) content exhibited a non-dose-dependent alteration. The use of electronic nose analysis successfully differentiated the odor of EB irradiated PG samples from non-irradiated ones. Fingerprint analysis also indicated no significant impact of EB irradiation on PG quality. These findings suggest that EB treatment could be a valuable approach for extending the shelf life of PG.
Collapse
Affiliation(s)
- Shuncheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Haiyan Zhu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Peng Gao
- Institute of Biotechnology, Sichuan Institute of Atomic Energy, Chengdu, 610101, China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, China
| | - Benyun Chen
- Chongqing Hengde Irradiation Technology Co., LTD, Chongqing, 402560, China
| | - Min Huang
- Institute of Biotechnology, Sichuan Institute of Atomic Energy, Chengdu, 610101, China; Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu, 610101, China
| | - Jikai Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
4
|
Rod-in W, Kim M, Jang AY, Nam YS, Yoo TY, Park WJ. Immunostimulatory Activity of a Mixture of Platycodon grandiflorum, Pyrus serotine, Chaenomeles sinensis, and Raphanus sativus in RAW264.7 Macrophages. Int J Mol Sci 2024; 25:10660. [PMID: 39408990 PMCID: PMC11476558 DOI: 10.3390/ijms251910660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, a mixture of Platycodon grandiflorum, Pyrus serotina, Chaenomeles sinensis, and Raphanus sativus (PPCRE) was investigated for their immuno-enhancing effects, as well as the molecular mechanism of PPCRE in RAW264.7 cells. PPCRE dramatically increased nitric oxide (NO) and prostaglandin E2 (PGE2) generation depending on the concentration while exhibiting no cytotoxicity. PPCRE markedly upregulated the mRNA and protein expression of immune-related cytotoxic factors such as cyclooxygenase (COX)-1, COX-2, and inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), as well as the mRNA level of IL-4. PPCRE increased the mitogen-activated protein kinase (MAPK) signaling pathway by upregulating the phosphorylation of extracellular signal-regulated kinase (ERK), stress-activated protein kinase/Jun N-terminal-kinase (SAPK/JNK), and p38. Furthermore, PPCRE considerably activated the nuclear factor kappa B (NF-κB) signaling pathway by increasing phosphorylation of NF-κB-p65. PPCRE-stimulated RAW264.7 cells increased macrophage phagocytic capacity. In conclusion, our study found that PPCRE improved immune function by modulating inflammatory mediators and regulating the MAPK and NF-κB pathway of signaling in macrophages.
Collapse
Affiliation(s)
- Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Minji Kim
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
| | - A-yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Yu Suk Nam
- NAAAMYUUU FNC Co., Ltd., 20, Juheung, Seocho, Seoul 06540, Republic of Korea;
| | - Tae Young Yoo
- FD FARM Co., Ltd., Icheon 17300, Gyeonggi, Republic of Korea;
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (W.R.-i.); (A.-y.J.)
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea;
- KBIoRANCh Co., Ltd., Gangneung 25457, Gangwon, Republic of Korea
| |
Collapse
|
5
|
Zhang L, Wang X, Zhang J, Liu D, Bai G. Ethnopharmacology, phytochemistry, pharmacology and product application of Platycodon grandiflorum: A review. CHINESE HERBAL MEDICINES 2024; 16:327-343. [PMID: 39072195 PMCID: PMC11283231 DOI: 10.1016/j.chmed.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 07/30/2024] Open
Abstract
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
Collapse
Affiliation(s)
- Lanying Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Xinrui Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Jingze Zhang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Gang Bai
- Nankai University, Tianjin 300353, China
| |
Collapse
|
6
|
Chen B, Wang X, Yu H, Dong N, Li J, Chang X, Wang J, Jiang C, Liu J, Chi X, Zha L, Gui S. Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in drought stress of Platycodon grandiflorus. FRONTIERS IN PLANT SCIENCE 2024; 15:1363251. [PMID: 38742211 PMCID: PMC11089202 DOI: 10.3389/fpls.2024.1363251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Introduction The uridine diphosphate (UDP)-glycosyltransferase (UGT) family is the largest glycosyltransferase family, which is involved in the biosynthesis of natural plant products and response to abiotic stress. UGT has been studied in many medicinal plants, but there are few reports on Platycodon grandiflorus. This study is devoted to genome-wide analysis of UGT family and identification of UGT genes involved in drought stress of Platycodon grandiflorus (PgUGTs). Methods The genome data of Platycodon grandiflorus was used for genome-wide identification of PgUGTs, online website and bioinformatics analysis software was used to conduct bioinformatics analysis of PgUGT genes and the genes highly responsive to drought stress were screened out by qRT-PCR, these genes were cloned and conducted bioinformatics analysis. Results A total of 75 PgUGT genes were identified in P.grandiflorus genome and clustered into 14 subgroups. The PgUGTs were distributed on nine chromosomes, containing multiple cis-acting elements and 22 pairs of duplicate genes were identified. Protein-protein interaction analysis was performed to predict the interaction between PgUGT proteins. Additionally, six genes were upregulated after 3d under drought stress and three genes (PGrchr09G0563, PGrchr06G0523, PGrchr06G1266) responded significantly to drought stress, as confirmed by qRT-PCR. This was especially true for PGrchr06G1266, the expression of which increased 16.21-fold after 3d of treatment. We cloned and conducted bioinformatics analysis of three candidate genes, both of which contained conserved motifs and several cis-acting elements related to stress response, PGrchr06G1266 contained the most elements. Discussion PgGT1 was confirmed to catalyze the C-3 position of platycodin D and only eight amino acids showed differences between gene PGr008G1527 and PgGT1, which means PGr008G1527 may be able to catalyze the C-3 position of platycodin D in the same manner as PgGT1. Seven genes were highly expressed in the roots, stems, and leaves, these genes may play important roles in the development of the roots, stems, and leaves of P. grandiflorus. Three genes were highly responsive to drought stress, among which the expression of PGrchr06G1266 was increased 16.21-fold after 3d of drought stress treatment, indicating that PGrchr06G1266 plays an important role in drought stress tolerance. To summarize, this study laied the foundation to better understand the molecular bases of responses to drought stress and the biosynthesis of platycodin.
Collapse
Affiliation(s)
- Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chao Jiang
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juan Liu
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
7
|
Jang AY, Kim M, Rod-In W, Nam YS, Yoo TY, Park WJ. In vitro immune-enhancing effects of Platycodon grandiflorum combined with Salvia plebeian via MAPK and NF-κB signaling in RAW264.7 cells. PLoS One 2024; 19:e0297512. [PMID: 38306362 PMCID: PMC10836713 DOI: 10.1371/journal.pone.0297512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024] Open
Abstract
The immune-enhancing activity of the combination of Platycodon grandiflorum and Salvia plebeian extracts (PGSP) was evaluated through macrophage activation using RAW264.7 cells. PGSP (250-1000 μg/mL) showed a higher release of NO in a dose-dependent manner. The results showed that PGSP could significantly stimulate the production of PGE2, COX-2, TNF-α, IL-1β, and IL-6 in RAW264.7 cells and promote iNOS, COX-2, TNF-α, IL-1β, IL-4, and IL-6 mRNA expression. Western blot analysis demonstrated that the protein expression of iNOS and COX-2 and the phosphorylation of ERK, JNK, p38, and NF-κB p65 were greatly increased in PGSP-treated cells. PGSP also promoted the phagocytic activity of RAW264.7 cells. All these results indicated that PGSP might activate macrophages through MAPK and NF-κB signaling pathways. Taken together, PGSP may be considered to have immune-enhancing activity and might be used as a potential immune-enhancing agent.
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Minji Kim
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-In
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | | | | | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
8
|
Ma JQ, Dong AB, Xia HY, Wen SY. Preparation methods, structural characteristics, and biological activity of polysaccharides from Platycodon grandiflorus. Int J Biol Macromol 2024; 258:129106. [PMID: 38161010 DOI: 10.1016/j.ijbiomac.2023.129106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Platycodon grandiflorus (P. grandiflorus), a traditional Chinese medicinal herb used for both medicine and food, has a long history of treating respiratory infections, bronchitis, pneumonia, and other lung-related diseases. The therapeutic effects of P. grandiflorus are attributed to its chemical components, including polysaccharides. Among these components, Platycodon grandiflorus polysaccharides (PGP) are recognized as one of the most important and abundant active ingredients, exhibiting various biological activities such as prebiotic, antioxidant, antiviral, anticancer, antiangiogenic, and immune regulatory properties. Incorporating the principles of traditional Chinese medicine, carrier concepts, and modern targeted drug delivery technologies, PGP can influence the target sites and therapeutic effects of other drugs while also serving as a drug carrier for targeted and precise treatments. Therefore, it is essential to provide a comprehensive review of the extraction, separation, purification, physicochemical properties, and biological activities of PGP. In the future, by integrating new concepts, technologies, and processes, further references and guidance can be provided for the comprehensive development of PGP. This will contribute to the advancement of P. grandiflorus in various fields such as pharmaceuticals, health products, and food.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Ao-Bo Dong
- Third Hospital of Baotou City, Baotou 014040, China
| | - Hong-Yan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Jinzhong 030606, China.
| |
Collapse
|
9
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
10
|
Yu H, Chen B, Li J, Dong N, Chang X, Wang J, Peng H, Zha L, Gui S. Identification and functional characterization of two trans-isopentenyl diphosphate synthases and one squalene synthase involved in triterpenoid biosynthesis in Platycodon grandiflorus. PLANTA 2023; 258:115. [PMID: 37943378 DOI: 10.1007/s00425-023-04273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
MAIN CONCLUSION Two trans-isopentenyl diphosphate synthase and one squalene synthase genes were identified and proved to be involved in the triterpenoid biosynthesis in Platycodon grandiflorus. Platycodon grandiflorus is a commonly used traditional Chinese medicine. The main bioactive compounds of P. grandiflorus are triterpenoid saponins. The biosynthetic pathway of triterpenoid saponins in P. grandiflorus has been preliminarily explored. However, limited functional information on related genes has been reported. A total of three trans-isopentenyl diphosphate synthases (trans-IDSs) genes (PgFPPS, PgGGPPS1 and PgGGPPS2) and one squalene synthase (SQS) gene (PgSQS) in P. grandiflorus were screened and identified from transcriptome dataset. Subcellular localization of the proteins was defined based on the analysis of GFP-tagged. The activity of genes was verified in Escherichia coli, demonstrating that recombinant PgFPPS catalysed the production of farnesyl diphosphate. PgGGPPS1 produced geranylgeranyl diphosphate, whereas PgGGPPS2 did not exhibit catalytic activity. By structural identification of encoding genes, a transmembrane region was found at the C-terminus of the PgSQS gene, which produced an insoluble protein when expressed in E. coli but showed no apparent effect on the enzyme function. Furthermore, some triterpenoid saponin synthesis-related genes were discovered by combining the component content and the gene expression assays at the five growth stages of P. grandiflorus seedlings. The accumulation of active components in P. grandiflorus was closely associated with the expression level of genes related to the synthesis pathway.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huasheng Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Anhui University of Chinese Medicine, Hefei, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.
| |
Collapse
|
11
|
Ke W, Flay KJ, Huang X, Hu X, Chen F, Li C, Yang DA. Polysaccharides from Platycodon grandiflorus attenuates high-fat diet induced obesity in mice through targeting gut microbiota. Biomed Pharmacother 2023; 166:115318. [PMID: 37572640 DOI: 10.1016/j.biopha.2023.115318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The root of Platycodon grandiflorus (PG), abundant in soluble polysaccharides, has a long history in traditional Asian diets and herbal medicine due to its anti-inflammatory activity and anti-obesity effects. Our previous study was the first to establish a link between the beneficial effects of PG and changes in the gut microbiota, and suggested potential roles that the polysaccharide components play. However, more evidence was needed to understand the anti-obesity functions of polysaccharides from PG (PS) and their relationship with the regulation of the gut microbiota. In this study, we first performed an experiment to explore the anti-obesity activities of PS: Male C57BL/6 mice (six-weeks-old) were fed either a standard control diet (CON), or a high-fat diet (HFD) to induce obesity, or a HFD supplemented with PS (HFPS) for 8 weeks. Body weight and food intake were monitored throughout. Lipid metabolism were determined and related gene expression changes in adipose tissues were analyzed by RNA-seq. Amplicon sequencing of the bacterial 16 S rRNA gene was used to explore gut microbiota structure in fecal samples. Then, we performed the second experiment to explore whether the anti-obesity activities of PS were dependent on the regulation of the gut microbiota: Male C57BL/6 mice (six-weeks-old), treated with an antibiotic cocktail to reduce the gut microbial load, were fed either a HFD (A-HFD) or a HFPS (A-HFPS) diet for 8 weeks. Finally, we used in vitro fermentation experiments to verify the effects of PS on the growth and metabolic activities of the gut microbes. We found that PS significantly reduced HFD-induced weight gain and excessive fat accumulation, changed the expression of key genes involved in lipid metabolism, and attenuated HFD-induced changes in the gut microbiota. However, PS did not affect fat accumulation or lipid metabolism in the gut microbiota depleted mice. Overall, our results show that PS has significant effects on the gut microbiota in the mouse model, and the anti-obesity effects of PS are mediated via changes in the gut microbiota composition and metabolic activity.
Collapse
Affiliation(s)
- Weixin Ke
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China; National Key Laboratory of Meat Quality Control and New Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Kate Jade Flay
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon 999077, Hong Kong Special Administrative Region of China
| | - Xiaoning Huang
- Department of bioengineering, University of Illinois at Urbana, Champaign 61801, USA
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing 210095, China; National Key Laboratory of Meat Quality Control and New Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Liu Y, Dong Y, Shen W, DU J, Sun Q, Yang Y, Yin D. Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis. Chin J Nat Med 2023; 21:263-278. [PMID: 37120245 DOI: 10.1016/s1875-5364(23)60435-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 05/01/2023]
Abstract
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yahui Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Jiahui DU
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China.
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021, China.
| |
Collapse
|
13
|
Su S, Ding X, Hou Y, Liu B, Du Z, Liu J. Structure elucidation, immunomodulatory activity, antitumor activity and its molecular mechanism of a novel polysaccharide from Boletus reticulatus Schaeff. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Shin KC, Oh DK. Biotransformation of Platycosides, Saponins from Balloon Flower Root, into Bioactive Deglycosylated Platycosides. Antioxidants (Basel) 2023; 12:antiox12020327. [PMID: 36829886 PMCID: PMC9952785 DOI: 10.3390/antiox12020327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Platycosides, saponins from balloon flower root (Platycodi radix), have diverse health benefits, such as antioxidant, anti-inflammatory, anti-tussive, anti-cancer, anti-obesity, anti-diabetes, and whitening activities. Deglycosylated platycosides, which show greater biological effects than glycosylated platycosides, are produced by the hydrolysis of glycoside moieties in glycosylated platycosides. In this review, platycosides are classified according to the chemical structures of the aglycone sapogenins and also divided into natural platycosides, including major, minor, and rare platycosides, depending on the content in Platycodi radix extract and biotransformed platycosides. The biological activities of platycosides are summarized and methods for deglycosylation of saponins, including physical, chemical, and biological methods, are introduced. The biotransformation of glycosylated platycosides into deglycosylated platycosides was described based on the hydrolytic pathways of glycosides, substrate specificity of glycosidases, and specific productivities of deglycosylated platycosides. Methods for producing diverse and/or new deglycosylated platycosides are also proposed.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Zhao RH, Yang FX, Bai YC, Zhao JY, Hu M, Zhang XY, Dou TF, Jia JJ. Research progress on the mechanisms underlying poultry immune regulation by plant polysaccharides. Front Vet Sci 2023; 10:1175848. [PMID: 37138926 PMCID: PMC10149757 DOI: 10.3389/fvets.2023.1175848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of poultry industry and the highly intensive production management, there are an increasing number of stress factors in poultry production. Excessive stress will affect their growth and development, immune function, and induce immunosuppression, susceptibility to a variety of diseases, and even death. In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides have been highlighted because of their various biological activities. Plant polysaccharides are natural immunomodulators that can promote the growth of immune organs, activate immune cells and the complement system, and release cytokines. As a green feed additive, plant polysaccharides can not only relieve stress and enhance the immunity and disease resistance of poultry, but also regulate the balance of intestinal microorganisms and effectively alleviate all kinds of stress faced by poultry. This paper reviews the immunomodulatory effects and molecular mechanisms of different plant polysaccharides (Atractylodes macrocephala Koidz polysaccharide, Astragalus polysaccharides, Taishan Pinus massoniana pollen polysaccharide, and alfalfa polysaccharide) in poultry. Current research results reveal that plant polysaccharides have potential uses as therapeutic agents for poultry immune abnormalities and related diseases.
Collapse
Affiliation(s)
- Ruo-Han Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fang-Xiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Yi-Cheng Bai
- Kunming CHIA TAI Co., Ltd., Kunming, Yunnan, China
| | - Jing-Ying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mei Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xin-Yan Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng-Fei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Teng-Fei Dou
| | - Jun-Jing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Jun-Jing Jia
| |
Collapse
|
16
|
Zhang Z, Zheng P, Qi C, Cui Y, Qi Y, Xue K, Yan G, Liu J. Platycodon grandiflorus Polysaccharides Alleviate Cr(VI)-Induced Apoptosis in DF-1 Cells via ROS-Drp1 Signal Pathway. Life (Basel) 2022; 12:2144. [PMID: 36556509 PMCID: PMC9788446 DOI: 10.3390/life12122144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a widespread heavy metal that has been identified as a human carcinogen, and acute or chronic exposure to Cr(VI) can cause organ damage. Platycodon grandiflorus polysaccharide (PGPS) is a constituent extracted from the Chinese herb Platycodon grandiflorus, which has various pharmacological effects. Therefore, the author investigated the role of PGPSt in Cr(VI)-induced apoptosis in chicken embryo fibroblast cell lines (DF-1 cells). Firstly, this study infected DF-1 cells using Cr(VI) to set up a model for cytotoxicity and then added PGPSt. Then, the intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptosis rate were evaluated. The results showed that PGPSt could inhibit Cr(VI)-induced mitochondrial damage and increase the apoptosis rate. For further exploration of the mechanism of regulation of PGPSt, the ROS-Drp1 pathway was investigated. The antioxidant N-acetyl-L-cysteine (NAC) and mitochondrial division inhibitor 1(Mdivi-1) were added, respectively. The results showed that the NAC and Mdivi-1 restored abnormal mitochondrial fission and cell apoptosis. Thus, PGPSt can alleviate Cr(VI)-induced apoptosis of DF-1 cells through the ROS-Drp1 signaling pathway, which may suggest new research ideas for developing new drugs to alleviate Cr(VI) toxicity.
Collapse
Affiliation(s)
- Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yuehui Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yijian Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Kun Xue
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Guangwei Yan
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
17
|
Zhang S, Chai X, Hou G, Zhao F, Meng Q. Platycodon grandiflorum (Jacq.) A. DC.: A review of phytochemistry, pharmacology, toxicology and traditional use. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154422. [PMID: 36087526 DOI: 10.1016/j.phymed.2022.154422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1β, and activation of the AMPK pathway. CONCLUSION This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Shengnan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
18
|
Liu Y, Chen Q, Ren R, Zhang Q, Yan G, Yin D, Zhang M, Yang Y. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of platycodon grandiflorus decoction, a representative of "the lung and intestine are related". Front Pharmacol 2022; 13:927384. [PMID: 36160385 PMCID: PMC9489837 DOI: 10.3389/fphar.2022.927384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of "the lung and intestine are related" in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Gao JN, Li Y, Liang J, Chai JH, Kuang HX, Xia YG. Direct acetylation for full analysis of polysaccharides in edible plants and fungi using reverse phase liquid chromatography-multiple reaction monitoring mass spectrometry. J Pharm Biomed Anal 2022; 222:115083. [DOI: 10.1016/j.jpba.2022.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
20
|
Cheng G, Zhang S, Lv M, Qi C, Fan R, Guo X, Liu J, Zhao X. The surface morphology of Platycodon grandiflorus polysaccharide and its anti-apoptotic effect by targeting autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154212. [PMID: 35665615 DOI: 10.1016/j.phymed.2022.154212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fumonisin B1 is categorised as possible carcinogenic to humans which commonly contaminate maize and maize-based products worldwide, FB1, like other environmental pollutants, may activate apoptosis, autophagy, the inflammatory response and oxidative stress. Platycodon grandiflorus polysaccharide (PGPSt) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PGPSt could relieve FB1-induced apoptosis has not been elucidated. The study aimed to evaluate the surface morphology of PGPSt and its protective effect on fumonisin B1-induced apoptosis. METHODS The surface morphology of PGPSt was evaluated by SEM and AFM. Expressions of proteins involved in autophagy and apoptosis were detected by western blot analysis. Western blot, transient transfection, JC-1 and Annexin V-FITC/PI staining, CCK8, Live-cell imaging and autophagy inhibitor were used to observe the effect and explore the mechanism of PGPSt on FB1-induced apoptosis of 3D4/21 cells. RESULTS PGPSt had triple helix conformation, and had the characteristics of compact, polyporous and agglomerated morphology. PGPSt promoted the expression of LC3-II and Beclin1, reduced the expression of p62, and significantly activated autophagy. PGPSt inhibited the Akt/mTOR signaling pathway at 24 h. Besides, PGPSt increased the expression of Bcl-2 and decreased the expression of Cleaved Caspase-3. PGPSt-mediated autophagy was inhibited by 3-MA, accompanied by the upregulation of Caspase-3 and Cleaved Caspase-3, suggesting that enhanced autophagy inhibited apoptosis. CONCLUSION PGPSt can activate autophagy, which in turn protects FB1-induced apoptosis. Targeting autophagy may provide a new way to improve the health of humans or animals in FB1 contaminated areas.
Collapse
Affiliation(s)
- Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Shijie Zhang
- Ninth People's Hospital of Zhengzhou, Zhengzhou 450053, PR China
| | - Meiyun Lv
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Rupeng Fan
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Xiaocheng Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
21
|
Li L, Chen X, Lv M, Cheng Z, Liu F, Wang Y, Zhou A, Liu J, Zhao X. Effect of Platycodon grandiflorus Polysaccharide on M1 Polarization Induced by Autophagy Degradation of SOCS1/2 Proteins in 3D4/21 Cells. Front Immunol 2022; 13:934084. [PMID: 35844489 PMCID: PMC9279577 DOI: 10.3389/fimmu.2022.934084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
M1-polarized macrophages can improve the body's immune function. This study aimed to explore the mechanism of Platycodon grandiflorus polysaccharide (PGPSt) degrading SOCS1/2 protein through autophagy and promoting M1 polarization in 3D4/21 cells. Immunoprecipitation, confocal laser scanning microscopy, flow cytometry, and intracellular co-localization were used to detect the expression of related phenotypic proteins and cytokines in M1-polarized cells. The results showed that PGPSt significantly promoted the mRNA expression of IL-6, IL-12, and TNF-α and enhanced the protein expression of IL-6, IL-12, TNF-α, IL-1β, iNOS, CD80, and CD86, indicating that PGPSt promoted M1 polarization in 3D4/21 cells. Next, the effect of the PGPSt autophagy degradation of SOCS1/2 on the M1 polarization of 3D4/21 cells was detected. The results showed that PGPSt significantly downregulated the expression level of SOCS1/2 protein, but had no obvious effect on the mRNA expression level of SOCS1/2, indicating that PGPSt degraded SOCS1/2 protein by activating the lysosome system. Further research found that under the action of 3-MA and BafA1, PGPSt upregulated LC3B II and downregulated SOCS1/2 protein expression, which increased the possibility of LC3B, the key component of autophagy, bridging this connection and degrading SOCS1/2. The interaction between SOCS1/2 and LC3 was identified by indirect immunofluorescence and Co-IP. The results showed that the co-localization percentage of the two proteins increased significantly after PGPSt treatment, and LC3 interacted with SOCS1 and SOCS2. This provides a theoretical basis for the application of PGPSt in the treatment or improvement of diseases related to macrophage polarization by regulating the autophagy level.
Collapse
Affiliation(s)
- Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
- Qingdao Animal Disease Prevention and Control Center, Qingdao Municipal Bureau of Agriculture and Rural Affairs, Qingdao, China
| | - Xufang Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Meiyun Lv
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Fang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Ying Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Aiqin Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| | - Jianzhu Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, China
| | - Xiaona Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, China
| |
Collapse
|
22
|
Shin KC, Kil TG, Kang SH, Oh DK. Production of Deglucose-Apiose-Xylosylated Platycosides from Glycosylated Platycosides by Crude Enzyme from Aspergillus tubingensis. J Microbiol Biotechnol 2022; 32:430-436. [PMID: 35283429 PMCID: PMC9628805 DOI: 10.4014/jmb.2112.12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
Platycosides, Platycodi radix (Platycodon grandiflorus root) saponins, are used as food supplements and exert diverse pharmacological activities. Deglycosylation of saponins enhances their biological efficacy, and deglycosylated platycosides are produced mainly through enzymatic hydrolysis. However, the types of available deglycosylated platycosides remain limited because of a lack of hydrolyzing enzymes that can act on specific glycosides in glycosylated platycosides. In this study, a crude enzyme from Aspergillus tubingensis converted platycoside E (PE) and polygalacin D3 (PGD3) into deglucose-apiose-xylosylated (deGAX)-platycodin D (PD) and deGAX-polygalacin D (PGD), respectively. The products were identified through LC/MS analysis by specifically hydrolyzing all glucose residues at C-3, and apiose and xylose residues at C-28 of platycoside. The hydrolytic activity of the crude enzyme obtained after the cultivation of the fungus using citrus pectin and corn steep solid as carbon and nitrogen sources, respectively, in culture medium was increased compared with those using other carbon and nitrogen sources. The crude enzyme from A. tubingensis was the most effective in producing deGAX platycoside at pH 5.0 and 60°C. The crude enzyme produced 0.32 mg/ml deGAX-PD and 0.34 mg/ml deGAX-PGD from 1 mg/ml PE and 1 mg/ml PGD3 (at pH 5.0 and 60°C) for 12 and 10 h, with productivities of 32.0 and 42.5 mg/l/h and molar yields of 62.1 and 59.6%, respectively. To the best of our knowledge, this is the first study to produce deGAX platycosides from glycosylated platycosides.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Geun Kil
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Su-Hwan Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-454-3118 Fax: +82-2-444-5518 E-mail:
| |
Collapse
|
23
|
Li Y, Guo C, Chen Q, Su Y, Guo H, Liu R, Sun C, Mi S, Wang J, Chen D. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. Int J Biol Macromol 2022; 202:691-706. [PMID: 35124019 DOI: 10.1016/j.ijbiomac.2022.01.194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022]
Abstract
Pneumonia can lead to high morbidity and mortality secondary to uncontrolled inflammation of the lung tissue. Blocking cytokine storm storms may be the key to saving the life of patients with severe pneumonia. According to the medicinal guide theory of Traditional Chinese Medicine (TCM) and the inherent affinity with macrophages for the site of inflammation, we constructed the drug delivery platform (MNPs) derived from macrophage-membrane encapsulated reaction oxygen species (ROS)-responsive Platycodon grandiflorum polysaccharides (PGP) nanoparticles (PNPs) to calm the cytokine storm and improve lung inflammation. By loading the anti-inflammatory agent Curcumin (Cur), we demonstrated that MNPs@Cur significantly attenuated inflammation and cytokine storm syndrome in acute lung injury (ALI) mice by suppressing pro-inflammatory factor production and inflammatory cell infiltration. Interestingly, we observed that the PNPs also have potent pulmonary targeting ability compared to other polysaccharide carriers, which is in line with the medicinal guide theory of TCM. Our study revealed the rational design of drug delivery platforms to improve the treatment of lung injury, which inherits and develops the important theories of TCM through the perfect combination of guide theory and biomimetic nanotechnology and provides the experimental scientific basis for the clinical application of channel ushering drugs.
Collapse
Affiliation(s)
- Yi Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Industrial Technology Institute of Chinese Medicine, Weifang 261100, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China; Weifang Industrial Technology Institute of Chinese Medicine, Weifang 261100, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Ruoyang Liu
- Qilu Normal University, Jinan 250200, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, PR China
| | - Shuqi Mi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jinqiu Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
24
|
Li JJ, Liu ML, Lv JN, Chen RL, Ding K, He JQ. Polysaccharides from Platycodonis Radix ameliorated respiratory syncytial virus-induced epithelial cell apoptosis and inflammation through activation of miR-181a-mediated Hippo and SIRT1 pathways. Int Immunopharmacol 2022; 104:108510. [PMID: 34999393 DOI: 10.1016/j.intimp.2021.108510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in young children, but there are few safe and effective treatments for this disease. Platycodonis Radix is widely used as an antitussive and expectorant drug for preventing various diseases in lower respiratory tract, in which the polysaccharides are one of the main bioactivity constituents. In this study, the protective effects of the P. Radix polysaccharides (PRP) against RSV-induced bronchiolitis in juvenile mice and RSV-induced apoptosis of epithelial HEp-2 cells were investigated. The results showed that PRP obviously decreased the levels of IL-1β, IL-4, IL-6, TNF-α, IFN-γ and TSLP in lung tissues, and reduced the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) of RSV-infected mice. Furthermore, it reduced the apoptosis of RSV-infected HEp-2 cells and remarkably inhibited the mRNA expressions of RSV L gene, which indicated that PRP affected transcription and replication of RSV in host cells. Compared with that in RSV-infected group, miR-181a-5p in the PRP-treated group presented the highest relative abundance and its expression was violently reduced by approximately 30%. Mechanistically, PRP had the similar effects as miR-181a-5p antagomir on RSV-induced apoptosis and inflammation in HEp-2 cells via upregulating BCL2, MLL3 and SIRT1, which could be reversed by miR-181a-5p mimic. Therefore, it demonstrated that PRP not only protected against RSV-induced lung inflammation in mice but also inhibited apoptosis of RSV-infected HEp-2 cells via suppressing miR-181a-5p and transcriptionally activating Hippo and SIRT1 pathways.
Collapse
Affiliation(s)
- Juan-Juan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Mei-Ling Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jia-Ni Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Rui-Lin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China; The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Ding
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
25
|
Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021; 376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
The edible and medicinal plants (EMPs) are becoming an abundant source for cancer prevention and treatment since the natural and healthy trend for modern human beings. Currently, there are more than one hundred species of EMPs widely used and listed by the national health commission of China, and most of them indicate immune or metabolic regulation potential in cancer treatment with numerous studies over the past two decades. In the present review, we focused on the metabolic influence in immunocytes and tumor microenvironment, including immune response, immunosuppressive factors and cancer cells, discussing the immunometabolic potential of EMPs in cancer treatment. There are more than five hundred references collected and analyzed through retrieving pharmacological studies deposited in PubMed by medical subject headings and the corresponding names derived from pharmacopoeia of China as a sole criterion. Finally, the immunometabolism modulation of EMPs was sketch out implying an immunometabolic control in cancer treatment.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
26
|
Qi C, Li L, Cheng G, Xiao B, Xing Y, Zhao X, Liu J. Platycodon grandiflorus Polysaccharide with Anti-Apoptosis, Anti-Oxidant and Anti-Inflammatory Activity Against LPS/D-GalN Induced Acute Liver Injury in Mice. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:4088-4097. [DOI: 10.1007/s10924-021-02179-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 09/27/2024]
|
27
|
Xing Y, Wang L, Xu G, Guo S, Zhang M, Cheng G, Liu Y, Liu J. Platycodon grandiflorus polysaccharides inhibit Pseudorabies virus replication via downregulating virus-induced autophagy. Res Vet Sci 2021; 140:18-25. [PMID: 34391058 DOI: 10.1016/j.rvsc.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Pseudorabies virus (PRV) is one of the common pathogens in farms. Platycodon grandiflorus polysaccharide (PGPS) has been reported with a variety of biological activities. Autophagy is one of the vital mechanisms for cells to cope with virus infection, and it may also inhibit or promote virus replication. This study was conducted to investigate the antiviral activity of total PGPS(PGPSt) against PRV and the role of virus-induced autophagy in the anti-PRV effect of PGPSt in PK-15 cells. First, we established an infection model and detected the autophagy induced by PRV in PK-15 cells. Then, the protective effect of PGPSt against PRV was evaluated, and the effect of PGPSt on PRV replication and virus-induced autophagy were analysed by quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot and confocal immunofluorescence. Results showed that PGPSt can reduce the PRV replication. PRV infection resulted in the accumulation of autophagosomes, which were inhibited by PGPSt. Moreover, PGPSt upregulated the Akt/mammalian target of rapamycin (mTOR) signalling pathway repressed by PRV infection, whereas rapamycin attenuated the anti-PRV effect of PGPSt. These findings suggest that PGPSt possess a protective effect against PRV infection and can inhibit PRV replication through relieving PRV-induced autophagy. This article can provide ideas for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
28
|
Chang X, Li J, Ju M, Yu H, Zha L, Peng H, Wang J, Peng D, Gui S. Untargeted metabolomics approach reveals the tissue-specific markers of balloon flower root (Platycodi Radix) using UPLC-Q-TOF/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Jung JA, Noh JH, Jang MS, Gu EY, Cho MK, Lim KH, Park H, Back SM, Kim SP, Han KH. Safety evaluation of fermented Platycodon grandiflorus (Jacq.) A.DC. extract: Genotoxicity, acute toxicity, and 13-week subchronic toxicity study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114138. [PMID: 33895248 DOI: 10.1016/j.jep.2021.114138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus (Jacq.) A.DC. is a well-known traditional herbal medicine administered for bronchitis and inflammatory diseases. Especially, anti-inflammatory effect of fermented P. grandiflorus (Jacq.) A.DC. extract (FPGE) was higher than that of P. grandiflorus (Jacq.) A.DC. extract. However, toxicological information for FPGE is lacking. AIM OF THE STUDY In this study, we establish a toxicological profile for FPGE by testing genotoxicity, acute and 13-week subchronic toxicity. MATERIALS AND METHODS FPGE was evaluated with bacterial reverse mutation, chromosome aberration, and micronucleus test. For the acute- and 13-week subchronic toxicity tests, FPGE was administered orally at doses of 0, 750, 1500, and 3000 mg/kg in SD rats. RESULTS The results of the genotoxic assays indicated that FPGE induced neither mutagenicity nor clastogenicity. The acute toxicity test showed that FPGE did not affect animal mortality, clinical signs, body weight changes, or microscopic findings at ≤ 3000 mg/kg. The approximate lethal dose (ALD) of FPGE in SD rats was >3000 mg/kg. For the 13-week subchronic toxicity assay, no FPGE dose induced any significant change in mortality, clinical signs, body or organ weight, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination in either SD rat sex. The rat no observed adverse effects level (NOAEL) for FPGE was set to 3000 mg/kg. CONCLUSIONS The present study empirically demonstrated that FPGE has a safe preclinical profile and indicated that it could be safely integrated into health products for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Jin A Jung
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung-Ho Noh
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min Seong Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Eun-Young Gu
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min-Kyung Cho
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Kwang-Hyun Lim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seng-Min Back
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Phil Kim
- STR Biotech Co., Ltd., Chuncheon, 24232, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
30
|
Shin KC, Kil TG, Lee TE, Oh DK. Production of Bioactive Deapiosylated Platycosides from Glycosylated Platycosides in Balloon Flower Root Using the Crude Enzyme from the Food-Available Fungus Rhizopus oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4766-4777. [PMID: 33852306 DOI: 10.1021/acs.jafc.0c06756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extract from balloon flower root (Platycodi radix) containing platycosides as saponins is a beneficial food additive and is used for their savory taste and the alleviation of respiratory diseases. Deglycosylated platycosides show greater pharmacological effects than glycosylated platycosides. However, there are no reports on the conversion of glycosylated platycosides into deapiosylated platycosides. In this study, we showed that the crude enzyme from Rhizopus oryzae, a generally recognized as safe (GRAS) fungus isolated from meju (fermented soybean brick), completely converted glycosylated platycosides in Platycodi radix extract into deapiosylated platycosides: deapiosylated platycodin D (deapi-PD), deapiosylated platycodin A (deapi-PA), deapiosylated polygalacin D (deapi-PGD), and deapiosylated platyconic acid A (deapi-PCA). Among these, deapi-PA and deapi-PCA were first identified using liquid chromatography/mass spectrometry. The anti-inflammatory and antioxidant effects of deapiosylated platycosides were greater than those of the precursor glycosylated platycosides. These deapiosylated platycosides could improve the properties of functional food additives.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Geun Kil
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
31
|
Park EJ, Lee HJ. Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells. Nutr Res Pract 2020; 14:453-462. [PMID: 33029286 PMCID: PMC7520564 DOI: 10.4162/nrp.2020.14.5.453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/OBJECTIVES Platycodon grandiflorum (PG), an oriental herbal medicine, has been known to improve liver function, and has both anti-inflammatory and antimicrobial properties. However, little is known about the immune-enhancing effects of PG and its mechanism. In this study, we aimed to investigate whether fermented PG extract (FPGE), which has increased platycodin D content, activates the immune response in a murine macrophage cell line, RAW 264.7. MATERIALS/METHODS Cell viability was determined by Cell Counting Kit-8 assay and the nitric oxide (NO) levels were measured using Griess reagent. Cytokine messenger RNA levels of were monitored by quantitative reverse transcription polymerase chain reaction. To investigate the molecular mechanisms underlying immunomodulatory actions of FPGE in RAW 264.7 cells, we have conducted luciferase reporter gene assay and western blotting. RESULTS We found that FPGE treatment induced macrophage cell proliferation in a dose-dependent manner. FPGE also modulated the expression of NO and pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The activation and phosphorylation levels of nuclear factor kappa B (NF-κB) were increased by FPGE treatment. Moreover, 5-aminoimidazole-4-carboxamide ribonucleotide, an activator of AMP-activated kinase (AMPK), significantly reduced both lipopolysaccharides- and FPGE-induced NF-κB reporter gene activity. CONCLUSIONS Taken together, our findings suggest that FPGE may be a novel immune-enhancing agent acting via AMPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
32
|
Ke W, Bonilla-Rosso G, Engel P, Wang P, Chen F, Hu X. Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota. J Nutr 2020; 150:2364-2374. [PMID: 32510156 DOI: 10.1093/jn/nxaa159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The root of Platycodon grandiflorus (PG) has a long-standing tradition in the Asian diet and herbal medicine, because of its anti-inflammatory and antiobesity effects. Changes in the gut microbiota can have dietary effects on host health, which suggests a relation between the 2. OBJECTIVES The aim of our study was to investigate the relation between PG-mediated suppression of obesity and the composition and functioning of the gut microbiota. METHODS Six-week-old male C57BL/6J mice were fed either a control diet (CON, 10% kcal from fat), a high-fat diet (HFD, 60% kcal from fat), or a PG-supplemented HFD for 18 wk. PG was administered by oral gavage at 2 g · kg body weight-1 · d-1. Body weight and food intake were monitored. Lipid metabolism, inflammation, and intestinal barrier function were determined. Amplicon sequencing of the bacterial 16S ribosomal RNA gene was used to explore gut microbiota structure, and nontargeted metabolomics analysis was performed to investigate metabolite concentrations in fecal samples. RESULTS We found that PG significantly ameliorated HFD-induced inflammation, recovered intestinal barrier integrity (reduced permeability by 39% , P = 0.008), reduced fat accumulation by 26% (P = 0.009), and changed the expression of key genes involved in the development of white adipose tissue (P < 0.05) in HFD-fed mice to similar levels in CON mice. Moreover, PG attenuated HFD-induced changes in the gut microbiota; it especially increased Allobaculum (7.3-fold, P = 0.002) relative to HFD, whereas CON was 15.2-fold of HFD (P = 0.002). These changes by PG were associated with an increase in the production of SCFAs (butyrate and propionate, P < 0.001) and other carbohydrate-related metabolites known to have a major role in disease suppression. CONCLUSIONS Our study demonstrated that PG beneficially changed the gut microbiota and the gut metabolome in HFD-fed mice, and suggests that the antiobesity effects of PG may be mediated via changes in gut microbiota composition and metabolic activity.
Collapse
Affiliation(s)
- Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Zhang Y, Zhou BH, Tan PP, Chen Y, Miao CY, Wang HW. Key Role of Pro-inflammatory Cytokines in the Toxic Effect of Fluoride on Hepa1-6 Cells. Biol Trace Elem Res 2020; 197:115-122. [PMID: 31983054 DOI: 10.1007/s12011-019-01967-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
Abstract
The role of pro-inflammatory cytokines in the toxicity of fluoride to tumor cells was investigated by culturing Hepa1-6 cells in medium containing gradient concentrations of fluoride (0, 0.5, 1, 1.5, 2, 3, 4, and 5 mmol/L). The viability of Hepa1-6 cells was detected via MTT assay. Interleukin (IL)-2, IL-6, tumor necrosis factor (TNF)-α, and IL-1β levels in the supernatant were determined via an enzyme-linked immunosorbent assay, and the protein expression levels of these enzymes in Hepa1-6 cells were evaluated by immunofluorescence staining. Results showed that the viability of Hepa1-6 cells remarkably decreases after fluoride exposure, especially at concentration of 3, 4, and 5 mmol/L fluoride. Levels of IL-2, TNF-α, and IL-1β in the supernatant markedly decreased when cells were exposed to fluoride at concentrations of 1 mmol/L or higher. However, levels of TNF-α and IL-1β substantially increased and IL-2 showed no remarkable change when the fluoride concentration was 0.5 mmol/L. The content of IL-6 remarkably increased with increasing fluoride concentrations up to 2 mmol/L, and then markedly decreased at 3, 4, and 5 mmol/L fluoride; the decreasing trend of IL-6 content under high fluoride exposure is consistent with the decrease in Hepa1-6 cell viability observed at the same concentration. The protein expression levels of IL-2, IL-6, TNF-α, and IL-1β were in accordance with their contents in the supernatant. In summary, our study demonstrated that fluoride inhibits Hepa1-6 cell growth and results in disorders in the expression and secretion pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Pan-Pan Tan
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Yu Chen
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Cheng-Yi Miao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471003, Henan, People's Republic of China.
| |
Collapse
|
34
|
Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem 2020; 327:127029. [PMID: 32450486 DOI: 10.1016/j.foodchem.2020.127029] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
Platycodonis Radix, the root of Platycodon grandiflorum (Jacq.) A. DC., is a well-known edible herbal medicine. It is a common vegetable used for the preparation of side dish, kimchi, dessert, and tea. Besides, it has been used to treat respiratory disease including cough, excessive phlegm, and sore throat for a long history. In the past decades, the bioactive components and the pharmacological activities of Platycodonis Radix have been widely investigated. Thereinto, platycodins, the oleanane-type triterpenoid saponins were demonstrated to be the main bioactive components in Platycodonis Radix, and more than 70 platycodins have been identified up to date. This paper mainly reviewed the phytochemistry, pharmacological activities (apophlegmatic, anti-tussive, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, immunomodulatory, cardiovascular protective, and hepatoprotective activities, etc.), toxicology and pharmacokinetics of platycodins isolated from Platycodonis Radix, aiming to promote further investigation on therapeutic potential of these platycodins.
Collapse
|
35
|
He JQ, Zheng MX, Ying HZ, Zhong YS, Zhang HH, Xu M, Yu CH. PRP1, a heteropolysaccharide from Platycodonis Radix, induced apoptosis of HepG2 cells via regulating miR-21-mediated PI3K/AKT pathway. Int J Biol Macromol 2020; 158:542-551. [PMID: 32380108 DOI: 10.1016/j.ijbiomac.2020.04.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Two polysaccharides (PRP1 and PRP2) were isolated from Platycodonis Radix. Preliminary structural analysis indicated that PRP1 was composed of glucose, fructose, and arabinose in a molar ratio of 1:1.91:1.59 with a molecular weight of 440 kDa, whereas PRP2 was composed of arabinose, fructose, and galactose in a molar ratio of 1:1.39:1.18 with a molecular weight of 2.85 kDa. Compared with PRP2, PRP1 exerted stronger anticancer activity in vitro. Treatment with 5-30 μg/ml of PRP1 significantly inhibited the proliferation of HepG2 cells in vitro, and oral administration at the doses of 75-300 mg/kg also reduced the tumor growth in vivo. The miRNA expression patterns of human liver cancer cells HepG2 in vivo under PRP1 treatment were established, and microRNA-21 (miR-21) as the onco-miRNA was appreciably downregulated. PRP1 repressed the expression of miR-21, which directly targeted and suppressed PTEN (a negative regulator of the PI3K/Akt signaling cascade), and subsequently upregulated the expression of PTEN but downregulated the PI3K/AKT pathway, thereby promoting liver cancer cell apoptosis. These findings indicated that PRP1 inhibited the proliferation and induced the apoptosis of HepG2 mainly via inactivating the miR-21/PI3K/AKT pathway. Therefore, PRP1 could be used as a food supplement and candidate for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jia-Qi He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Min-Xia Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hua-Zhong Ying
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Yu-Sen Zhong
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Huan-Huan Zhang
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China
| | - Min Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Chen-Huan Yu
- Zhejiang Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou 310013, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou 310018, China.
| |
Collapse
|
36
|
Dietary Platycodon grandiflorus Attenuates Hepatic Insulin Resistance and Oxidative Stress in High-Fat-Diet Induced Non-Alcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12020480. [PMID: 32074961 PMCID: PMC7071327 DOI: 10.3390/nu12020480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
The root of Platycodon grandiflorus (PG), with hepatoprotective and anti-oxidation effects, has a long history of being used as food and herbal medicine in Asia. However, the mechanism of PG against non-alcoholic fatty liver disease (NAFLD) is still not clear. The aim of this study was to investigate the mechanism of PG suppressing the development of NAFLD induced by a high-fat diet (HFD) in mice. Male C57BL/6J mice were fed with either a standard chow diet or a HFD, either supplemented with or without PG, for 16 weeks. Serum lipids, liver steatosis, oxidative stress and insulin sensitivity were determined. Expressions or activities of hepatic enzymes in the related pathways were analyzed to investigate the mechanisms. PG significantly reduced HFD-induced hepatic injury and hyperlipidemia, as well as hepatic steatosis via regulating phosphorylation of acetyl-CoA carboxylase (p-ACC) and expression of fatty acid synthase (FAS). In addition, PG ameliorated oxidative stress by restoring glutathione (GSH) content and antioxidant activities, and improved insulin sensitivity by regulating the PI3K/Akt/GSK3β signaling pathway. Our data showed that dietary PG have profound effects on hepatic insulin sensitivity and oxidative stress, two key factors in the pathogenesis of NAFLD, demonstrating the potential of PG as a therapeutic strategy for NAFLD.
Collapse
|
37
|
Shin KC, Kim DW, Woo HS, Oh DK, Kim YS. Conversion of Glycosylated Platycoside E to Deapiose-Xylosylated Platycodin D by Cytolase PCL5. Int J Mol Sci 2020; 21:ijms21041207. [PMID: 32054089 PMCID: PMC7072768 DOI: 10.3390/ijms21041207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Platycosides, the saponins abundant in Platycodi radix (the root of Platycodon grandiflorum), have diverse pharmacological activities and have been used as food supplements. Since deglycosylated saponins exhibit higher biological activity than glycosylated saponins, efforts are on to enzymatically convert glycosylated platycosides to deglycosylated platycosides; however, the lack of diversity and specificities of these enzymes has limited the kinds of platycosides that can be deglycosylated. In the present study, we examined the enzymatic conversion of platycosides and showed that Cytolase PCL5 completely converted platycoside E and polygalacin D3 into deapiose-xylosylated platycodin D and deapiose-xylosylated polygalacin D, respectively, which were identified by LC-MS analysis. The platycoside substrates were hydrolyzed through the following novel hydrolytic pathways: platycoside E → platycodin D3 → platycodin D → deapiosylated platycodin D → deapiose-xylosylated platycodin D; and polygalacin D3 → polygalacin D → deapiosylated polygalacin D → deapiose-xylosylated polygalacin D. Our results show that cytolast PCL5 may have a potential role in the development of biologically active platycosides that may be used for their diverse pharmacological activities.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea; (K.-C.S.); (D.-K.O.)
| | - Dae Wook Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
| | - Hyun Sim Woo
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
| | - Deok-Kun Oh
- Research Institute of Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea; (K.-C.S.); (D.-K.O.)
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Yeong-Su Kim
- Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa 36209, Korea; (D.W.K.); (H.S.W.)
- Correspondence: ; Tel.: +82-54-679-2740; Fax: +82-54-679-0636
| |
Collapse
|
38
|
Li B, Li W, Tian Y, Guo S, Qian L, Xu D, Cao N. Selenium-Alleviated Hepatocyte Necrosis and DNA Damage in Cyclophosphamide-Treated Geese by Mitigating Oxidative Stress. Biol Trace Elem Res 2020; 193:508-516. [PMID: 31025241 DOI: 10.1007/s12011-019-01717-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Selenium (Se) has been well recognized as an immune-enhancing agent with antioxidant and anti-tumor properties. The commonly used chemotherapy drug, cyclophosphamide (CTX), induces liver injury by increasing the reactive oxygen species (ROS) level. However, little is known about how Se alleviates CTX-induced liver injury in geese. In this study, 90 male Magang geese (3 days old) were randomly allocated into three groups (control, CTX, and Se + CTX group) with three replicates per group and ten geese per replicate. The control and CTX groups were fed a basal diet (Se content was 0.03 mg/kg). The Se + CTX group was fed a basal diet containing 0.44 mg/kg sodium selenite (Se content was 0.2 + 0.03 mg/kg). The control group was injected with 0.5 mL saline, while the CTX and Se + CTX groups were injected with CTX at 40 mg/kg body weight per day on days 21-23. The liver index, liver histology, and ultra-micromorphology detected antioxidant enzyme activity in the liver and serum. In addition, we detected the liver marker enzymes and protein levels in serum, and hepatocyte DNA damage. Se could alleviate liver development dysregulation, hepatocyte structural damage, the disturbances in antioxidant enzyme (GPx, CAT, and SOD) activity, and malondialdehyde (MDA) levels in the serum and liver. Besides, Se could alleviate the dysregulation of liver marker enzyme (ALT and AST) activity and protein (ALB and TP) levels in the serum, and DNA migration induced by CTX. In conclusion, Se may inhibit hepatocyte necrosis and DNA damage by inhibiting CTX-induced oxidative stress.
Collapse
Affiliation(s)
- Bingxin Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Yunbo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Sixuan Guo
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Long Qian
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
| | - Danning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China.
| | - Nan Cao
- Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China.
| |
Collapse
|
39
|
Noh EM, Kim JM, Lee HY, Song HK, Joung SO, Yang HJ, Kim MJ, Kim KS, Lee YR. Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:322. [PMID: 31752816 PMCID: PMC6868875 DOI: 10.1186/s12906-019-2724-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022]
Abstract
Background Platycodon grandiflorum is a flowering plant that is used in traditional medicine for treating pulmonary and respiratory disorders. It exerts various pharmacological effects, including immunomodulatory and anti-cancer activities. The purpose of this study was to confirm the in vitro and in vivo immune-enhancing effects of P. grandiflorum extract (PGE) on splenocytes isolated from cyclophosphamide (CP)-induced immunosuppressed rats. Methods For in vitro analysis, splenocytes were treated with PGE at various doses along with CP. Cell viability was measured by a WST-1 assay, and NK cell activity and cytotoxic T lymphocyte (CTL) activity was also examined. In addition, immunoglobulin A (IgA), IgG, and cytokine levels were measured. For in vivo analysis, Sprague Dawley rats were treated with various doses of PGE along with CP. Complete blood count (CBC) was performed, and plasma levels of IgA, IgG, TNF-α, IFN-γ, IL-2, and IL-12 were quantified. Additionally, tissue damage was assessed through histological analyses of the thymus and spleen. Results PGE treatment enhanced cell viability and natural killer cell and cytotoxic T lymphocyte activity, and increased the production of CP-induced inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA) in splenocytes. In addition, in CP-treated rats, PGE treatment induced the recovery of white blood cell, neutrophil, and lymphocyte counts, along with mid-range absolute counts, and increased the serum levels of inflammatory cytokines (TNF-α, IFN-γ, IL-2, and IL-12) and immunoglobulins (IgG and IgA). Moreover, PGE attenuated CP-induced spleen and thymic damage. Conclusions Our results confirmed that PGE exerts an immune-enhancing effect both in vitro and in vivo, suggesting that PGE may have applications as a component of immunostimulatory agents or as an ingredient in functional foods.
Collapse
|
40
|
Lin Y, Jiang S, Yang X. Characterization of the complete chloroplast genome of Platycodon grandifloras (Campanulaceae: Platycodon), the herbal medicine in China. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1617083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Yanping Lin
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, Changchun, China
| | - Shangtong Jiang
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, Changchun, China
| | - Xiaodong Yang
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, Changchun, China
| |
Collapse
|
41
|
Tang C, Ding R, Sun J, Liu J, Kan J, Jin C. The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food Funct 2019; 10:2290-2312. [DOI: 10.1039/c8fo01946k] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a comprehensive review of the impacts of natural polysaccharides on gut microbiota and immune responses as well as their interactions.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Ruoxi Ding
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|