1
|
Pawar P, Prabhu A. Smart SPIONs for Multimodal Cancer Theranostics: A Review. Mol Pharm 2025. [PMID: 40223773 DOI: 10.1021/acs.molpharmaceut.5c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Despite significant advancements in anticancer research, the performance statistics of current therapeutic regimens yield unsatisfactory outcomes. Issues such as high metastasis rates, drug resistance, limited efficacy, and severe side effects underscore the urgent need for safer and more effective strategies for tumor mitigation. One promising approach lies in the use of superparamagnetic iron oxide nanoparticles (SPIONs) for hybridized cancer therapy, leveraging their unique properties and functional versatility to enhance treatment efficacy and safety. They can serve as platforms for various therapeutic as well as diagnostic applications, enhancing imaging techniques such as magnetic resonance imaging. This paper presents an in-depth compilation of the application of nanoparticulate SPIONs amalgamates for multimodal cancer therapeutics. Physical phenomena such as light, heat, sound, and magnetism can be coupled to nanoparticulate delivery systems for developing targeted, precision medicine against cancer. Integration of noninvasive and effective platforms technologies such as photodynamic therapy, photothermal therapy, magnetic hyperthermia, and sonodynamic therapy hold great promise in counteracting the daunting challenges within cancer therapeutics.
Collapse
Affiliation(s)
- Pradip Pawar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| | - Arati Prabhu
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, India
| |
Collapse
|
2
|
Coskun A, Senturk F, Turan E. Enhanced Transepithelial Riboflavin Delivery Across the Cornea Using Magnetic Nanocarriers. J Ocul Pharmacol Ther 2025; 41:131-140. [PMID: 39883041 DOI: 10.1089/jop.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Purpose: Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in ex vivo bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field. Methods: SPIONs were synthesized via co-precipitation, modified with TA and Rb, and characterized by physicochemical techniques. The average size of the Rb-TA-SPIONs was 46 ± 5.3 nm, with a saturation magnetization of 55.9 emu/g. Ex vivo experiments involved the application of 0.1% Rb to bovine corneas, and penetration was evaluated under epi-on conditions with iontophoresis (1-5 mA, 5 min). In addition, a 0.1% Rb-containing nanocarrier solution was tested under magnetic fields of 1-300 Gauss. Results: Results showed increased Rb penetration with rising electric current density and Rb-TA-SPION penetration with stronger magnetic fields, compared with epi-on control groups. Specifically, Rb penetration increased from 0.036% (P ≤ 0.01) at 1 mA to 0.059% (P ≤ 0.001) at 5 mA in the iontophoresis group and from 0.035% (P ≤ 0.001) at 1 G to 0.054% (P ≤ 0.001) at 300 G in the magnetic group. Conclusion: These findings indicate that magnetic nanoparticle-assisted Rb delivery, guided by an external magnetic field, could improve potential CXL efficacy by enhancing Rb penetration and corneal permeability.
Collapse
Affiliation(s)
- Alaaddin Coskun
- Department of Biophysics, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatih Senturk
- Department of Biophysics, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Eylem Turan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
3
|
Saxena S, Sharma S, Kumar G, Thakur S. Unravelling the complexity of CARPA: a review of emerging advancements in therapeutic strategies. Arch Dermatol Res 2025; 317:439. [PMID: 39971823 DOI: 10.1007/s00403-025-03971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Hypersensitivity reactions to complement activation-related pseudo-allergy (CARPA) pose a serious concern to patient safety when using nanoparticle-based drug delivery systems (NDDS). Complement activation-related pseudo-allergy is a severe, idiosyncratic hypersensitivity reaction consequent to complement activation and liberation of potent pro-inflammatory molecules. Recent developments have concentrated on identifying, managing, and preventing CARPA to improve the efficacy and safety of NDDS, including early identification biomarkers and highly sensitive diagnostic techniques. The development of biocompatible nanoparticles, surface changes to reduce complement activation, and the use of complement inhibitors are some of the innovative strategies for CARPA reduction that are highlighted. Furthermore, newly developed management procedures, such as premedication schedules, customized dosage plans, and real-time monitoring methods, are also covered. The scope of this review encompasses the new diagnostic methods based on in-vitro assays, ex-vivo models, and highly sensitive imaging techniques for the detection of complement activation and other related pseudo-allergic reactions including liposome encapsulation and PEGylation to enhance biocompatibility and decrease immune stimulation. Special emphasis is paid to the application of high-throughput screening technologies and omics tools that enhance the likelihood and evaluation of CARPA immunogenicity. Integration of these approaches forms a comprehensive approach to improving the understanding and administration of CARPA in clinical settings to increase patient safety during nanoparticle-based treatment. The advanced alignments complement regulatory and clinical concerns and connect experimental paradigms to applications, such integration of knowledge provides a platform for the development of next-generation NDDSs for reducing CARPA and enhancing the efficiency of medication delivery thereby increasing patient compliance. This abstract delineates the methods of diagnosing, preventing, and managing CARPA, with addressing the nanotechnology for the problem.
Collapse
Affiliation(s)
- Shubhi Saxena
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Subhi Sharma
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Gourav Kumar
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Yang Y, Lv M, Liu R, Yu P, Shen Z, Bai D, Zhao P, Yang J, Tang X, Yang H, Yong Y, Jiang G. Tungsten-based polyoxometalate nanoclusters as ferroptosis inhibitors modulating S100A8/A9-mediated iron metabolism pathway for managing intracerebral haemorrhage. J Nanobiotechnology 2025; 23:122. [PMID: 39972331 PMCID: PMC11837349 DOI: 10.1186/s12951-025-03149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Intracerebral haemorrhage (ICH) is a devastating neurological disorder with high morbidity and mortality rates, largely owing to the lack of effective therapeutic strategies. Growing evidence has underscored the pivotal role of ferroptosis in intracerebral haemorrhage, and its contribution to neuronal death and exacerbation of brain injury, thus establishing it as a crucial target for therapeutic intervention. In recent years, polyoxometalate nanoclusters (NCs) have been applied in various neurodegenerative diseases, demonstrating neuroprotective effects. However, their impact on brain iron content and neurological function following ICH has yet to be reported. Here, we explored the potential of tungsten-based polyoxometalate (W-POM) NCs as ferroptosis inhibitors targeting the iron metabolic pathway mediated by S100A8/A9 for the treatment of ICH. RESULTS We successfully synthesized ultra-small reduced W-POM NCs that can rapidly cross the blood-brain barrier and are cleared through the kidney. In vitro experiments demonstrated that W-POM NCs exhibit significant and stable ROS scavenging activity while effectively alleviating iron overload and associated neuronal damage. In vivo, W-POM NCs treatment restored iron metabolism homeostasis, suppressed neuroinflammation and oxidative stress, ultimately alleviating severe neurological damage and motor deficits in ICH mice. Proteomic combined with bioinformatic analyses identified two core genes, S100A8 and S100A9, most associated with W-POM NCs intervention in ICH. Further experiments confirmed that W-POM NCs act by modulating the toll-like receptor 4/hepcidin/ferroportin signaling pathway, thereby regulating iron metabolism and reducing secondary brain injury. CONCLUSIONS This study pioneers the application of polyoxometalates in intracerebral haemorrhage, offering a novel and promising therapeutic approach for the management of ferroptosis-related brain injuries.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingzhu Lv
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ruihong Liu
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilu Yu
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ziyi Shen
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dazhang Bai
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peilin Zhao
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jin Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China
| | - Xiaoping Tang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
| | - Hanfeng Yang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
| | - Yuan Yong
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Guohui Jiang
- Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Road, Nanchong, Sichuan, 637000, China.
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
5
|
Lenzuni M, Giannoni P, Chiaramello E, Fiocchi S, Suarato G, Ravazzani P, Marrella A. Multiphysics analysis of the dual role of magnetoelectric nanoparticles in a microvascular environment: from magnetic targeting to electrical activation. Front Bioeng Biotechnol 2025; 12:1467328. [PMID: 39840138 PMCID: PMC11747017 DOI: 10.3389/fbioe.2024.1467328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated. In particular, by integrating electromagnetic, fluid dynamics, and biological models, the efficacy of MENPs as wireless nano-tools to trigger electrical stimulation in the peripheral Nervous system present within the dermal microenvironment was assessed. The simulations replicate the blood venous capillary network, accounting for the complex interactions between MENPs, blood flow, and vessel walls. Results demonstrate the precise steering of MENPs (>95%) toward target sites under a low-intensity external magnetic field (78 mT) even with a low susceptibility value (0.45). Furthermore, the extravasation and electrical activation of MENPs within the dermal tissue are analyzed, revealing the generation of high-induced electric fields in the surrounding area when MENPs are subjected to external magnetic fields. Overall, these findings predict that MENPs can be targeted in a tissue site when intravenously administrated, dragged through the microvessels of the venous system, and activated by generating high electric fields for the stimulation of the peripheral nervous system.
Collapse
Affiliation(s)
- Martina Lenzuni
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, Genoa, Italy
| | - Emma Chiaramello
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Serena Fiocchi
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Giulia Suarato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Paolo Ravazzani
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| | - Alessandra Marrella
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council (CNR), Milan, Italy
| |
Collapse
|
6
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
7
|
Funnell JL, Fougere J, Zahn D, Dutz S, Gilbert RJ. Delivery of TGFβ3 from Magnetically Responsive Coaxial Fibers Reduces Spinal Cord Astrocyte Reactivity In Vitro. Adv Biol (Weinh) 2024; 8:e2300531. [PMID: 38935534 PMCID: PMC11473240 DOI: 10.1002/adbi.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/29/2024] [Indexed: 06/29/2024]
Abstract
A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFβ3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFβ3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFβ3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFβ3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFβ3 from the fibers by 25% over 7 days and released TGFβ3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFβ3 on reactive astrocyte phenotype.
Collapse
Affiliation(s)
- Jessica L Funnell
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Jasper Fougere
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
| | - Diana Zahn
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
| | - Silvio Dutz
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Gustav-Kirchhoff-Str. 2, 98693, Ilmenau, Germany
- Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056, Zwickau, Germany
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th St., Troy, NY, 12180, USA
- Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave., Albany, NY, 12208, USA
| |
Collapse
|
8
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Sharallah OA, Poddar NK, Alwadan OA. Delineation of the role of G6PD in Alzheimer's disease and potential enhancement through microfluidic and nanoparticle approaches. Ageing Res Rev 2024; 99:102394. [PMID: 38950868 DOI: 10.1016/j.arr.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathologic entity characterized by the abnormal presence of tau and macromolecular Aβ deposition that leads to the degeneration or death of neurons. In addition to that, glucose-6-phosphate dehydrogenase (G6PD) has a multifaceted role in the process of AD development, where it can be used as both a marker and a target. G6PD activity is dysregulated due to its contribution to oxidative stress, neuroinflammation, and neuronal death. In this context, the current review presents a vivid depiction of recent findings on the relationship between AD progression and changes in the expression or activity of G6PD. The efficacy of the proposed G6PD-based therapeutics has been demonstrated in multiple studies using AD mouse models as representative animal model systems for cognitive decline and neurodegeneration associated with this disease. Innovative therapeutic insights are made for the boosting of G6PD activity via novel innovative nanotechnology and microfluidics tools in drug administration technology. Such approaches provide innovative methods of surpassing the blood-brain barrier, targeting step-by-step specific neural pathways, and overcoming biochemical disturbances that accompany AD. Using different nanoparticles loaded with G6DP to target specific organs, e.g., G6DP-loaded liposomes, enhances BBB penetration and brain distribution of G6DP. Many nanoparticles, which are used for different purposes, are briefly discussed in the paper. Such methods to mimic BBB on organs on-chip offer precise disease modeling and drug testing using microfluidic chips, requiring lower sample amounts and producing faster findings compared to conventional techniques. There are other contributions to microfluid in AD that are discussed briefly. However, there are some limitations accompanying microfluidics that need to be worked on to be used for AD. This study aims to bridge the gap in understanding AD with the synergistic use of promising technologies; microfluid and nanotechnology for future advancements.
Collapse
Affiliation(s)
- Omnya A Sharallah
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Omnia A Alwadan
- PharmD Program, Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt
| |
Collapse
|
10
|
Mohapatra P, Gopikrishnan M, Doss C GP, Chandrasekaran N. How Precise are Nanomedicines in Overcoming the Blood-Brain Barrier? A Comprehensive Review of the Literature. Int J Nanomedicine 2024; 19:2441-2467. [PMID: 38482521 PMCID: PMC10932758 DOI: 10.2147/ijn.s442520] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2025] Open
Abstract
New nanotechnology strategies for enhancing drug delivery in brain disorders have recently received increasing attention from drug designers. The treatment of neurological conditions, including brain tumors, stroke, Parkinson's Disease (PD), and Alzheimer's disease (AD), may be greatly influenced by nanotechnology. Numerous studies on neurodegeneration have demonstrated the effective application of nanomaterials in the treatment of brain illnesses. Nanocarriers (NCs) have made it easier to deliver drugs precisely to where they are needed. Thus, the most effective use of nanomaterials is in the treatment of various brain diseases, as this amplifies the overall impact of medication and emphasizes the significance of nanotherapeutics through gene therapy, enzyme replacement therapy, and blood-barrier mechanisms. Recent advances in nanotechnology have led to the development of multifunctional nanotherapeutic agents, a promising treatment for brain disorders. This novel method reduces the side effects and improves treatment outcomes. This review critically assesses efficient nano-based systems in light of obstacles and outstanding achievements. Nanocarriers that transfer medications across the blood-brain barrier and nano-assisted therapies, including nano-immunotherapy, nano-gene therapy, nano enzyme replacement therapy, scaffolds, and 3D to 6D printing, have been widely explored for the treatment of brain disorders. This study aimed to evaluate existing literature regarding the use of nanotechnology in the development of drug delivery systems that can penetrate the blood-brain barrier (BBB) and deliver therapeutic agents to treat various brain disorders.
Collapse
Affiliation(s)
| | - Mohanraj Gopikrishnan
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | | |
Collapse
|
11
|
Li Y, Lv C, Li Z, Chen C, Cheng Y. Magnetic modulation of lysosomes for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1947. [PMID: 38488191 DOI: 10.1002/wnan.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
Lysosomes play a central role in biochemical signal transduction and oxidative stress in cells. Inducing lysosome membrane penetration (LMP) to cause lysosomal-dependent cell death (LCD) in tumor cells is an effective strategy for cancer therapy. Chemical drugs can destroy the stability of lysosomes by neutralizing protons within the lysosomes or enhancing the fragility of the lysosomal membranes. However, there remain several unsolved problems of traditional drugs in LMP induction due to insufficient lysosomal targeting, fast metabolism, and toxicity in normal cells. With the development of nanotechnology, magnetic nanoparticles have been demonstrated to target lysosomes naturally, providing a versatile tool for lysosomal modulation. Combined with excellent tissue penetration and spatiotemporal manipulability of magnetic fields, magnetic modulation of lysosomes progresses rapidly in inducing LMP and LCD for cancer therapy. This review comprehensively discussed the strategies of magnetic modulation of lysosomes for cancer therapy. The intrinsic mechanisms of LMP-induced LCD were first introduced. Then, the modulation of lysosomes by diverse physical outputs of magnetic fields was emphatically discussed. Looking forward, this review will shed the light on the prospect of magnetic modulation of lysosomes, inspiring future research of magnetic modulation strategy in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Lv
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Ficiarà E, Stura I, Vernone A, Silvagno F, Cavalli R, Guiot C. Iron Overload in Brain: Transport Mismatches, Microbleeding Events, and How Nanochelating Therapies May Counteract Their Effects. Int J Mol Sci 2024; 25:2337. [PMID: 38397013 PMCID: PMC10889007 DOI: 10.3390/ijms25042337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Iron overload in many brain regions is a common feature of aging and most neurodegenerative diseases. In this review, the causes, mechanisms, mathematical models, and possible therapies are summarized. Indeed, physiological and pathological conditions can be investigated using compartmental models mimicking iron trafficking across the blood-brain barrier and the Cerebrospinal Fluid-Brain exchange membranes located in the choroid plexus. In silico models can investigate the alteration of iron homeostasis and simulate iron concentration in the brain environment, as well as the effects of intracerebral iron chelation, determining potential doses and timing to recover the physiological state. Novel formulations of non-toxic nanovectors with chelating capacity are already tested in organotypic brain models and could be available to move from in silico to in vivo experiments.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- School of Pharmacy, University of Camerino, 62032 Camerino, MC, Italy;
| | - Ilaria Stura
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Annamaria Vernone
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| | - Francesca Silvagno
- Department of Oncology, Università degli Studi di Torino, 10126 Torino, TO, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, Università degli Studi di Torino, 10125 Torino, TO, Italy;
| | - Caterina Guiot
- Department of Neurosciences, Università degli Studi di Torino, 10125 Torino, TO, Italy; (A.V.); (C.G.)
| |
Collapse
|
13
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier. ACS NANO 2024; 18:1820-1845. [PMID: 38193927 PMCID: PMC10811692 DOI: 10.1021/acsnano.3c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.
Collapse
Affiliation(s)
- Shuai Zha
- Hubei
University of Chinese Medicine, School of
Laboratory Medicine, 16
Huangjia Lake West Road, Wuhan 430065, China
- Hubei
Shizhen Laboratory, Wuhan 430061, China
| | - Haitao Liu
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Hengde Li
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| | - Haolan Li
- Dalian
University of Technology School of Chemical
Engineering, Lingshui
Street, Ganjingzi District, Dalian 116024, China
| | - Ka-Leung Wong
- The
Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology, Building Y815, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Angelo Homayoun All
- Hong
Kong Baptist University, Department of Chemistry, Ho Sin Hang Campus, 224 Waterloo
Road, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Zhang W. Blood-Brain Barrier (BBB)-Crossing Strategies for Improved Treatment of CNS Disorders. Handb Exp Pharmacol 2024; 284:213-230. [PMID: 37528323 DOI: 10.1007/164_2023_689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Blood-brain barrier (BBB) is a special biological property of the brain neurovascular unit (including brain microvessels and capillaries), which facilitates the transport of nutrients into the central nervous system (CNS) and exchanges metabolites but restricts passage of blood-borne neurotoxic substances and drugs/xenobiotics into CNS. BBB plays a crucial role in maintaining the homeostasis and normal physiological functions of CNS but severely impedes the delivery of drugs and biotherapeutics into CNS for treatment of neurological disorders. A variety of technologies have been developed in the past decade for brain drug delivery. Most of these technologies are still in preclinical stage and some are undergoing clinical studies. Only a few have been approved by regulatory agencies for clinical applications. This chapter will overview the strategies and technologies/approaches for brain drug delivery and discuss some of the recent advances in the field.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Wang T, Chang TMS. Superparamagnetic Artificial Cells PLGA-Fe 3O 4 Micro/Nanocapsules for Cancer Targeted Delivery. Cancers (Basel) 2023; 15:5807. [PMID: 38136352 PMCID: PMC10741498 DOI: 10.3390/cancers15245807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Artificial cells have been extensively used in many fields, such as nanomedicine, biotherapy, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, and the COVID-19 vaccine. The unique properties of superparamagnetic Fe3O4 nanoparticles have contributed to increased interest in using superparamagnetic artificial cells (PLGA-Fe3O4 micro/nanocapsules) for targeted therapy. In this review, the preparation methods of Fe3O4 NPs and superparamagnetic artificial cell PLGA-drug-Fe3O4 micro/nanocapsules are discussed. This review also focuses on the recent progress of superparamagnetic PLGA-drug-Fe3O4 micro/nanocapsules as targeted therapeutics. We shall concentrate on the use of superparamagnetic artificial cells in the form of PLGA-drug-Fe3O4 nanocapsules for magnetic hyperthermia/photothermal therapy and cancer therapies, including lung breast cancer and glioblastoma.
Collapse
Affiliation(s)
| | - Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
17
|
Kanber M, Umerah O, Brindley S, Zhang X, Brown JM, Reynolds L, Beltran-Huarac J. Magneto-Mechanical Actuation Induces Endothelial Permeability. ACS Biomater Sci Eng 2023; 9:6902-6914. [PMID: 38014849 PMCID: PMC10716818 DOI: 10.1021/acsbiomaterials.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Cancer treatment is one of the major health problems that burden our society. According to the American Cancer Society, over 1.9 million new cancer cases and ∼0.6 million deaths from cancer are expected in the US in 2023. Therapeutic targeting is considered to be the gold standard in cancer treatment. However, when a tumor grows beyond a critical size, its vascular system differentiates abnormally and erratically, creating a heterogeneous endothelial barrier that further restricts drug delivery into tumors. While several methods exist, these prompt tumor migration and the appearance of new metastatic sites. Herein, we propose an innovative method based on magneto-mechanical actuation (MMA) to induce endothelial permeability. This method employs FDA-approved PEGylated superparamagnetic iron oxide nanoparticles (PEG-SPIONs) and alternating nonheating magnetic fields. MMA lies in the translation of magnetic forces into mechanical agitation. As a proof of concept, we developed a 2D cell culture model based on human umbilical vein endothelial cells (HUVEC), which were incubated with PEG-SPIONs and then exposed to different magnetic doses. After adjusting the particle concentration, incubation times, and parameters (amplitude, frequency, and exposure time) of the magnetic field generator, we induced actin filament remodeling and subsequent vascular endothelial-cadherin junction disruption. This led to transient gaps in cell monolayers, through which fluorescein isothiocyanate-dextran was translocated. We observed no cell viability reduction for 3 h of particle incubation up to a concentration of 100 μg/mL in the presence and absence of magnetic fields. For optimal permeability studies, the magnetic field parameters were adjusted to 100 mT, 65 Hz, and 30 min in a pulse mode with 5 min OFF intervals. We found that the endothelial permeability reached the highest value (33%) when 2 h postmagnetic field treatment was used. To explain these findings, a magneto-mechanical transduced stress mechanism mediated by intracellular forces was proposed. This method can open new avenues for targeted drug delivery into anatomic regions within the body for a broad range of disease interventions.
Collapse
Affiliation(s)
- Mohammad Kanber
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Obum Umerah
- Brody
School of Medicine, East Carolina University, Greenville, North Carolina 27858, United States
| | - Stephen Brindley
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Xuanyi Zhang
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jared M. Brown
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Lew Reynolds
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juan Beltran-Huarac
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
18
|
Fan Z, Wen X, Ding X, Wang Q, Wang S, Yu W. Advances in biotechnology and clinical therapy in the field of peripheral nerve regeneration based on magnetism. Front Neurol 2023; 14:1079757. [PMID: 36970536 PMCID: PMC10036769 DOI: 10.3389/fneur.2023.1079757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common neurological diseases. Recent studies on nerve cells have provided new ideas for the regeneration of peripheral nerves and treatment of physical trauma or degenerative disease-induced loss of sensory and motor neuron functions. Accumulating evidence suggested that magnetic fields might have a significant impact on the growth of nerve cells. Studies have investigated different magnetic field properties (static or pulsed magnetic field) and intensities, various magnetic nanoparticle-encapsulating cytokines based on superparamagnetism, magnetically functionalized nanofibers, and their relevant mechanisms and clinical applications. This review provides an overview of these aspects as well as their future developmental prospects in related fields.
Collapse
|
19
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
20
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Goyal MM, Zhou NJ, Vincent PFY, Hoffman ES, Goel S, Wang C, Sun DQ. Rationally Designed Magnetic Nanoparticles for Cochlear Drug Delivery: Synthesis, Characterization, and In Vitro Biocompatibility in a Murine Model. OTOLOGY & NEUROTOLOGY OPEN 2022; 2:e013. [PMID: 38516629 PMCID: PMC10950169 DOI: 10.1097/ono.0000000000000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 03/23/2024]
Abstract
Hypothesis Magnetic nanoparticles (MNPs) for cochlear drug delivery can be precisely engineered for biocompatibility in the cochlea. Background MNPs are promising drug delivery vehicles that can enhance the penetration of both small and macromolecular therapeutics into the cochlea. However, concerns exist regarding the application of oxidative, metal-based nanomaterials to delicate sensory tissues of the inner ear. Translational development of MNPs for cochlear drug deliver requires specifically tuned nanoparticles that are not cytotoxic to inner ear tissues. We describe the synthesis and characterization of precisely tuned MNP vehicles, and their in vitro biocompatibility in murine organ of Corti organotypic cultures. Methods MNPs were synthesized via 2-phase ligand transfer process with precise control of nanoparticle size. Core and hydrodynamic sizes of nanoparticles were characterized using electron microscopy and dynamic light scattering, respectively. In vitro biocompatibility was assayed via mouse organ of Corti organotypic cultures with and without an external magnetic field gradient. Imaging was performed using immunohistochemical labeling and confocal microscopy. Outer hair cell, inner hair cell, and spiral ganglion neurites were individually quantified. Results Monocore PEG-MNPs of 45 and 148 nm (mean hydrodynamic diameter) were synthesized. Organ of Corti cultures demonstrated preserved outer hair cell, inner hair cell, and neurite counts across 2 MNP sizes and doses, and irrespective of external magnetic field gradient. Conclusion MNPs can be custom-synthesized with precise coating, size, and charge properties specific for cochlear drug delivery while also demonstrating biocompatibility in vitro.
Collapse
Affiliation(s)
- Mukund M. Goyal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Nancy J. Zhou
- School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Philippe F. Y. Vincent
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
| | - Elina S. Hoffman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Shiv Goel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Daniel Q. Sun
- Department of Otolaryngology – Head and Neck Surgery, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
22
|
Picone P. Nanobiotechnology: A New Frontier for Brain Disorders. Int J Mol Sci 2022; 23:ijms23179603. [PMID: 36076998 PMCID: PMC9455621 DOI: 10.3390/ijms23179603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain disorders, such as neurodegenerative diseases (NDs) and tumors (more than 600 pathologies), are a serious health problem, resulting in brain dysfunctions that limit normal activities, with a significant economic impact [...]
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, Via U. La Malfa 153, 90146 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
23
|
Wang L, Yang S, Li L, Huang Y, Li R, Fang S, Jing J, Yang C. A low-intensity repetitive transcranial magnetic stimulation coupled to magnetic nanoparticles loaded with scutellarin enhances brain protection against cerebral ischemia reperfusion injury. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Martano S, De Matteis V, Cascione M, Rinaldi R. Inorganic Nanomaterials versus Polymer-Based Nanoparticles for Overcoming Neurodegeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2337. [PMID: 35889562 PMCID: PMC9317100 DOI: 10.3390/nano12142337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Neurodegenerative disorders (NDs) affect a great number of people worldwide and also have a significant socio-economic impact on the aging population. In this context, nanomedicine applied to neurological disorders provides several biotechnological strategies and nanoformulations that improve life expectancy and the quality of life of patients affected by brain disorders. However, available treatments are limited by the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (B-CSFB). In this regard, nanotechnological approaches could overcome these obstacles by updating various aspects (e.g., enhanced drug-delivery efficiency and bioavailability, BBB permeation and targeting the brain parenchyma, minimizing side effects). The aim of this review is to carefully explore the key elements of different neurological disorders and summarize the available nanomaterials applied for neurodegeneration therapy looking at several types of nanocarriers. Moreover, nutraceutical-loaded nanoparticles (NPs) and synthesized NPs using green approaches are also discussed underling the need to adopt eco-friendly procedures with a low environmental impact. The proven antioxidant properties related to several natural products provide an interesting starting point for developing efficient and green nanotools useful for neuroprotection.
Collapse
|
25
|
Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology 2022; 20:284. [PMID: 35710493 PMCID: PMC9204881 DOI: 10.1186/s12951-022-01479-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma (GBM) as the most common primary malignant brain tumor exhibits a high incidence and degree of malignancy as well as poor prognosis. Due to the existence of formidable blood–brain barrier (BBB) and the aggressive growth and infiltrating nature of GBM, timely diagnosis and treatment of GBM is still very challenging. Among different imaging modalities, magnetic resonance imaging (MRI) with merits including high soft tissue resolution, non-invasiveness and non-limited penetration depth has become the preferred tool for GBM diagnosis. Furthermore, multimodal imaging with combination of MRI and other imaging modalities would not only synergistically integrate the pros, but also overcome the certain limitation in each imaging modality, offering more accurate morphological and pathophysiological information of brain tumors. Since contrast agents contribute to amplify imaging signal output for unambiguous pin-pointing of tumors, tremendous efforts have been devoted to advances of contrast agents for MRI and multimodal imaging. Herein, we put special focus on summary of the most recent advances of not only MRI contrast agents including iron oxide-, manganese (Mn)-, gadolinium (Gd)-, 19F- and copper (Cu)-incorporated nanoplatforms for GBM imaging, but also dual-modal or triple-modal nanoprobes. Furthermore, potential obstacles and perspectives for future research and clinical translation of these contrast agents are discussed. We hope this review provides insights for scientists and students with interest in this area.
Collapse
Affiliation(s)
- Danping Zhuang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, 518020, China
| | - Huifen Zhang
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Panda J, Satapathy BS, Sarkar R, Tudu B. A zinc ferrite nanodrug carrier for delivery of docetaxel: Synthesis, characterization and in vitro tests on C6 glioma cells. J Microencapsul 2022; 39:136-144. [PMID: 35313794 DOI: 10.1080/02652048.2022.2053757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Docetaxel (DTX) loaded bio-compatible PLGA-PEG encapsulated zinc ferrite nanoparticles (ZFNP) formulation was developed and evaluated against C6 glioma cells. METHODS The ZFNP were characterized using XRD, FE-SEM, TEM etc. A series of drug formulations were fabricated by conjugating hydrothermally synthesized ZFNP with DTX in a PLGA-PEG matrix and optimized for drug loading. FTIR and DLS analysis of the formulation along with in vitro drug release, cytotoxicity, cellular uptake and haemolytic effect were evaluated. RESULTS Spherical, monodisperse, crystalline ZFNP with an average size of ∼28 nm were formed. The optimized formulation showed hydrodynamic diameter of ∼147 nm, surface charge of -34.8 mV, a drug loading of 6.9% (w/w) with prolonged drug release property and higher toxicity in C6 glioma cells compared to free DTX along with good internalization and negligible hemolysis. CONCLUSION The results indicate ZFNP could be effectively used as nanodrug carrier for delivery of docetaxel to glioma cells.
Collapse
Affiliation(s)
- Jnanranjan Panda
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Ratan Sarkar
- Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata- 700033, India
| | - Bharati Tudu
- Department of Physics, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
28
|
An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics 2022; 14:pharmaceutics14020224. [PMID: 35213957 PMCID: PMC8875260 DOI: 10.3390/pharmaceutics14020224] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to the brain has been one of the toughest challenges researchers have faced to develop effective treatments for brain diseases. Owing to the blood–brain barrier (BBB), only a small portion of administered drug can reach the brain. A consequence of that is the need to administer a higher dose of the drug, which, expectedly, leads to a variety of unwanted side effects. Research in a variety of different fields has been underway for the past couple of decades to address this very serious and frequently lethal problem. One area of research that has produced optimistic results in recent years is nanomedicine. Nanomedicine is the science birthed by fusing the fields of nanotechnology, chemistry and medicine into one. Many different types of nanomedicine-based drug-delivery systems are currently being studied for the sole purpose of improved drug delivery to the brain. This review puts together and briefly summarizes some of the major breakthroughs in this crusade. Inorganic nanoparticle-based drug-delivery systems, such as gold nanoparticles and magnetic nanoparticles, are discussed, as well as some organic nanoparticulate systems. Amongst the organic drug-delivery nanosystems, polymeric micelles and dendrimers are discussed briefly and solid polymeric nanoparticles are explored in detail.
Collapse
|
29
|
Male D, Gromnicova R. Nanocarriers for Delivery of Oligonucleotides to the CNS. Int J Mol Sci 2022; 23:ijms23020760. [PMID: 35054957 PMCID: PMC8775451 DOI: 10.3390/ijms23020760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.
Collapse
|
30
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Magnetic Nanoparticles Used in Oncology. MATERIALS 2021; 14:ma14205948. [PMID: 34683540 PMCID: PMC8539633 DOI: 10.3390/ma14205948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Recently, magnetic nanoparticles (MNPs) have more and more often been used in experimental studies on cancer treatments, which have become one of the biggest challenges in medical research. The main goal of this research is to treat and to cure advanced or metastatic cancer with minimal side effects through nanotechnology. Drug delivery approaches take into account the fact that MNPs can be bonded to chemotherapeutical drugs, nucleic acids, synthetized antibodies or radionuclide substances. MNPs can be guided, and different treatment therapies can be applied, under the influence of an external magnetic field. This paper reviews the main MNPs’ synthesis methods, functionalization with different materials and highlight the applications in cancer therapy. In this review, we describe cancer cell monitorization based on different types of magnetic nanoparticles, chemotherapy, immunotherapy, magnetic hyperthermia, gene therapy and ferroptosis. Examples of applied treatments on murine models or humans are analyzed, and glioblastoma cancer therapy is detailed in the review. MNPs have an important contribution to diagnostics, investigation, and therapy in the so called theranostics domain. The main conclusion of this paper is that MNPs are very useful in different cancer therapies, with limited side effects, and they can increase the life expectancy of patients with cancer drug resistance.
Collapse
|
32
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
33
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Senturk F, Cakmak S, Kocum IC, Gumusderelioglu M, Ozturk GG. GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Ansari SA, Ficiarà E, D’Agata F, Cavalli R, Nasi L, Casoli F, Albertini F, Guiot C. Step-by-Step Design of New Theranostic Nanoformulations: Multifunctional Nanovectors for Radio-Chemo-Hyperthermic Therapy under Physical Targeting. Molecules 2021; 26:molecules26154591. [PMID: 34361743 PMCID: PMC8348950 DOI: 10.3390/molecules26154591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
While investigating the possible synergistic effect of the conventional anticancer therapies, which, taken individually, are often ineffective against critical tumors, such as central nervous system (CNS) ones, the design of a theranostic nanovector able to carry and deliver chemotherapy drugs and magnetic hyperthermic agents to the target radiosensitizers (oxygen) was pursued. Alongside the original formulation of polymeric biodegradable oxygen-loaded nanostructures, their properties were fine-tuned to optimize their ability to conjugate therapeutic doses of drugs (doxorubicin) or antitumoral natural substances (curcumin). Oxygen-loaded nanostructures (diameter = 251 ± 13 nm, ζ potential = −29 ± 5 mV) were finally decorated with superparamagnetic iron oxide nanoparticles (SPIONs, diameter = 18 ± 3 nm, ζ potential = 14 ± 4 mV), producing stable, effective and non-agglomerating magnetic nanovectors (diameter = 279 ± 17 nm, ζ potential = −18 ± 7 mV), which could potentially target the tumoral tissues under magnetic driving and are monitorable either by US or MRI imaging.
Collapse
Affiliation(s)
- Shoeb Anwar Ansari
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Eleonora Ficiarà
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
- Correspondence:
| | - Federico D’Agata
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Lucia Nasi
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Francesca Casoli
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Franca Albertini
- IMEM CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (L.N.); (F.C.); (F.A.)
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10124 Turin, Italy; (S.A.A.); (F.D.); (C.G.)
| |
Collapse
|
36
|
Mutingwende FP, Kondiah PPD, Ubanako P, Marimuthu T, Choonara YE. Advances in Nano-Enabled Platforms for the Treatment of Depression. Polymers (Basel) 2021; 13:polym13091431. [PMID: 33946703 PMCID: PMC8124207 DOI: 10.3390/polym13091431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology has aided in the advancement of drug delivery for the treatment of several neurological disorders including depression. Depression is a relatively common mental disorder which is characterized by a severe imbalance of neurotransmitters. Several current therapeutic regimens against depression display drawbacks which include low bioavailability, delayed therapeutic outcome, undesirable side effects and drug toxicity due to high doses. The blood–brain barrier limits the entry of the drugs into the brain matrix, resulting in low bioavailability and tissue damage due to drug accumulation. Due to their size and physico-chemical properties, nanotechnological drug delivery systems present a promising strategy to enhance the delivery of nanomedicines into the brain matrix, thereby improving bioavailability and limiting toxicity. Furthermore, ligand-complexed nanocarriers can improve drug specificity and antidepressant efficacy and reduce drug toxicity. Biopolymers and nanocarriers can also be employed to enhance controlled drug release and reduce the hepatic first-pass effect, hence reducing the dosing frequency. This manuscript reviews recent advances in different biopolymers, such as polysaccharides and other nanocarriers, for targeted antidepressant drug delivery to the brain. It probes nano-based strategies that can be employed to enhance the therapeutic efficacy of antidepressants through the oral, intranasal, and parenteral routes of administration.
Collapse
|
37
|
Saw WS, Anasamy T, Foo YY, Kwa YC, Kue CS, Yeong CH, Kiew LV, Lee HB, Chung LY. Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Shang Saw
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Theebaa Anasamy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Yee Chu Kwa
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| | - Chin Siang Kue
- Department of Diagnostic and Allied Health Sciences Faculty of Health and Life Sciences Management and Science University Shah Alam Selangor 40100 Malaysia
| | - Chai Hong Yeong
- School of Medicine Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology Faculty of Medicine University of Malaya Kuala Lumpur 50603 Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
- School of Biosciences Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor 47500 Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry Faculty of Pharmacy University of Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
38
|
Kim KY, Chang KA. Therapeutic Potential of Magnetic Nanoparticle-Based Human Adipose-Derived Stem Cells in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22020654. [PMID: 33440873 PMCID: PMC7827941 DOI: 10.3390/ijms22020654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/28/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21936, Korea
- Correspondence:
| |
Collapse
|
39
|
Hwang CH. Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review. Int J Nanomedicine 2020; 15:9683-9701. [PMID: 33311979 PMCID: PMC7726550 DOI: 10.2147/ijn.s287456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6–8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.
Collapse
Affiliation(s)
- Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
40
|
Qiao L, Qin Y, Wang Y, Liang Y, Zhu D, Xiong W, Li L, Bao D, Zhang L, Jin X. A brain glioma gene delivery strategy by angiopep-2 and TAT-modified magnetic lipid-polymer hybrid nanoparticles. RSC Adv 2020; 10:41471-41481. [PMID: 35516547 PMCID: PMC9057840 DOI: 10.1039/d0ra07161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the existence of the blood-brain barrier (BBB), most treatments cannot achieve significant effects on gliomas. In this study, synergistic multitarget Ang-TAT-Fe3O4-pDNA-(ss)373 lipid-polymer hybrid nanoparticles (LPNPs) were designed to penetrate the BBB and deliver therapeutic genes to glioma cells. The basic material of the nanoparticles was PCL3750-ss-PEG7500-ss-PCL3750, and is called (ss)373 herein. (ss)373 NPs, Fe3O4 magnetic nanoparticles (MNPs), DOTAP, and DSPE-PEG-MAL formed the basic structure of LPNPs by self-assembly. The Fe3O4 MNPs were wrapped in (ss)373 NPs to implement magnetic targeting. Then, the Angiopep-2 peptide (Ang) and transactivator of transcription (TAT) were coupled with DSPE-PEG-MAL. Both can enhance BBB penetration and tumor targeting. Finally, the pDNA was compressed on DOTAP to form the complete gene delivery system. The results indicated that the Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs were 302.33 nm in size. In addition, their zeta potential was 4.66 mV, and they had good biocompatibility. The optimal nanoparticles/pDNA ratio was 5 : 1, as shown by gel retardation assay. In this characterization, compared with other LPNPs, the modified single Ang or without the addition of the Fe3O4 MNPs, the penetration efficiency of the BBB model formed by hCMEC/D3 cells, and the transfection efficiency of C6 cells using pEGFP-C1 as the reporter gene were significantly improved with Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs in the magnetic field.
Collapse
Affiliation(s)
- Lanxin Qiao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yu Qin
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Yaxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yi Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Dunwan Zhu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Wei Xiong
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Lu Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Di Bao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Linhua Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Xu Jin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| |
Collapse
|
41
|
Ficiara E, D'Agata F, Ansari S, Boschi S, Rainero I, Priano L, Cattaldo S, Abollino O, Cavalli R, Guiot C. A mathematical model for the evaluation of iron transport across the blood-cerebrospinal fluid barrier in neurodegenerative diseases. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2270-2273. [PMID: 33018460 DOI: 10.1109/embc44109.2020.9175988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Iron plays important roles in healthy brain but altered homeostasis and concentration have been correlated to aging and neurodegenerative diseases. Iron enters the central nervous system by crossing the brain barrier systems: the Blood- Brain Barrier separating blood and brain and the Blood-Cerebrospinal Fluid Barrier (BCSFB) between blood and CSF, which is in contact with the brain by far less selective barriers. Herein, we develop a two-compartmental model for the BCSFB, based on first-order ordinary differential equations, performing numerical simulations and sensitivity analysis. Furthermore, as input parameters of the model, experimental data from patients affected by Alzheimer's disease, frontotemporal dementia, mild cognitive impairment and matched neurological controls were used, with the aim of investigating the differences between physiological and pathological conditions in the regulation of iron passage between blood and CSF which can be possibly targeted by therapy.
Collapse
|
42
|
Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020; 10:18033. [PMID: 33093563 PMCID: PMC7581805 DOI: 10.1038/s41598-020-75125-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3–4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.
Collapse
|
43
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
44
|
Chen J, Fan R, Wang Y, Huang T, Shang N, He K, Zhang P, Zhang L, Niu Q, Zhang Q. Progressive impairment of learning and memory in adult zebrafish treated by Al 2O 3 nanoparticles when in embryos. CHEMOSPHERE 2020; 254:126608. [PMID: 32957262 DOI: 10.1016/j.chemosphere.2020.126608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Al2O3 Nanoparticles (Al2O3-NPs) have been widely used because of their unique physical and chemical properties, and Al2O3-NPs can be released into the environment directly or indirectly. Our previous research found that 13 nm Al2O3-NPs can induce neural cell death and autophagy in primarily cultured neural cells in vitro. The aim of this study was to determine where Al2O3-NPs at 13 nm particle size can cause neural cells in vivo and assess related behavioural changes and involved potential mechanisms. Zebrafish from embryo to adult were selected as animal models. Learning and memory as functional indicators of neural cells in zebrafish were measured during the development from embryo to adult. Our results indicate that Al2O3-NPs treatment in zebrafish embryos stages can cause the accumulation of aluminium content in zebrafish brain tissue, leading to progressive impaired neurodevelopmental behaviours and latent learning and memory performance. Additionally, oxidative stress and disruption of dopaminergic transmission in zebrafish brain tissues are correlated with the dose-dependent and age-dependent accumulation of aluminium content. Moreover, the number of neural cells in the telencephalon tissue treated with Al2O3-NPs significantly declined, and the ultramicroscopic morphology indicated profound autophagy alternations. The results suggest that Al2O3-NPs has dose-dependent and time-dependent progressive damage on learning and memory performance in adult zebrafish when treated in embryos. This is the first study of the effects of Al2O3-NPs on learning and memory during the development of zebrafish from embryo to adult.
Collapse
Affiliation(s)
- Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Nan Shang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Kaihong He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ping Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
45
|
Willis AJ, Pernal SP, Gaertner ZA, Lakka SS, Sabo ME, Creighton FM, Engelhard HH. Rotating Magnetic Nanoparticle Clusters as Microdevices for Drug Delivery. Int J Nanomedicine 2020; 15:4105-4123. [PMID: 32606667 PMCID: PMC7295537 DOI: 10.2147/ijn.s247985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) hold promise for enhancing delivery of therapeutic agents, either through direct binding or by functioning as miniature propellers. Fluid-filled conduits and reservoirs within the body offer avenues for MNP-enhanced drug delivery. MNP clusters can be rotated and moved across surfaces at clinically relevant distances in response to a rotating magnet. Limited data are available regarding issues affecting MNP delivery by this mechanism, such as adhesion to a cellular wall. Research reported here was initiated to better understand the fundamental principles important for successful implementation of rotational magnetic drug targeting (rMDT). METHODS Translational movements of four different iron oxide MNPs were tested, in response to rotation (3 Hz) of a neodymium-boron-iron permanent magnet. MNP clusters moved along biomimetic channels of a custom-made acrylic tray, by surface walking. The effects of different distances and cellular coatings on MNP velocity were analyzed using videography. Dyes (as drug surrogates) and the drug etoposide were transported by rotating MNPs along channels over a 10 cm distance. RESULTS MNP translational velocities could be predicted from magnetic separation times. Changes in distance or orientation from the magnet produced alterations in MNP velocities. Mean velocities of the fastest MNPs over HeLa, U251, U87, and E297 cells were 0.24 ± 0.02, 0.26 ± 0.02, 0.28 ± 0.01, and 0.18 ± 0.03 cm/sec, respectively. U138 cells showed marked MNP adherence and an 87.1% velocity reduction at 5.5 cm along the channel. Dye delivery helped visualize the effects of MNPs as microdevices for drug delivery. Dye delivery by MNP clusters was 21.7 times faster than by diffusion. MNPs successfully accelerated etoposide delivery, with retention of chemotherapeutic effect. CONCLUSION The in vitro system described here facilitates side-by-side comparisons of drug delivery by rotating MNP clusters, on a human scale. Such microdevices have the potential for augmenting drug delivery in a variety of clinical settings, as proposed.
Collapse
Affiliation(s)
- Alexander J Willis
- Division of Hematology-Oncology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Sajani S Lakka
- Division of Hematology-Oncology, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Herbert H Engelhard
- Departments of Neurosurgery and Bioengineering, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Beyond Oncological Hyperthermia: Physically Drivable Magnetic Nanobubbles as Novel Multipurpose Theranostic Carriers in the Central Nervous System. Molecules 2020; 25:molecules25092104. [PMID: 32365941 PMCID: PMC7248690 DOI: 10.3390/molecules25092104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.
Collapse
|
47
|
Moura RP, Pacheco C, Pêgo AP, des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release 2020; 322:390-400. [PMID: 32247807 DOI: 10.1016/j.jconrel.2020.03.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS), namely the brain, still remains as the hardest area of the human body to achieve adequate concentration levels of most drugs, mainly due to the limiting behavior of its physical and biological defenses. Lipid nanocapsules emerge as a versatile platform to tackle those barriers, and efficiently delivery different drug payloads due to their numerous advantages. They can be produced in a fast, solvent-free and scalable-up process, and their properties can be fine-tuned for to make an optimal brain drug delivery vehicle. Moreover, lipid nanocapsule surface modification can further improve their bioavailability towards the central nervous system. Coupling these features with alternative delivery methods that stem to disrupt or fully circumvent the blood-brain barrier may fully harness the therapeutic advance that lipid nanocapsules can supply to current treatment options. Thus, this review intends to critically address the development of lipid nanocapsules, as well as to highlight the key features that can be modulated to ameliorate their properties towards the central nervous system delivery, mainly through intravenous methods, and how the pathological microenvironment of the CNS can be taken advantage of. The different routes to promote drug delivery towards the brain parenchyma are also discussed, as well as the synergetic effect that can be obtained by combining modified lipid nanocapsules with new/smart administration routes.
Collapse
Affiliation(s)
- Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Pacheco
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Paula Pêgo
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Anne des Rieux
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
48
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Thomsen LB, Linemann T, Birkelund S, Tarp GA, Moos T. Evaluation of Targeted Delivery to the Brain Using Magnetic Immunoliposomes and Magnetic Force. MATERIALS 2019; 12:ma12213576. [PMID: 31683542 PMCID: PMC6861967 DOI: 10.3390/ma12213576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/01/2023]
Abstract
Magnetic nanoparticles have great prospects for drug delivery purposes, as they can be designed with various surface coatings and conjugated with drugs and targeting moieties. They also have a unique potential for precise delivery when guided by magnetic force. The blood-brain barrier (BBB) denotes the interface between the blood and brain parenchyma and hinders the majority of drugs from entering the brain. Red fluorescent magnetic nanoparticles were encapsulated in liposomes and conjugated to antibodies targeting the rat transferrin receptor (OX26) to form magnetic immunoliposomes. These magnetic immunoliposomes enhanced the uptake by rat brain capillary endothelial cells (BCECs) in vitro. In situ brain perfusion in young rats high in the endogenous expression of transferrin receptors by BCECs, revealed enhanced uptake of magnetic immunoliposomes when compared to naked magnetic nanoparticles or non-targeted magnetic liposomes. When applying the external magnetic force, the magnetic nanoparticles were detected in the brain parenchyma, suggesting transport across the BBB. Ultrastructural examination of the immunoliposomes, unfortunately, was unable to confirm a complete encapsulation of all naked nanoparticles within the liposomes, suggesting that the data on the brain could derive from particles being released from the liposomes under influence of external magnetic force; hence hypothesizes on external magnetic force as a qualifier for dragging targeted magnetic immunoliposomes through the BBB. In conclusion, our results suggest that transport of magnetic nanoparticles present in BCECs by targeted delivery to the transferrin receptor may undergo further transport into the brain when applying magnetic force. While magnetic immunoliposomes are targetable to BCECs, their design to enable further transport across the BBB when applying external magnetic force needs further improvement.
Collapse
Affiliation(s)
- Louiza Bohn Thomsen
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - Thomas Linemann
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - Svend Birkelund
- Laboratory of Medical Mass Spectrometry, Biomedicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - Gitte Abildgaard Tarp
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - Torben Moos
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| |
Collapse
|
50
|
Leterme G, Guigou C, Oudot A, Collin B, Boudon J, Millot N, Geissler A, Belharet K, Bozorg Grayeli A. Superparamagnetic Nanoparticle Delivery to the Cochlea Through Round Window by External Magnetic Field: Feasibility and Toxicity. Surg Innov 2019; 26:646-655. [PMID: 31478462 DOI: 10.1177/1553350619867217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction. The objective of this study was to evaluate the feasibility and toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) administered into the cochlea through the round window (RW) by an external magnetic field. Materials and Methods. In 5 Wistar rats, the left RW was punctured. SPIONs suspended in hyaluronic gel (5 mg/mL) were applied in the RW niche and covered by a muscle graft. The nanoparticles were mobilized using a rare earth magnet (0.54 T) held in 4 consecutive positions around the head. The right ear served as control. Hearing function was monitored by auditory brainstem responses (4-32 kHz tone bursts). Results. The auditory thresholds remained unchanged 1 month after the administration. The histological study of the cochleae showed that SPIONs were driven into the scala tympani in the basal turn, the second turn, and the apex. Conclusion. Superparamagnetic nanoparticles can be driven inside the cochlea toward the apex with a preserved hearing up to 1 month in rats.
Collapse
Affiliation(s)
- Gaëlle Leterme
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | - Caroline Guigou
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| | | | - Bertrand Collin
- Centre Georges François Leclerc, Dijon, France.,ICMUB, UMR 6302 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Julien Boudon
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Nadine Millot
- Laboratoire ICB, UMR 6303 CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'imagerie cellulaire CellImaP, Université Bourgogne-Franche-Comté, Dijon, France
| | - Karim Belharet
- Laboratoire PRISME, HEI Campus Centre, Châteauroux, France
| | - Alexis Bozorg Grayeli
- Otolaryngology Department, Dijon University Hospital, Dijon, France.,Laboratoire Imvia, Université Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|