1
|
Sabnam S, Kumar R, Pranav. Biofunctionalized nanomaterials for Parkinson's disease theranostics: potential for efficient PD biomarker detection and effective therapy. Biomater Sci 2025; 13:2201-2234. [PMID: 40036044 DOI: 10.1039/d5bm00179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
α-Synuclein (α-Syn) is a primary pathological indicator for Parkinson's disease (PD). The α-Syn oligomer is even more toxic and is responsible for PD. Hence, identifying α-Syn and its oligomers is an interesting approach to diagnosing PD. The prevention strategies for oligomer formation could be therapeutic in treating PD. Various conventional strategies have been developed for the management of PD. However, their clinical applications are limited due to toxicity, off-targeting, side effects, and poor bioavailability. Recently, nanomaterials have gained significant attention due to unique physicochemical characteristics such as nanoscale size, large surface area, flexibility of functionalization, and ability to protect and control a loaded payload. Functionalizing the surface of nanoparticles with a desired targeting agent could offer targeted delivery of the payload at the site of action due to specificity and selectivity against complementary molecules. Among various functionalization approaches, biomolecule-functionalized nanomaterials offer benefits such as enhanced bioavailability, improved internalization into target cells through receptor-mediated endocytosis, and delivery of therapeutics across the BBB (blood-brain barrier). In this review, we initially discussed the major milestones related to PD and highlighted the therapeutic strategies focused on clinical trials. The strategies of biomolecule functionalization of nanomaterials and their application in detecting and preventing α-Syn oligomer for the diagnosis and therapy of PD, respectively, have been reviewed comprehensively. Ultimately, we have outlined the conclusions, highlighted the limitations and challenges, and provided insight into future perspectives and alternative approaches that must be investigated.
Collapse
Affiliation(s)
- Saheli Sabnam
- Centre for Nanosciences, Indian Institute of Technology Kanpur, India-208016
| | - Raj Kumar
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab-140413, India.
| | - Pranav
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore Campus, India-632014.
| |
Collapse
|
2
|
Prossner KM, Redman AD, Prosser CM, Parkerton TF, Unger MA. Rapid screening of shellfish tainting from oil spills using an antibody-based biosensor. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:270-281. [PMID: 39887280 PMCID: PMC11790208 DOI: 10.1093/etojnl/vgae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 02/01/2025]
Abstract
Tainting of shellfish by polyaromatic hydrocarbons (PAHs) following an oil spill poses possible health risks as well as socioeconomic impacts. Traditional screening approaches for evaluating PAH contamination have limitations that can prevent timely, objective spill response decisions. The objective of this study was to investigate the relationship between PAH concentrations measured in the oyster, Crassostrea virginica, interstitial fluid using a rapid antibody-based biosensor method, with PAH concentrations in oyster tissues determined using conventional gas chromatography-mass spectrometry analysis. To accomplish this objective, bioconcentration tests were performed to simulate oil spill exposures using a crude and heavy fuel oil containing different PAH compositions. This design allowed both the PAH concentration and composition in water and, subsequently, accumulated by oysters to be varied over time. Oysters sampled during uptake and depuration phases were analyzed using biosensor and conventional analysis methods to generate comparative data. Results indicated that biosensor measurements of oysters captured the kinetics of PAH accumulation during uptake and depuration phases. Further, significant positive correlations were observed between biosensor interstitial fluid and lipid-normalized PAH tissue concentrations. However, quantitative predictions appear to be modulated by the contamination source and target analyte list for tissue analysis. Thus, the biosensor can be applied for rapidly evaluating relative PAH contamination between biota samples and offers a promising new analytical tool for oil spill monitoring and fisheries management contexts. A generic model was also developed from study and literature data to predict PAH half-lives from bivalve tissues. These predictions can help inform field monitoring of shellfish and estimate recovery times required to achieve pre-spill conditions.
Collapse
Affiliation(s)
- Kristen M Prossner
- Virginia Institute of Marine Science, Aquatic Health Sciences, William & Mary, Gloucester Point, VA, United States
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, United States
| | | | | | - Michael A Unger
- Virginia Institute of Marine Science, Aquatic Health Sciences, William & Mary, Gloucester Point, VA, United States
| |
Collapse
|
3
|
Rabiei P, Mohabatkar H, Behbahani M. A label-free G-quadruplex aptamer/gold nanoparticle-based colorimetric biosensor for rapid detection of bovine viral diarrhea virus genotype 1. PLoS One 2024; 19:e0293561. [PMID: 39078832 PMCID: PMC11288453 DOI: 10.1371/journal.pone.0293561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/16/2023] [Indexed: 08/02/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the cause of bovine viral diarrhea disease, one of the most economically important livestock diseases worldwide. The majority of BVD disease control programs rely on the detection and then elimination of persistent infection (PI) cattle, as the continuing source of disease. The main purpose of this study was to design and develop an accurate G-quadruplex-based aptasensor for rapid and simple detection of BVDV-1. In this work, we utilized in silico techniques to design a G-quadruplex aptamer specific for the detection of BVDV-1. Also, the rationally designed aptamer was validated experimentally and was used for developing a colorimetric biosensor based on an aptamer-gold nanoparticle system. Firstly, a pool of G-quadruplex forming ssDNA sequences was constructed. Then, based on the stability score in secondary and tertiary structures and molecular docking score, an aptamer (Apt31) was selected. In the experimental part, gold nanoparticles (AuNPs) with an average particle size of 31.7 nm were synthesized and electrostatically linked with the Apt31. The colorimetric test showed that salt-induced color change of AuNPs from red to purple-blue occurs only in the presence of BVDV-Apt31 complex, after 20 min. These results approved the specificity of Apt31 for BVDV. Furthermore, our biosensor could detect the virus at as low as 0.27 copies/ml, which is an acceptable value in comparison to the qPCR method. The specificity of the aptasensor was confirmed through cross-reactivity testing, while its selectivity was confirmed through plasma testing. The sample analysis showed 90% precision and 94% accuracy. It was concluded that the biosensor was adequately sensitive and specific for the detection of BVDV in plasma samples and could be used as a simple and rapid method on the farm.
Collapse
Affiliation(s)
- Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Celesti C, Giofrè SV, Espro C, Legnani L, Neri G, Iannazzo D. Modified Gold Screen-Printed Electrodes for the Determination of Heavy Metals. SENSORS (BASEL, SWITZERLAND) 2024; 24:4935. [PMID: 39123983 PMCID: PMC11314839 DOI: 10.3390/s24154935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Screen-printed electrodes (SPEs) are reliable, portable, affordable, and versatile electrochemical platforms for the real-time analytical monitoring of emerging analytes in the environmental, clinical, and agricultural fields. The aim of this study was to evaluate the electrochemical behavior of gold screen-printed electrodes (SPGEs) modified with molecules containing amino (Tr-N) or α-aminophosphonate (Tr-P) groups for the selective and sensitive detection of the toxic metal ions Pb2+ and Hg2+ in aqueous samples. After optimizing the analytical parameters (conditioning potential and time, deposition potential and time, pH and concentration of the supporting electrolyte), anodic square wave stripping voltammetry (SWASV) was used to evaluate and compare the electrochemical performance of bare or modified electrodes for the detection of Hg2+ and Pb2+, either alone or in their mixtures in the concentration range between 1 nM and 10 nM. A significative improvement in the detection ability of Pb2+ ions was recorded for the amino-functionalized gold sensor SPGE-N, while the presence of a phosphonate moiety in SPGE-P led to greater sensitivity towards Hg2+ ions. The developed sensors allow the detection of Pb2+ and Hg2+ with a limit of detection (LOD) of 0.41 nM and 35 pM, respectively, below the legal limits for these heavy metal ions in drinking water or food, while the sensitivity was 5.84 µA nM-1cm-2 and 10 µA nM-1cm-2, respectively, for Pb2+ and Hg2+. The reported results are promising for the development of advanced devices for the in situ and cost-effective monitoring of heavy metals, even in trace amounts, in water resources.
Collapse
Affiliation(s)
- Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Giovanni Neri
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (G.N.); (D.I.)
| |
Collapse
|
5
|
Li H, Li R, He S, Wang Y, Fang W, Jin Y, Yang R, Liu Y, Ye Q, Peng X. An Aptamer-Embedded Two-Dimensional DNA Nanoscale Material with the Property of Cells Recruitment. NANO LETTERS 2023; 23:8399-8405. [PMID: 37339058 DOI: 10.1021/acs.nanolett.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Stem cells possess exceptional proliferation and differentiation abilities, making them highly promising for targeted recruitment research in tissue engineering and other clinical applications. DNA is a naturally water-soluble, biocompatible, and highly editable material that is widely used in cell recruitment research. However, DNA nanomaterials face challenges, such as poor stability, complex synthesis processes, and demanding storage conditions, which limit their potential applications. In this study, we designed a highly stable DNA nanomaterial that embeds nucleic acid aptamers in the single strand region. This material has the ability to specifically bind, recruit, and capture human mesenchymal stem cells. The synthesis process involves rolling circle amplification and topological isomerization, and it can be stored for extended periods under varying temperatures and humidity conditions. This DNA material offers high specificity, ease of fabrication, simple preservation, and low cost, providing a novel approach to stem cell recruitment strategies.
Collapse
Affiliation(s)
- Hongshu Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Li
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Songlin He
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Institute of Orthopedics, the First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, P. R. China
| | - Yu Wang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Wenya Fang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yufeng Jin
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Rui Yang
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Qing Ye
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics, Nankai University, Tianjin 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| | - Xi Peng
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Nankai University Eye Institute, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Saxena K, Deshwal A, Pudake RN, Jain U, Tripathi RM. Recent progress in biomarker-based diagnostics of Helicobacter pylori, gastric cancer-causing bacteria. Biomark Med 2023; 17:679-691. [PMID: 37934044 DOI: 10.2217/bmm-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
The progression of any disease and its outcomes depend on the complicated interaction between pathogens, host and environmental factors. Thus, complete knowledge of bacterial toxins involved in pathogenesis is necessary to develop diagnostic methods and alternative therapies, including vaccines. This review summarizes recently employed biomarkers to diagnose the presence of Helicobacter pylori bacteria. The authors review distinct types of disease-associated biomarkers such as urease, DNA, miRNA, aptamers and bacteriophages that can be utilized as targets to detect Helicobacter pylori and, moreover, gastric cancer in its early stage. A detailed explanation is also given in the context of the recent utilization of these biomarkers in the development of a highly specific and sensitive biosensing platform.
Collapse
Affiliation(s)
- Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Akanksha Deshwal
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Ramesh Namdeo Pudake
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, 248007, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector 125, Noida, 201313, India
| |
Collapse
|
7
|
Huang YH, Wei H, Santiago PJ, Thrift WJ, Ragan R, Jiang S. Sensing Antibiotics in Wastewater Using Surface-Enhanced Raman Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4880-4891. [PMID: 36934344 PMCID: PMC10061928 DOI: 10.1021/acs.est.3c00027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Rapid and cost-effective detection of antibiotics in wastewater and through wastewater treatment processes is an important first step in developing effective strategies for their removal. Surface-enhanced Raman scattering (SERS) has the potential for label-free, real-time sensing of antibiotic contamination in the environment. This study reports the testing of two gold nanostructures as SERS substrates for the label-free detection of quinoline, a small-molecular-weight antibiotic that is commonly found in wastewater. The results showed that the self-assembled SERS substrate was able to quantify quinoline spiked in wastewater with a lower limit of detection (LoD) of 5.01 ppb. The SERStrate (commercially available SERS substrate with gold nanopillars) had a similar sensitivity for quinoline quantification in pure water (LoD of 1.15 ppb) but did not perform well for quinoline quantification in wastewater (LoD of 97.5 ppm) due to interferences from non-target molecules in the wastewater. Models constructed based on machine learning algorithms could improve the separation and identification of quinoline Raman spectra from those of interference molecules to some degree, but the selectivity of SERS intensification was more critical to achieve the identification and quantification of the target analyte. The results of this study are a proof-of-concept for SERS applications in label-free sensing of environmental contaminants. Further research is warranted to transform the concept into a practical technology for environmental monitoring.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Hong Wei
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Peter J. Santiago
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - William John Thrift
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Regina Ragan
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92697, United States
| | - Sunny Jiang
- Department
of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
8
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
9
|
Kumar P, Birader K, Suman P. Development of an Impedimetric Aptasensor for Detection of Progesterone in Undiluted Biological Fluids. ACS Pharmacol Transl Sci 2023; 6:92-99. [PMID: 36654753 PMCID: PMC9841775 DOI: 10.1021/acsptsci.2c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 12/03/2022]
Abstract
A cost-effective, deployable, and quantitative progesterone biosensor is desirable for regular progesterone sensing in biological and environmental samples to safeguard public health. Aptasensors have been shown to be affordable as compared to antibody-based sensors, but so far, none of the progesterone aptamers could detect it in undiluted and unprocessed biological samples. Thus, to select an aptamer suitable for biosensing in unprocessed biological samples, a modified magnetic bead-based approach with counter-selection in milk and serum was performed. G-quadruplex forming progesterone aptamers were preferentially screened through in silico, gold nanoparticle-based adsorption-desorption assay and circular dichroism spectroscopy. GQ5 aptamer showed extended stability and a high progesterone binding affinity (K D 5.29 ± 2.9 nM) as compared to any other reported progesterone aptamers (P4G11 and P4G13). Under optimized conditions, GQ5 aptamer was coated on the gold electrode to develop an impedimetric aptasensor (limit of detection: 0.53, 0.91, and 1.9 ng/mL in spiked buffer, undiluted milk, and serum, respectively, with the dynamic range of detection from 0.1 to 50 ng/mL in buffer and 0.1 to 30 ng/mL in both milk and serum). The aptasensor exhibited a very high level of κ value (>0.9) with ELISA to detect progesterone in milk and serum. The aptasensor could be regenerated three times and can be stored for up to 10 days at 4 °C. Therefore, GQ5 may be used to develop a portable impedimetric aptasensor for clinical and on-site progesterone sensing in various biological and environmental samples.
Collapse
Affiliation(s)
- Pankaj Kumar
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| | - Komal Birader
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
| | - Pankaj Suman
- Animal
Biotechnology Laboratory, National Institute
of Animal Biotechnology, Hyderabad500032, India
- Manipal
Academy of Higher Education, Manipal, Karnataka576104, India
| |
Collapse
|
10
|
Prossner KM, Vadas GG, Harvey E, Unger MA. A novel antibody-based biosensor method for the rapid measurement of PAH contamination in oysters. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102567. [PMID: 36204483 PMCID: PMC9531917 DOI: 10.1016/j.eti.2022.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional PAH analytical methods are time-consuming and expensive, limiting their utility in time sensitive events (i.e. oil spills and floods) or for widespread environmental monitoring. Unreliable and inefficient screening methods intended to prioritize samples for more extensive analyses exacerbate the issue. Antibody-based biosensor technology was implemented as a quantitative screening method to measure total PAH concentration in adult oysters (Crassostrea virginica) - a well-known bioindicator species with ecological and commercial significance. Individual oysters were analyzed throughout the historically polluted Elizabeth River watershed (Virginia, USA). Significant positive association was observed between biosensor and GC-MS measurements that persisted when the method was calibrated for different regulatory subsets of PAHs. Mapping of PAH concentrations in oysters throughout the watershed demonstrates the utility of this technology for environmental monitoring. Through a novel extension of equilibrium partitioning, biosensor technology shows promise as a cost-effective analysis to rapidly predict whole animal exposure to better assess human health risk as well as improve monitoring efforts.
Collapse
|
11
|
Velusamy K, Periyasamy S, Kumar PS, Rangasamy G, Nisha Pauline JM, Ramaraju P, Mohanasundaram S, Nguyen Vo DV. Biosensor for heavy metals detection in wastewater: A review. Food Chem Toxicol 2022; 168:113307. [PMID: 35917955 DOI: 10.1016/j.fct.2022.113307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Pollution due to heavy metals is a global issue in recent years. Initially, there were fewer contaminants, which has increased exponentially owing to rapid industrialization and various anthropogenic activities. Toxicity due to heavy metals causes a lot of health problems and organ system failure in human beings. It also affects other forms of living beings such as plants, animals and even the microbiota. This has been reported by various press reports and research findings. In this review, the production of heavy metals, associated effects on the environment and the technologies employed for detecting these heavy metals are comprehensively discussed. The analytical instruments, including biosensors, have been found to be more beneficial than other techniques. Biosensor exhibits numerous special features, such as reproducibility, reusability, linearity, sensitivity, selectivity, and stability. Over the last three years, biosensors have also had a detection limit of 65.36 ng/mL for heavy metals. The design of biosensors, features and types were also explained in detail. The limit of detection for the heavy metals in wastewater using biosensors was also included with recent references up to the last five years.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - J Mercy Nisha Pauline
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Pradeep Ramaraju
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Sneka Mohanasundaram
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Alomran N, Chinnappan R, Alsolaiss J, Casewell NR, Zourob M. Exploring the Utility of ssDNA Aptamers Directed against Snake Venom Toxins as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2022; 14:469. [PMID: 35878207 PMCID: PMC9318713 DOI: 10.3390/toxins14070469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes considerable death and disability in the tropical world. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapy for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions. In this study, we sought to explore the potential of ssDNA aptamers as toxin-specific inhibitory alternatives to antibodies. As a proof of principle model, we selected snake venom serine protease toxins, which are responsible for contributing to venom-induced coagulopathy following snakebite envenoming, as our target. Using SELEX technology, we selected ssDNA aptamers against recombinantly expressed versions of the fibrinogenolytic SVSPs ancrod from the venom of C. rhodostoma and batroxobin from B. atrox. From the resulting pool of specific ssDNA aptamers directed against each target, we identified candidates that exhibited low nanomolar binding affinities to their targets. Downstream aptamer-linked immobilised sorbent assay, fibrinogenolysis, and coagulation profiling experiments demonstrated that the candidate aptamers were able to recognise native and recombinant SVSP toxins and inhibit the toxin- and venom-induced prolongation of plasma clotting times and the consumption of fibrinogen, with inhibitory potencies highly comparable to commercial polyvalent antivenoms. Our findings demonstrate that rationally selected toxin-specific aptamers can exhibit broad in vitro cross-reactivity against toxin isoforms found in different snake venoms and are capable of inhibiting toxins in pathologically relevant in vitro and ex vivo models of venom activity. These data highlight the potential utility of ssDNA aptamers as novel toxin-inhibiting therapeutics of value for tackling snakebite envenoming.
Collapse
Affiliation(s)
- Nessrin Alomran
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia;
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia;
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
13
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
14
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
15
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
16
|
Jing L, Qin M, Zhang X, Song Y, Zhang J, Xia X, Gao K, Han Q. A novel borax-specific ssDNA aptamer screened by high-throughput SELEX and its colorimetric assay with aggregation of AuNPs. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Impedimetric Microcystin-LR Aptasensor Prepared with Sulfonated Poly(2,5-dimethoxyaniline)–Silver Nanocomposite. Processes (Basel) 2021. [DOI: 10.3390/pr9010179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper presents a novel impedimetric aptasensor for cyanobacterial microcystin-LR (L, l-leucine; R, l-arginine) (MC-LR) containing a 5′ thiolated 60-mer DNA aptamer (i.e., 5′-SH-(CH2)6GGCGCCAAACAGGACCACCATGACAATTACCCATACCACCTCATTATGCCCCATCT CCGC-3′). A nanocomposite electrode platform comprising biocompatible poly(2,5-dimethoxyaniline) (PDMA)-poly(vinylsulfonate) (PVS) and silver nanoparticle (Ag0) on a glassy carbon electrode (GCE), i.e., (GCE/PDMA–PVS–Ag0) was used in the biosensor development. Small-angle X-ray scattering (SAXS) spectroscopic analysis revealed that the PDMA–PVS–Ag0 nanocomposites were polydispersed and contained embedded Ag0. Electrochemical impedance spectroscopy (EIS) responses of the aptasensor gave a dynamic linear range (DLR) and limit of detection (LOD) values of 0.01–0.1 ng L−1 MC-LR and 0.003 ng L−1 MC-LR, respectively. The cross-reactivity studies, which was validated with enzyme-linked immunosorbent assay (ELISA), showed that the aptasensor possesses excellent selectivity for MC-LR.
Collapse
|
18
|
Recent development of antibiotic detection in food and environment: the combination of sensors and nanomaterials. Mikrochim Acta 2021; 188:21. [PMID: 33404741 DOI: 10.1007/s00604-020-04671-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the abuse of antibiotics has led to the pollution of soil and water environment, not only poultry husbandry and food manufacturing will be influenced to different degree, but also the human body will produce antibody. The detection of antibiotic content in production and life is imperative. In this review, we provide comprehensive information about chemical sensors and biosensors for antibiotic detection. We classify the currently reported antibiotic detection technologies into chromatography, mass spectrometry, capillary electrophoresis, optical detection, and electrochemistry, introduce some representative examples for each technology, and conclude the advantages and limitations. In particular, the optical and electrochemical methods based on nanomaterials are discussed and evaluated in detail. In addition, the latest research in the detection of antibiotics by photosensitive materials is discussed. Finally, we summarize the pros and cons of various antibiotic detection methods and present a discussion and outlook on the expansion of cross-scientific areas. The synthesis and application of optoelectronic nanomaterials and aptamer screening are discussed and prospected, and the future trends and potential impact of biosensors in antibiotic detection are outlined.Graphical abstract.
Collapse
|
19
|
Zhen J, Liang G, Chen R, Jia W. Label-free hairpin-like aptamer and EIS-based practical, biostable sensor for acetamiprid detection. PLoS One 2020; 15:e0244297. [PMID: 33362222 PMCID: PMC7757884 DOI: 10.1371/journal.pone.0244297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Acetamiprid (ACE) is a kind of broad-spectrum pesticide that has potential health risk to human beings. Aptamers (Ap-DNA (1)) have a great potential as analytical tools for pesticide detection. In this work, a label-free electrochemical sensing assay for ACE determination is presented by electrochemical impedance spectroscopy (EIS). And the specific binding model between ACE and Ap-DNA (1) was further investigated for the first time. Circular dichroism (CD) spectroscopy and EIS demonstrated that the single strand AP-DNA (1) first formed a loosely secondary structure in Tris-HClO4 (20 mM, pH = 7.4), and then transformed into a more stable hairpin-like structure when incubated in binding buffer (B-buffer). The formed stem-loop bulge provides the specific capturing sites for ACE, forming ACE/AP-DNA (1) complex, and induced the RCT (charge transfer resistance) increase between the solution-based redox probe [Fe(CN)6]3−/4− and the electrode surface. The change of ΔRCT (charge transfer resistance change, ΔRCT = RCT(after)-RCT(before)) is positively related to the ACE level. As a result, the AP-DNA (1) biosensor showed a high sensitivity with the ACE concentration range spanning from 5 nM to 200 mM and a detection limit of 1 nM. The impedimetric AP-DNA (1) sensor also showed good selectivity to ACE over other selected pesticides and exhbited excellent performance in environmental water and orange juice samples analysis, with spiked recoveries in the range of 85.8% to 93.4% in lake water and 83.7% to 89.4% in orange juice. With good performance characteristics of practicality, sensitivity and selectivity, the AP-DNA (1) sensor holds a promising application for the on-site ACE detection.
Collapse
Affiliation(s)
- Jianhui Zhen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| | - Ruichun Chen
- Shijiazhuang Customs Technology Center P.R. China, Shijiazhuang, Hebei Province, China
| | - Wenshen Jia
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| |
Collapse
|
20
|
Nourmohammadi E, Hosseinkhani S, Nedaeinia R, Khoshdel-Sarkarizi H, Nedaeinia M, Ranjbar M, Ebrahimi N, Farjami Z, Nourmohammadi M, Mahmoudi A, Goli M, Ferns GA, Sadeghizadeh M. Construction of a sensitive and specific lead biosensor using a genetically engineered bacterial system with a luciferase gene reporter controlled by pbr and cadA promoters. Biomed Eng Online 2020; 19:79. [PMID: 33076919 PMCID: PMC7574304 DOI: 10.1186/s12938-020-00816-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/05/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND A bacterial biosensor refers to genetically engineered bacteria that produce an assessable signal in the presence of a physical or chemical agent in the environment. METHODS We have designed and evaluated a bacterial biosensor expressing a luciferase reporter gene controlled by pbr and cadA promoters in Cupriavidus metallidurans (previously termed Ralstonia metallidurans) containing the CH34 and pI258 plasmids of Staphylococcus aureus, respectively, and that can be used for the detection of heavy metals. In the present study, we have produced and evaluated biosensor plasmids designated pGL3-luc/pbr biosensor and pGL3-luc/cad biosensor, that were based on the expression of luc+ and under the control of the cad promoter and the cadC gene of S. aureus plasmid pI258 and pbr promoter and pbrR gene from plasmid pMOL30 of Cupriavidus metallidurans. RESULTS We found that the pGL3-luc/pbr biosensor may be used to measure lead concentrations between 1-100 μM in the presence of other metals, including zinc, cadmium, tin and nickel. The latter metals did not result in any significant signal. The pGL3-luc/cad biosensor could detect lead concentrations between 10 nM to 10 μM. CONCLUSIONS This biosensor was found to be specific for measuring lead ions in both environmental and biological samples.
Collapse
Affiliation(s)
- Esmail Nourmohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hoda Khoshdel-Sarkarizi
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mozhdeh Nedaeinia
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ranjbar
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Neshat Ebrahimi
- Laboratory of Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zahra Farjami
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Nourmohammadi
- Department of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Goli
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Inhibition of enteropathogenic Escherichia coli biofilm formation by DNA aptamer. Mol Biol Rep 2020; 47:7567-7573. [PMID: 32981012 DOI: 10.1007/s11033-020-05822-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 01/29/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a bioagent that causes diarrhea through the formation of biofilm. The recalcitrant of EPEC to the current conventional antibiotic treatment has grown a big concern in a way to find effective alternative inhibitors. Aptamers have been demonstrated to show the ability to kill the pathogenic bacteria through inhibition of biofilm formation. Therefore, this study aimed to investigate antibiofilm activities of six types of aptamers against EPEC K1.1 which was isolated from patients with diarrhea. Environmental conditions such as temperatures and pH which impacted on biofilm formation of EPEC K1.1 and also biofilm inhibition of aptamer on EPEC K1.1 were performed by counting the crystal violet formation in 96-well polystyrene microplates at OD570. The motility examination combined with qPCR were applied to prove the mechanism of aptamers inhibition on biofilm by targeting essential genes that involve biofilm formation. The result showed that by applying cut off value at 0.399, aptamer SELEX 10 Colony 5 exhibited the highest biofilm inhibition against EPEC K1.1 with an absorbance value of 0.126. Further analysis showed that this aptamer also was able to reduce the motility diameter of EPEC K1.1. The effect of this aptamer on EPEC K1.1 motility was confirmed by qPCR where the mRNA level of motB, csgA and lsrA gene reduced significantly compared to the untreated group. Aptamer SELEX 10 Colony 5 was able to inhibit biofilm formation through interfering the motility ability of EPEC K1.1 and also by reducing the mRNA level of biofilm formation-related genes. This study provides evidences that aptamer is effective and promising for both antibiofilm of EPEC K1.1 and alternative treatment of diarrhea.
Collapse
|
22
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
23
|
McConnell EM, Nguyen J, Li Y. Aptamer-Based Biosensors for Environmental Monitoring. Front Chem 2020; 8:434. [PMID: 32548090 PMCID: PMC7272472 DOI: 10.3389/fchem.2020.00434] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their relative synthetic and chemical simplicity compared to antibodies, aptamers afford enhanced stability and functionality for the detection of environmental contaminants and for use in environmental monitoring. Furthermore, nucleic acid aptamers can be selected for toxic targets which may prove difficult for antibody development. Of particular relevance, aptamers have been selected and used to develop biosensors for environmental contaminants such as heavy metals, small-molecule agricultural toxins, and water-borne bacterial pathogens. This review will focus on recent aptamer-based developments for the detection of diverse environmental contaminants. Within this domain, aptamers have been combined with other technologies to develop biosensors with various signal outputs. The goal of much of this work is to develop cost-effective, user-friendly detection methods that can complement or replace traditional environmental monitoring strategies. This review will highlight recent examples in this area. Additionally, with innovative developments such as wearable devices, sentinel materials, and lab-on-a-chip designs, there exists significant potential for the development of multifunctional aptamer-based biosensors for environmental monitoring. Examples of these technologies will also be highlighted. Finally, a critical perspective on the field, and thoughts on future research directions will be offered.
Collapse
Affiliation(s)
| | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
24
|
Dhar P, Samarasinghe RM, Shigdar S. Antibodies, Nanobodies, or Aptamers-Which Is Best for Deciphering the Proteomes of Non-Model Species? Int J Mol Sci 2020; 21:E2485. [PMID: 32260091 PMCID: PMC7177290 DOI: 10.3390/ijms21072485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This planet is home to countless species, some more well-known than the others. While we have developed many techniques to be able to interrogate some of the "omics", proteomics is becoming recognized as a very important part of the puzzle, given how important the protein is as a functional part of the cell. Within human health, the proteome is fairly well-established, with numerous reagents being available to decipher cellular pathways. Recent research advancements have assisted in characterizing the proteomes of some model (non-human) species, however, in many other species, we are only just touching the surface. This review considers three main reagent classes-antibodies, aptamers, and nanobodies-as a means of continuing to investigate the proteomes of non-model species without the complications of understanding the full protein signature of a species. Considerations of ease of production, potential applications, and the necessity for producing a new reagent depending on homology are presented.
Collapse
Affiliation(s)
- Poshmaal Dhar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia; (P.D.); (R.M.S.)
- Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
25
|
Eissa S, Alkhaldi S, Chinnappan R, Siddiqua A, Abduljabbar M, Abdel Rahman AM, Dasouki M, Zourob M. Selection, characterization, and electrochemical biosensing application of DNA aptamers for sepiapterin. Talanta 2020; 216:120951. [PMID: 32456943 DOI: 10.1016/j.talanta.2020.120951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Sepiapterin reductase deficiency (SR) is a rare inborn disorder of neurotransmitter metabolism. The early diagnosis of SR disease should be achieved through the determination of the sepiapterin level in body fluids of suspected patients. Here, we report the selection, identification, and characterization of DNA aptamers against sepiapterin. The aptamer selection was achieved via the systematic evolution of ligand by the exponential enrichment technique. After ten rounds of selection, high-affinity aptamers were identified. The binding affinities of the selected aptamers were evaluated using fluorescence binding assays showing dissociation constants ranging from 37.3 to 79.0 nM. The highest affinity aptamer was then integrated into a competitive electrochemical biosensor. The biosensor achieved outstanding sensitivity with a detection limit of 0.8 pg/ml which was much lower than the reported chromatographic method for sepiapterin quantification. The aptasensor has also shown a high degree of selectivity against the closely-related compound. The aptasensor was then challenged by detecting the sepiapterin in spiked serum samples where a good recovery percentage was achieved.
Collapse
Affiliation(s)
- Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Shahad Alkhaldi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh, 11533, Saudi Arabia
| | - Mai Abduljabbar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh, 11533, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
26
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
27
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
28
|
Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, LIN JS. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng 2020; 14:1. [PMID: 31956340 PMCID: PMC6956507 DOI: 10.1186/s13036-019-0223-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aptamers, single-stranded DNAs or RNAs, can be selected from a library containing random sequences using a method called Systematic Evolution of Ligands by EXponential Enrichment (SELEX). In SELEX, monitoring the enriching statuses of aptamer candidates during the process is a key step until today. Conformational change of an aptamer caused by target-binding in gel can be used to indicate its statuses of binding. RESULTS In this study, an easy-to-implement gel-based diffusion method (GBDM) was developed to monitor the interaction between enriched aptamer candidates and their targets. In order to prove the concept, characterization of aptamers targeting their targets including protein (thrombin) and non-protein molecules (acetamiprid, ATP, atrazine, profenofos and roxithromycin), respectively, were performed using mini gels. Our method has advantages over the common methods including easy performed with labor- and time- saving in experimental operation. The concept has been proven by monitoring enrichment of dynamic aptamer candidate libraries targeting a small molecule 2,2-bis(4-chlorophenyl) acetic acid (DDA) during SELEX process. A mini gel cassette was designed and fabricated by our laboratory to make mini agarose gels for diffusion with different directions. CONCLUSIONS These results indicate that GBDM, in particular, chasing diffusion is suitable for monitoring the interaction between enriched aptamer candidates and their targets. These pioneering efforts are helpful for novel aptamer selection by breaking through the technical bottleneck of aptamer development and helpful for development of novel aptasensors.
Collapse
Affiliation(s)
- Qingxiu Liu
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Wei Zhang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Siying Chen
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Yi Zhang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Lingli Jiang
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| | - Jun Sheng LIN
- School of Medicine, Huaqiao University, 269 Chenghua Rd, Fengze, Quanzhou, 362021 Fujian China
| |
Collapse
|
29
|
Felemban S, Vazquez P, Moore E. Future Trends for In Situ Monitoring of Polycyclic Aromatic Hydrocarbons in Water Sources: The Role of Immunosensing Techniques. BIOSENSORS-BASEL 2019; 9:bios9040142. [PMID: 31835623 PMCID: PMC6955691 DOI: 10.3390/bios9040142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants found in water, soil, and air. Exposure to this family of chemicals presents a danger to human health, and as a result, it is imperative to design methods that are able to detect PAHs in the environment, thus improving the quality of drinking water and agricultural soils. This review presents emerging immunoassay techniques used for in situ detection of PAH in water samples and how they compare to common-place techniques. It will discuss their advantages and disadvantages and why it is required to find new solutions to analyze water samples. These techniques are effective in reducing detection times and complexity of measurements. Immunoassay methods presented here are able to provide in situ analysis of PAH concentrations in a water sample, which can be a great complement to existing laboratory techniques due to their real-time screening and portability for immunoassay techniques. The discussion shows in detail the most relevant state-of-the-art surface functionalization techniques used in the field of immunosensors, with the aim to improve PAH detection capabilities. Specifically, three surface functionalization techniques are key approaches to improve the detection of PAHs, namely, substrate surface reaction, layer-by-layer technique, and redox-active probes. These techniques have shown promising improvements in the detection of PAHs in water samples, since they show a wider linear range and high level of sensitivity compared to traditional PAH detection techniques. This review explores the various methods used in the detection of PAH in water environments. It provides extra knowledge to scientists on the possible solutions that can be used to save time and resources. The combination of the solutions presented here shows great promise in the development of portable solutions that will be able to analyze a sample in a matter of minutes on the field.
Collapse
|
30
|
Mahmoud M, Laufer S, Deigner HP. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim Acta 2019; 186:690. [PMID: 31595372 DOI: 10.1007/s00604-019-3795-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022]
Abstract
This work describes an aptamer-based capillary assay for ethanolamine (EA). It is making use of strand displacement format and magnetic particles. The capillary tubes are coated with three layers, viz. (a) first with short oligonucleotides complementary to the aptamer (EA-comp.); (b) then with magnetic particles (Dynabeads) coated with EA-binding aptamer (EA-aptamer), and (c) with short oligonucleotide-coated magnetic particles (EA-comp.). On exposure to a sample containing ethanolamine, the DNA-coated magnetic particles are released and subsequently collected and spatially separated using a permanent magnet. This results in the formation of a characteristic black/brown spots. The assay has a visual limit of detection of 5 nM and only requires 5 min of incubation. Quantification is possible through capture and analysis of digital (RGB) photos in the 5 to 75 nM EA concentration range. Furthermore, results from tap water and serum spiked with EA samples showed that the platform performs well in complex samples and can be applied to real sample analysis. The combined use of plastic capillaries, visual detection and passive flow make the method suited for implementation into a point-of-care device. Graphical abstract Schematic representation of the capillary assay steps.
Collapse
Affiliation(s)
- Mostafa Mahmoud
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, D-18057, Rostock, Germany.
| |
Collapse
|
31
|
Development of Novel and Highly Specific ssDNA-Aptamer-Based Electrochemical Biosensor for Rapid Detection of Mercury (II) and Lead (II) Ions in Water. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we report on the development of an electrochemical biosensor for high selectivity and rapid detection of Hg2+ and Pb2+ ions using DNA-based specific aptamer probes labeled with ferrocene (or methylene blue) and thiol groups at their 5′ and 3′ termini, respectively. Aptamers were immobilized onto the surface of screen-printed gold electrodes via the SH (thiol) groups, and then cyclic voltammetry and impedance spectra measurements were performed in buffer solutions with the addition of HgCl2 and PbCl2 salts at different concentrations. Changes in 3D conformation of aptamers, caused by binding their respective targets, e.g., Hg2+ and Pb2+ ions, were accompanied by an increase in the electron transfer between the redox label and the electrode. Accordingly, the presence of the above ions can be detected electrochemically. The detection of Hg2+ and Pb2+ ions in a wide range of concentrations as low as 0.1 ng/mL (or 0.1 ppb) was achieved. The study of the kinetics of aptamer/heavy metal ions binding gave the values of the affinity constants of approximately 9.10−7 mol, which proved the high specificity of the aptamers used.
Collapse
|
32
|
Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019; 24:molecules24050941. [PMID: 30866536 PMCID: PMC6429292 DOI: 10.3390/molecules24050941] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aptamers are short, single-stranded DNA, RNA, or synthetic XNA molecules that can be developed with high affinity and specificity to interact with any desired targets. They have been widely used in facilitating discoveries in basic research, ensuring food safety and monitoring the environment. Furthermore, aptamers play promising roles as clinical diagnostics and therapeutic agents. This review provides update on the recent advances in this rapidly progressing field of research with particular emphasis on generation of aptamers and their applications in biosensing, biotechnology and medicine. The limitations and future directions of aptamers in target specific delivery and real-time detection are also discussed.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Bo Shiun Lai
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Mario Juhas
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006 Zurich, Switzerland.
| |
Collapse
|
33
|
Zhang W, Yang F, Ou D, Lin G, Huang A, Liu N, Li P. Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. J Biomol Struct Dyn 2019; 37:4274-4282. [PMID: 30477404 DOI: 10.1080/07391102.2018.1547222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Typical endocrine disrupting chemicals, including BPA (Bisphenol A), E2 (17-β-Estradiol) and PCB 72 (polychlorinated biphenyl 72), are commonly and widely present in the environment with good chemical stability that are difficult to decompose in vitro and in vivo. Most of the high-qualified antibodies are required as the key biomaterials to fabricate the immunosensor for capturing and detecting. As an ideal alternative, the short-chain oligonucleotides (aptamer) are essentially and effectively employed with the advantages of small size, chemical stability and high effectiveness for monitoring these environmental contaminants. However, the molecular interaction, acting site and mode are still not well understood. In this work, we explored the binding features of the aptamers with their targeting ligands. The molecular dynamics simulations were performed on the aptamer-ligand complex systems. The stability of each simulation system was evaluated based on its root-mean-square deviation. The affinities of these proposed ligands and the predicted binding sites are analyzed. According to the binding energy analysis, the affinities between ligands and aptamers and the stability of the systems are BPA > PCB 72 >E2. Trajectory analysis for these three complexes indicated that these three ligands were able to steadily bind with aptamers at docking site from 0 to 50 ns and contributed to alteration of conformation of aptamers.
Collapse
Affiliation(s)
- Weiwen Zhang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Fengxiao Yang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Dejin Ou
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Ge Lin
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Aiyun Huang
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , P. R. China
| | - Nan Liu
- General Practice Center, Nanhai Hospital, Southern Medical University , Foshan , P. R. China.,School of Public Health, Guangzhou Medical University , Guangzhou , P. R. China
| | - Pinle Li
- School of Public Health, Guangzhou Medical University , Guangzhou , P. R. China
| |
Collapse
|
34
|
Abraham K, Roueinfar M, Ponce AT, Lussier ME, Benson DB, Hong KL. In Vitro Selection and Characterization of a Single-Stranded DNA Aptamer Against the Herbicide Atrazine. ACS OMEGA 2018; 3:13576-13583. [PMID: 30411044 PMCID: PMC6217647 DOI: 10.1021/acsomega.8b01859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 05/14/2023]
Abstract
Atrazine is an herbicide that is widely used in crop production at about 70 million pounds per year in the United States. Its widespread use has led to contamination of groundwater and other aquatic systems. It has resulted in many serious environmental and human health issues. This study focuses on the identification and characterization of a single-stranded DNA (ssDNA) aptamer that binds to atrazine. In this study, a variation of the systematic evolution of ligands by exponential enrichment (SELEX) process was used to identify an aptamer, which binds to atrazine with high affinity and specificity. This SELEX focused on inducing the aptamer's ability to change conformation upon binding to atrazine, and stringent negative target selections. After 12 rounds of in vitro selection, the ssDNA aptamer candidate R12.45 was chosen and truncated to obtain a 46-base sequence. The binding affinity, specificity, and structural characteristics of this truncated candidate was investigated by using isothermal titration calorimetry, circular dichroism (CD) analysis, SYBR Green I (SG) fluorescence displacement assays, and gold nanoparticles (AuNPs) colorimetric assays. The truncated R12.45 candidate aptamer bound to atrazine with high affinity (K d = 3.7 nM) and displayed low cross-binding activities on structurally related herbicides. In addition, CD analysis data indicated a target induced structural stabilization. Finally, SG assays and AuNPs assays showed nonconventional binding activities between the truncated R12.45 aptamer candidate and atrazine, which warrants future studies.
Collapse
Affiliation(s)
- Kevin
M. Abraham
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
| | - Mina Roueinfar
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
| | - Alex T. Ponce
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
| | - Mia E. Lussier
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
| | - Danica B. Benson
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
| | - Ka Lok Hong
- Department
of Pharmaceutical Sciences, Nesbitt School of Pharmacy, and Department of
Biology, College of Science and Engineering, Wilkes University, 84
W. South Street, Wilkes-Barre, Pennsylvania 18766, United States
- E-mail: . Phone: +1-570-408-4296. Fax: +1-570-408-4299
| |
Collapse
|
35
|
Capoferri D, Della Pelle F, Del Carlo M, Compagnone D. Affinity Sensing Strategies for the Detection of Pesticides in Food. Foods 2018; 7:E148. [PMID: 30189666 PMCID: PMC6165126 DOI: 10.3390/foods7090148] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
This is a review of recent affinity-based approaches that detect pesticides in food. The importance of the quantification and monitoring of pesticides is firstly discussed, followed by a description of the different approaches reported in the literature. The different sensing approaches are reported according to the different recognition element used: antibodies, aptamers, or molecularly imprinted polymers. Schemes of detection and the main features of the assays are reported and commented upon. The large number of affinity sensors recently developed and tested on real samples demonstrate that this approach is ready to be validated to monitor the amount of pesticides used in food commodities.
Collapse
Affiliation(s)
- Denise Capoferri
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Flavio Della Pelle
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Michele Del Carlo
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| | - Dario Compagnone
- Faculty of Biosciences and Technologies for Food, Agriculture and Environment, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
36
|
Yang C, Bie J, Zhang X, Yan C, Li H, Zhang M, Su R, Zhang X, Sun C. A label-free aptasensor for the detection of tetracycline based on the luminescence of SYBR Green I. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:382-388. [PMID: 29807336 DOI: 10.1016/j.saa.2018.05.075] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A novel fluorescent method based on tetracycline-binding aptamers and the luminescence of SYBR Green I (SGI) was established for the sensitive and selective detection of tetracycline. Under natural conditions, the aptamers of tetracycline show the G-quadruplex spatial structures while SGI is nearly nonfluorescent in aqueous solution. After mixture with the G-quadruplex structured aptamers, SGI can recognize and intercalate into the aptamers, resulting in a strong fluorescence emission. When the target tetracycline was added into the solution, the specific recognition and high-affinity binding of aptamers with tetracycline will induce the conformational changes of aptamers from G-quadruplex structures to hairpin structures. Thereafter, SGI will be released from the aptamer molecules, leading to the fluorescence decline. The quantitative detection of tetracycline can be achieved by measuring the fluorescence change of the system. Under the optimum conditions, the linear range of tetracycline in the milk was from 5 to 25 μg/mL, and the detection limit was as low as 0.10 μg/mL. The recoveries of the spiked milk samples were in the range of 98.98%-104.67% with the relative standard deviations (RSDs) of 0.16%-0.67%, and the results were in agreement with those from HPLC. Therefore, the biosensor based on the specific recognition of aptamers and the fluorescence properties of SGI can detect the tetracycline in milk accurately, rapidly and specifically.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxin Bie
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinmeng Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caiyun Yan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hanjie Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Minghui Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiaoguang Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
37
|
Biosensors for wastewater monitoring: A review. Biosens Bioelectron 2018; 118:66-79. [PMID: 30056302 DOI: 10.1016/j.bios.2018.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023]
Abstract
Water pollution and habitat degradation are the cause of increasing water scarcity and decline in aquatic biodiversity. While the freshwater availability has been declining through past decades, water demand has continued to increase particularly in areas with arid and semi-arid climate. Monitoring of pollutants in wastewater effluents are critical to identifying water pollution area for treatment. Conventional detection methods are not effective in tracing multiple harmful components in wastewater due to their variability along different times and sources. Currently, the development of biosensing instruments attracted significant attention because of their high sensitivity, selectivity, reliability, simplicity, low-cost and real-time response. This paper provides a general overview on reported biosensors, which have been applied for the recognition of important organic chemicals, heavy metals, and microorganisms in dark waters. The significance and successes of nanotechnology in the field of biomolecular detection are also reviewed. The commercially available biosensors and their main challenges in wastewater monitoring are finally discussed.
Collapse
|
38
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
39
|
TeSelle EK, Baum DA. Isolation of DNA aptamers for herbicides under varying divalent metal ion concentrations. APTAMERS (OXFORD, ENGLAND) 2018; 2:82-87. [PMID: 34079924 PMCID: PMC8168439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Functional nucleic acids, including aptamers and deoxyribozymes, have become important in a variety of applications, particularly sensors. Aptamers are useful for recognition because of their ability to bind to targets with high selectivity and affinity. They can also be paired with deoxyribozymes to form signaling aptazymes. These aptamers and aptazymes have the potential to significantly improve the detection of small molecule pollutants, such as herbicides, in the environment. One challenge when developing aptazymes is that aptamer selection conditions can vary greatly from optimal deoxyribozyme reaction conditions. Aptamer selections commonly mimic physiological conditions, while deoxyribozyme selections are conducted under a wider range of divalent metal ion conditions. Isolating aptamers under conditions that match deoxyribozyme reaction conditions should ease the development of aptazymes and facilitate the activities of both the binding and catalytic components. Therefore, we conducted in vitro selections under different divalent metal ion conditions to identify DNA aptamers for the herbicides atrazine and alachlor. Conditions were chosen based on optimal reaction conditions for commonly-used deoxyribozymes. Each set of conditions yielded aptamers that were unrelated to aptamers identified under other selection conditions. No particular set of conditions stood out as being optimal from initial binding analysis. The best aptamers bound their target with high-micromolar to low-millimolar affinity, similar to the concentrations used during the selection procedures, as well as regulatory guidelines. Our results demonstrate that different metal ion concentrations can achieve the common goal of binding to a particular target, while providing aptamers that function under alternate conditions.
Collapse
Affiliation(s)
| | - Dana A Baum
- Correspondence to: Dana Baum, , Tel: +1 314 977 2842, Fax: +1 314 977 2521
| |
Collapse
|