1
|
Wittmann C, Besleaga I, Mahmoudi S, Palamarciuc O, Balan-Porcarasu M, Dascalu M, Shova S, Cazacu M, Kiricsi M, Igaz N, Dömötör O, Enyedy EA, Dvoranová D, Rapta P, Arion VB. Physical properties and cytotoxicity of Cu(II) and Zn(II) complexes with a TMS-substituted indolo[2,3- c]quinoline-derived Schiff base. Dalton Trans 2025. [PMID: 40275802 PMCID: PMC12022746 DOI: 10.1039/d5dt00314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
The incorporation of non-native chemical elements, such as silicon, into drug molecules has gained significant attention as a strategy to broaden the chemical space in medicinal chemistry and develop novel drug candidates. Traditionally, research has focused on the isosteric replacement of a carbon atom with silicon ("silicon switch") in known drug structures or the attachment of a trimethylsilyl (TMS) group to biologically active scaffolds. In this study, a TMS-substituted indoloquinoline-based Schiff base (HLTMS) and its corresponding metal complexes, Cu(HLTMS)Cl2 (1) and Zn(HLTMS)Cl2 (2), were synthesized and comprehensively characterized using elemental analysis, spectroscopic techniques (IR, UV-vis, 1H and 13C NMR for HLTMS and 2), ESI mass spectrometry and single-crystal X-ray diffraction (SC-XRD) for 1 and electron diffraction (ED) for 2. The attachment of the TMS group enhanced the lipophilicity of HLTMS, while complex formation with Cu(II) substantially improved the antiproliferative activity. Exploitation of their intrinsic fluorescence to investigate cellular uptake and intracellular localization in cancer cells was impeded by limited solubility. Both HLTMS and 2 were found to generate reactive oxygen species under cell-free conditions in accord with their redox activity established by cyclic voltammetry. The photochemical activity of the indolo[2,3-c]quinoline-based proligand HLTMS and its complexes 1 and 2 has been disclosed. The compounds exhibited significant toxicity on various human cancer cells and disrupted the mitochondrial membrane potential, suggesting the contribution of mitochondrial dysfunction, triggered by HLTMS and its metal complexes, to their toxic effects. These findings highlight the potential of TMS-substituted Schiff bases as promising anticancer drug candidates.
Collapse
Affiliation(s)
- Christopher Wittmann
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna, Austria.
| | - Iuliana Besleaga
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna, Austria.
| | - Soheil Mahmoudi
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Strasse 42, 1090 Vienna, Austria
| | - Oleg Palamarciuc
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
- Physics of Semiconductors and Devices Laboratory, Faculty of Physics and Engineering and Institute of Applied Physics, Moldova State University, MD-2009 Chişinău, Republic of Moldova
| | - Mihaela Balan-Porcarasu
- NMR Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Mihaela Dascalu
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Sergiu Shova
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Maria Cazacu
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
| | - Eva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
| | - Dana Dvoranová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia.
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia.
| | - Vladimir B Arion
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
2
|
Štekláč M, Malček M, Gajdoš P, Vevericová S, Čertík M, Valko M, Brezová V, Malček Šimunková M. Antioxidant effect, DNA-binding, and transport of the flavonoid acacetin influenced by the presence of redox-active Cu(II) ion: Spectroscopic and in silico study. J Inorg Biochem 2025; 264:112802. [PMID: 39671744 DOI: 10.1016/j.jinorgbio.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Acacetin (AC) is a natural polyphenol from the group of flavonoids. It is well established that the behavior of flavonoids depends on the presence of redox-active substances; therefore, we aim to investigate their biological activity following the interaction with Cu(II) ion. Our study demonstrates that AC can effectively bind Cu(II) ions, as confirmed by UV-Vis and EPR spectroscopy as well as DFT calculations. AC appears as a potent scavenger against the model ABTS radical cation by itself, but this ability is significantly limited upon Cu(II) coordination. The possible mild synergistic effect of AC in the presence of vitamin C and glutathione was also shown by the ABTS•+ test. In contrast, an inhibitory effect was observed in the presence of Cu(II) ions. The equimolar addition of AC to the model Fenton-like system containing Cu(II) did not have a noticeable effect on the concentration of hydroxyl radicals produced, but in its excess the formation of •OH decreased, as proved by EPR spin trapping. Absorption titrations and gel electrophoresis revealed effective binding to calf thymus (CT)-DNA with a stronger interaction for the Cu(II)-AC complex. The detailed mode of binding to biomolecules was described using molecular docking and molecular dynamics. Obtained results indicate that the double helix of DNA unwinds after interaction with the Cu(II)-AC complex. Fluorescence spectroscopy, employing human serum albumin (HSA), suggested a potential transport capacity for both AC and its Cu(II) complex.
Collapse
Affiliation(s)
- Marek Štekláč
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic; Computing Center, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta č. 9, SK-845 35 Bratislava, Slovakia, Slovak Republic
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Peter Gajdoš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Simona Vevericová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Marián Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Miriama Malček Šimunková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Danişman-Kalindemirtaş F, Özerkan D, Kariper İA, Erdemir Cilasun G, Ülküseven B, Erdem-Kuruca S. Albumin-based nanocarriers loaded with novel Zn(II)-thiosemicarbazone compounds chart a new path for precision breast cancer therapy. Anticancer Drugs 2025; 36:208-219. [PMID: 39774332 DOI: 10.1097/cad.0000000000001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study explores the therapeutic potential of albumin-bound Zn(II)-thiosemicarbazone compounds (Alb-ZnTcA, Alb-ZnTcB) against breast cancer cells. Previous research indicates that these compounds hinder cancer cell proliferation by blocking DNA synthesis, promoting oxidative stress to induce apoptosis, and disrupting the cell cycle to inhibit cellular division. This study focuses on the loading and characterization of these potentially chemically unstable compounds on bovine serum albumin-based nanocarriers. Accordingly, unlike previous studies using albumin nanoparticles, in this study, ultraviolet light was used to precisely bind the therapeutic agent to albumin during the integration of thiosemicarbazones, achieving controlled nanoparticle size to control nanoparticle size. The mean diameter of Alb-ZnTcA nanoparticles was 32 nm, while Alb-ZnTcB exhibited an average diameter of 43 nm. Notably, Alb-ZnTcA displayed the highest cytotoxicity toward breast cancer cells, suggesting an optimal size for cellular uptake. Additionally, albumin-bound compounds showed enhanced cytotoxicity at lower concentrations, potentially minimizing adverse side effects. Apoptosis analysis indicated that both Alb-ZnTcA and Alb-ZnTcB induce cell death predominantly through apoptosis, effectively preventing the uncontrolled proliferation of cancer cells. These findings demonstrate the potential of Zn(II)-thiosemicarbazone compounds loaded on albumin-based nanocarriers for breast cancer treatment. The increased potency of Alb-ZnTcA and Alb-ZnTcB compared to free compounds, along with their ability to activate apoptotic signaling pathways in MCF-7 breast cancer cells, highlights a promising approach for future cancer therapies. This study suggests that albumin-bound Zn(II)-thiosemicarbazone compounds could offer a targeted and effective strategy in breast cancer treatment, leveraging the advantages of nanocarrier-based delivery systems.
Collapse
Affiliation(s)
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri
| | | | - Bahri Ülküseven
- Department of Chemistry, Faculty of Engineering, Istanbul Cerrahpaşa University
| | - Serap Erdem-Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, İstanbul, Turkey
| |
Collapse
|
4
|
Sung PC, Yokoi T, Shimabukuro M, Mokudai T, Kawashita M. Apatite-Forming Ability and Visible Light-Enhanced Antibacterial Activity of CuO-Supported TiO 2 Formed on Titanium by Chemical and Thermal Treatments. J Funct Biomater 2024; 15:114. [PMID: 38786626 PMCID: PMC11121970 DOI: 10.3390/jfb15050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Titanium with apatite-forming ability as well as antibacterial activity is useful as a component of antibacterial dental implants. When Ti was subjected to hydrogen peroxide (H2O2), copper acetate (Cu(OAc)2), and heat (H2O2-Cu(OAc)2-heat) treatments, a network structure of anatase and rutile titanium dioxide (TiO2) and fine copper oxide (CuO) particles was formed on the Ti surface. The resulting samples accumulated a dense and uniform apatite layer on the surface when incubated in simulated body fluid and showed enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus under visible-light irradiation. Electron spin resonance spectra of H2O2-Cu(OAc)2-heat-treated samples showed that hydroxyl radicals (·OH) were generated from the samples, and the concentration of ·OH increased with increasing Cu concentration of the Cu(OAc)2 solution. The enhanced antibacterial activity of these samples under visible-light irradiation may be attributable to the generation of ·OH from samples. These results suggest that Ti implants obtained using H2O2-Cu(OAc)2-heat treatments and subjected to regular or on-demand visible-light irradiation may provide a decreased risk of peri-implantitis.
Collapse
Affiliation(s)
- Po-Cheng Sung
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan;
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (T.Y.); (M.S.)
| | - Masaya Shimabukuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (T.Y.); (M.S.)
| | - Takayuki Mokudai
- Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (T.Y.); (M.S.)
| |
Collapse
|
5
|
Effect of the complex-formation ability of thiosemicarbazones containing (aza)benzene or 3-nitro-1,8-naphthalimide unit towards Cu(II) and Fe(III) ions on their anticancer activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Clavier B, Baptiste T, Barbieriková Z, Hajdu T, Guiet A, Boucher F, Brezová V, Roques C, Corbel G. Hydration and bactericidal activity of nanometer- and micrometer-sized particles of rock salt-type Mg 1-xCu xO oxides. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111997. [PMID: 33812617 DOI: 10.1016/j.msec.2021.111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 01/20/2023]
Abstract
Copper substitution together with nano-structuring are applied with the aim to increase the bactericidal performances of the rocksalt-type MgO oxide. The partial substitution of magnesium ions with Cu2+ has been successfully achieved in both micrometer- and nanometer-sized particles of MgO up to 20 mol% in increments of 5 mol%. Microstructural analyses using the Integral Breadth method revealed that the thermal decomposition of the single source precursor Mg1-xCux(OH)2-2y(CO3)y.zH2O at 400 °C creates numerous defects in 10-20 nm-sized particles of Mg1-xCuxO thus obtained. These defects make the surface of nanoparticles highly reactive towards the sorption of water molecules, to the extent that the cubic cell a parameter in as-prepared Mg1-xCuxO expands by +0.24% as soon as the nanoparticles are exposed to ambient air (60% RH). The hydration of Mg1-xCuxO particles in liquid water is based on a conventional dissolution-precipitation mechanism. Particles of a few microns in size dissolve all the more slowly the higher the copper content and only Mg(OH)2 starts precipitating after 3 h. In contrast, the dissolution of all 10-20 nm-sized Mg1-xCuxO particles is complete over a 3 h period and water suspension only contains 4-12 nm-sized Mg1-xCux(OH)2 particles after 3 h. Thereby, the bactericidal activity reported for water suspension of Mg1-xCuxO nanoparticles depends on the speed at which these nanoparticles dissolve and Mg1-xCux(OH)2 nanoparticles precipitate in the first 3 h. Only 10 mol% of cupric ions in MgO nanoparticles are sufficient to kill both E. coli and S. aureus with a bactericidal kinetics faster and reductions in viability at 3 h (6.5 Log10 and 2.7 Log10, respectively) higher than the conventional antibacterial agent CuO (4.7 Log10 and 2 Log10 under the same conditions). EPR spin trapping study reveals that "hydroxylated" Mg0.9Cu0.1O as well as Mg0.9Cu0.1(OH)2 nanoparticles produce more spin-adducts with highly toxic hydroxyl radicals than their copper-free counterparts. The rapid mass adsorption of Mg0.9Cu0.1(OH)2 nanoparticles onto the cell envelopes following their precipitation together with their ability to produce Reactive Oxygen Species are responsible for the exceptionally high bactericidal activity measured in the course of the hydroxylation of Mg0.9Cu0.1O nanoparticles.
Collapse
Affiliation(s)
- Batiste Clavier
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Téo Baptiste
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Zuzana Barbieriková
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tomáš Hajdu
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Amandine Guiet
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Fabien Boucher
- Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Christine Roques
- Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier - Toulouse III, 35, chemin des maraîchers, 31062 Toulouse Cedex 4, France; Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France
| | - Gwenaël Corbel
- Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
| |
Collapse
|
7
|
Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Int J Mol Sci 2021; 22:ijms22041619. [PMID: 33562744 PMCID: PMC7915082 DOI: 10.3390/ijms22041619] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
Kaempferol is a flavonoid that occurs in tea and in many vegetables and fruits, including broccoli, cabbage, beans, grapes, apples, and strawberries. The efficacy of Kaempferol has been demonstrated in the treatment of breast, esophageal, cervical, ovarian, and liver cancers and leukemia, which very likely arises from its prooxidant properties and the activation of pro-apoptotic pathways. Indeed, this matter has already been the focus of a number of published studies and reviews. The aim of the present study was to elucidate the antioxidant vs. prooxidant properties of flavonoids in the presence of the redox-active metal, copper (II) ion, by means of the Fenton reaction. The specific motivation of this work is that, since an increased level of Cu(II) ions is known to be associated with many disease states such as neurological conditions (Alzheimer’s disease) and cancer, any interaction between these ions and flavonoids might affect the outcome of therapeutic uses of the latter. The structure of the Cu-kaempferol complex in DMSO was investigated by means of low temperature EPR spectroscopy, which confirmed the existence of at least two distinct coordination environments around the copper (II) ion. UV vis-spectra of kaempferol and its Cu(II) complex in DMSO revealed an interaction between the 5-OH (A ring) group and the 4-CO (C ring) group of kaempferol with Cu(II) ions. An ABTS assay confirmed that kaempferol acted as an effective radical scavenger, and that this effect was further enhanced in the form of the Cu(II)-kaempferol complex. Quantitative EPR spin trapping experiments, using DMPO as the spin trap, confirmed suppression of the formation of a mixture of hydroxyl, superoxide, and methyl radicals, in a Fenton reaction system, upon coordination of kaempferol to the redox-active Cu(II) ions, by 80% with respect to the free Cu(II) ions. A viscometric study revealed a better DNA-intercalating ability of the Cu-kaempferol complex than for free kaempferol, essential for conferring anticancer activity of these substances. The results of the viscometric measurements were compared with those from a DNA damage study of Cu-kaempferol complexes in a Fenton reaction system, using gel electrophoresis. At low concentrations of kaempferol (Cu–kaempferol ratios of 1:1 and 1:2), a very weak protective effect on DNA was noted, whereas when kaempferol was present in excess, a significant DNA-protective effect was found. This can be explained if the weakly intercalated kaempferol molecules present at the surface of DNA provide protection against attack by ROS that originate from the Fenton reaction involving intercalated Cu(II)-kaempferol complexes. Following the application of ROS scavengers, L-histidine, DMSO, and SOD, gel electrophoresis confirmed the formation of singlet oxygen, hydroxyl radicals, and superoxide radical anions, respectively. We propose that the prooxidant properties of Cu-kaempferol complexes may provide anticancer activity of these substances. When present in excess, kaempferol displays antioxidant properties under Cu-Fenton conditions. This suggests that kaempferol might prove a suitable candidate for the prevention or treatment of oxidative stress related medical conditions that involve a disturbed metabolism of redox metals such as copper, for example, Menkes disease, and neurological disorders, including Alzheimer’s disease. For the potential use of kaempferol in clinical practice, it will be necessary to optimize the dose size and critical age of the patient so that this flavonoid may be beneficial as a preventive drug against cancer and neurological disorders.
Collapse
|
8
|
Abstract
Abiotic allosterism is most commonly observed in hetero-bimetallic supramolecular complexes and less frequently in homo-bimetallic complexes. The use of hemilabile ligands with high synthetic complexity enables the catalytic center by the addition or removal of allosteric effectors and simplicity is unusually seen in these systems. Here we describe a simpler approach to achieve kinetic regulation by the use of dimeric Schiff base copper complexes connected by a chlorido ligand bridge. The chlorido ligand acts as a weak link between monomers, generating homo-bimetallic self-aggregating supramolecular complexes that generate monomeric species in different reaction rates depending on the solvent and on the radical moiety of the ligand. The ligand exchange was observed by electron paramagnetic resonance (EPR) and conductivity measurements, indicating that complexes with ligands bearing methoxyl (CuIIL2) and ethoxyl (CuIIL5) radicals were more prone to form dimeric complexes in comparison to ligands bearing hydrogen (CuIIL1), methyl (CuIIL3), or t-butyl (CuIIL4) radicals. The equilibrium between dimer and monomer afforded different reactivities of the complexes in acetonitrile/water and methanol/water mixtures toward urea hydrolysis as a model reaction. It was evident that the dimeric species were inactive and that by increasing the water concentration in the reaction medium, the dimeric structures dissociated to form the active monomeric structures. This behavior was more pronounced when methanol/water mixtures were employed due to a slower displacement of the chlorido bridge in this medium than in the acetonitrile/water mixtures, enabling the reaction kinetics to be evaluated. This effect was attributed to the preferential solvation shell by the organic solvents and in essence, an upregulation behavior was observed due to the intrinsic nature of the complexes to form dimeric structures in solution that could be dismantled in the presence of water, indicating their possible use as water-sensors in organic solvents.
Collapse
|
9
|
Nano-synthesis, spectroscopic characterization, quantum chemical calculations, thermal properties and antimicrobial activity of (E)-N′-(2-hydroxybenzylidene)morpholine-4-carbothiohydrazide ligand and its metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Elamathi C, Fronczek FR, Madankumar A, Prabhakaran R. Synthesis and spectral characterizations of water soluble Cu(ii) complexes containing N-heterocyclic chelates: cell-proliferation, antioxidant and nucleic acid/serum albumin interactions. NEW J CHEM 2020. [DOI: 10.1039/c9nj04136b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water soluble N-heterocyclic copper(ii) complexes were synthesized, characterized and studied their DNA/protein binding interactions, antioxidation and antiproliferative potentials. The complex 4 found to be better than other complexes.
Collapse
Affiliation(s)
- C. Elamathi
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | | | - A. Madankumar
- Cancer biology Lab
- Molecular and Nanomedicine Research Unit
- Sathyabama Institute of Science and Technology
- Chennai 600 119
- India
| | - R. Prabhakaran
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| |
Collapse
|
11
|
|
12
|
Ohui K, Babak MV, Darvasiova D, Roller A, Vegh D, Rapta P, Guan GRS, Ou YH, Pastorin G, Arion VB. Redox-Active Organoruthenium(II)– and Organoosmium(II)–Copper(II) Complexes, with an Amidrazone–Morpholine Hybrid and [Cu ICl 2] − as Counteranion and Their Antiproliferative Activity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kateryna Ohui
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore
- Drug Development Unit, National University of Singapore, 28 Medical Drive, 117546, Singapore
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Alexander Roller
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Daniel Vegh
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak Technical University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Grace Rui Shi Guan
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Yi Hsuan Ou
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
13
|
Kovač T, Šarkanj B, Crevar B, Kovač M, Lončarić A, Strelec I, Ezekiel CN, Sulyok M, Krska R. Aspergillus flavus NRRL 3251 Growth, Oxidative Status, and Aflatoxins Production Ability In Vitro under Different Illumination Regimes. Toxins (Basel) 2018; 10:E528. [PMID: 30544693 PMCID: PMC6316533 DOI: 10.3390/toxins10120528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Aspergillus flavus is the most important mycotoxin-producing fungus involved in the global episodes of aflatoxin B₁ contamination of crops at both the pre-harvest and post-harvest stages. However, in order to effectively control aflatoxin contamination in crops using antiaflatoxigenic and/or antifungal compounds, some of which are photosensitive, a proper understanding of the photo-sensitive physiology of potential experimental strains need to be documented. The purpose of the study is therefore to evaluate the effect of visible (VIS) light illumination on growth and conidiation, aflatoxin production ability and modulation of A. flavus oxidative status during in vitro experiment. Aflatoxigenic A. flavus strain was inoculated in aflatoxin-inducing YES media and incubated under three different VIS illumination regimes during a 168 h growth period at 29 °C. VIS illumination reduced A. flavus mycelia biomass yield, both during growth on plates and in liquid media, promoted conidiation and increased the aflatoxin production. Furthermore, aflatoxin production increased with increased reactive oxidative species (ROS) levels at 96 h of growth, confirming illumination-driven oxidative stress modulation activity on A. flavus cells.
Collapse
Affiliation(s)
- Tihomir Kovač
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, Osijek 31000, Croatia.
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, Tulln 3430, Austria.
| | - Bojan Šarkanj
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, Osijek 31000, Croatia.
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, Tulln 3430, Austria.
- Department of Food technology, University North, Trg dr. Žarka Dolinara 1, Koprivnica 48000, Croatia.
| | - Biljana Crevar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, Osijek 31000, Croatia.
| | - Marija Kovač
- Inspecto Ltd., Industrijska zona Nemetin, Vukovarska cesta 239b, Osijek 31000, Croatia.
| | - Ante Lončarić
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, Osijek 31000, Croatia.
| | - Ivica Strelec
- Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, Osijek 31000, Croatia.
| | - Chibundu N Ezekiel
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, Tulln 3430, Austria.
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, Tulln 3430, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, Tulln 3430, Austria.
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|