1
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
2
|
Li G, Wang C, Jin B, Sun T, Sun K, Wang S, Fan Z. Advances in smart nanotechnology-supported photodynamic therapy for cancer. Cell Death Discov 2024; 10:466. [PMID: 39528439 PMCID: PMC11554787 DOI: 10.1038/s41420-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer has emerged as a formidable challenge in the 21st century, impacting society, public health, and the economy. Conventional cancer treatments often exhibit limited efficacy and considerable side effects, particularly in managing the advanced stages of the disease. Photodynamic therapy (PDT), a contemporary non-invasive therapeutic approach, employs photosensitizers (PS) in conjunction with precise light wavelengths to selectively target diseased tissues, inducing the generation of reactive oxygen species and ultimately leading to cancer cell apoptosis. In contrast to conventional therapies, PDT presents a lower incidence of side effects and greater precision in targeting. The integration of intelligent nanotechnology into PDT has markedly improved its effectiveness, as evidenced by the remarkable synergistic antitumor effects observed with the utilization of multifunctional nanoplatforms in conjunction with PDT. This paper provides a concise overview of the principles underlying PS and PDT, while also delving into the utilization of nanomaterial-based PDT in the context of cancer treatment.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Cong Wang
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Binghui Jin
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China
| | - Tao Sun
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Dalian, China
| | - Kang Sun
- Department of Digestive Endoscopy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Liaoning Province Key Laboratory of Corneal and Ocular Surface Diseases Research, the Third People's Hospital of Dalian, Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
He Y, Wang D, Zhang C, Huang S, Li X, Chen Y, Ma Y, Ju S, Ye H, Fan W. EGFR-targeting oxygen-saturated nanophotosensitizers for orchestrating multifaceted antitumor responses by counteracting immunosuppressive milieu. J Control Release 2024; 375:127-141. [PMID: 39233281 DOI: 10.1016/j.jconrel.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
High Epidermal growth factor receptor (EGFR) in Cutaneous Squamous Cell Carcinoma (cSCC) is associated with poor prognosis and advanced metastatic stages, severely impeding the efficacy of EGFR-targeting immunotherapy. This is commonly attributed to the combinatory outcomes of hypoxic tumor microenvironment (TME) and immunosuppressive effector cells together. Herein, a novel paradigm of EGFR-targeting oxygen-saturated nanophotosensitizers, designated as CHPFN-O2, has been specifically tailored to mitigate tumor hypoxia in EGFR-positive cSCC and achieve Cetuximab (CTX)-mediated immunotherapy (CIT). The conjugated CTX in CHPFN-O2 serves to initiate immune responses by recruiting Fc receptor (FcR)-expressing immune effector cells towards tumor cells, thereby eliciting antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular trogocytosis (ADCT) and antibody-dependent cellular cytotoxicity (ADCC). Besides, CHPFN-O2 can engender a shift from a tumor-friendly to a tumor-hostile one through improved tumor oxygenation, contributing to oxygen-elevated photodynamic therapy (oxPDT). Notably, the combination of oxPDT and CIT eventually promotes T-cell-mediated antitumor activity and successfully inhibits the growth of EGFR-expressing cSCC with good safety profiles. This comprehensive oxPDT/CIT integration aims not only to enhance therapeutic efficacy against EGFRhigh cSCC but also to extend its applicability to other EGFRhigh malignancies, thus delineating a new avenue for the highly efficient synergistic treatment of EGFR-expressing malignancies.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Deng Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangzheng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongxun Ye
- Department of Radiology, Taixing People's Hospital, Medical School, Yangzhou University, Taixing 225400, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
6
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
7
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
8
|
Slapak EJ, El Mandili M, Brink MST, Kros A, Bijlsma MF, Spek CA. Preclinical Assessment of ADAM9-Responsive Mesoporous Silica Nanoparticles for the Treatment of Pancreatic Cancer. Int J Mol Sci 2023; 24:10704. [PMID: 37445886 DOI: 10.3390/ijms241310704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may reduce off-target toxicities have been developed. In this paper, we present a preclinical evaluation of a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSNs) functionalized with a protease linker that is specifically cleaved by PDAC cells. Our previous work demonstrated that ADAM9 is a PDAC-enriched protease and that paclitaxel-loaded ADAM9-responsive MSNs effectively kill PDAC cells in vitro. Here, we show that paclitaxel-loaded ADAM9-MSNs result in off-target cytotoxicity in clinically relevant models, which spurred the development of optimized ADAM9-responsive MSNs (OPT-MSNs). We found that these OPT-MSNs still efficiently kill PDAC cells but, as opposed to free paclitaxel, do not induce death in neuronal or bone marrow cells. In line with these in vitro data, paclitaxel-loaded OPT-MSNs showed reduced organ damage and leukopenia in a preclinical PDAC xenograft model. However, no antitumor response was observed upon OPT-MSN administration in vivo. The poor in vivo antitumor activity of OPT-MSNs despite efficient antitumor effects in vitro highlights that although MSN-based tumor-targeting strategies may hold therapeutic potential, clinical translation does not seem as straightforward as anticipated.
Collapse
Affiliation(s)
- Etienne J Slapak
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| | - Mouad El Mandili
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
| | - Marieke S Ten Brink
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Oncode Institute, 3521 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| | - C Arnold Spek
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
10
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
11
|
Sargazi S, Laraib U, Barani M, Rahdar A, Fatima I, Bilal M, Pandey S, Sharma RK, Kyzas GZ. Recent trends in mesoporous silica nanoparticles of rode-like morphology for cancer theranostics: A review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
de las Heras E, Sagristá ML, Agut M, Nonell S. Photosensitive EGFR-Targeted Nanocarriers for Combined Photodynamic and Local Chemotherapy. Pharmaceutics 2022; 14:pharmaceutics14020405. [PMID: 35214137 PMCID: PMC8880051 DOI: 10.3390/pharmaceutics14020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
The major limitation of any cancer therapy lies in the difficulty of precisely controlling the localization of the drug in the tumor cells. To improve this drawback, our study explores the use of actively-targeted chemo-photo-nanocarriers that recognize and bind to epidermal growth factor receptor-overexpressing cells and promote the local on-demand release of the chemotherapeutic agent doxorubicin triggered by light. Our results show that the attachment of high concentrations of doxorubicin to cetuximab-IRDye700DX-mesoporous silica nanoparticles yields efficient and selective photokilling of EGFR-expressing cells mainly through singlet oxygen-induced release of the doxorubicin from the nanocarrier and without any dark toxicity. Therefore, this novel triply functionalized nanosystem is an effective and safe nanodevice for light-triggered on-demand doxorubicin release.
Collapse
Affiliation(s)
- Elena de las Heras
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.d.l.H.); (M.A.)
| | - M. Lluïsa Sagristá
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Montserrat Agut
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.d.l.H.); (M.A.)
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain; (E.d.l.H.); (M.A.)
- Correspondence:
| |
Collapse
|
13
|
Slapak EJ, el Mandili M, Bijlsma MF, Spek CA. Mesoporous Silica Nanoparticle-Based Drug Delivery Systems for the Treatment of Pancreatic Cancer: A Systematic Literature Overview. Pharmaceutics 2022; 14:390. [PMID: 35214121 PMCID: PMC8876630 DOI: 10.3390/pharmaceutics14020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is a devastating disease with the worst outcome of any human cancer. Despite significant improvements in cancer treatment in general, little progress has been made in pancreatic cancer (PDAC), resulting in an overall 5-year survival rate of less than 10%. This dismal prognosis can be attributed to the limited clinical efficacy of systemic chemotherapy due to its high toxicity and consequent dose reductions. Targeted delivery of chemotherapeutic drugs to PDAC cells without affecting healthy non-tumor cells will largely reduce collateral toxicity leading to reduced morbidity and an increased number of PDAC patients eligible for chemotherapy treatment. To achieve targeted delivery in PDAC, several strategies have been explored over the last years, and especially the use of mesoporous silica nanoparticles (MSNs) seem an attractive approach. MSNs show high biocompatibility, are relatively easy to surface modify, and the porous structure of MSNs enables high drug-loading capacity. In the current systematic review, we explore the suitability of MSN-based targeted therapies in the setting of PDAC. We provide an extensive overview of MSN-formulations employed in preclinical PDAC models and conclude that MSN-based tumor-targeting strategies may indeed hold therapeutic potential for PDAC, although true clinical translation has lagged behind.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Mouad el Mandili
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (M.e.M.); (C.A.S.)
| |
Collapse
|
14
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
15
|
Liu L, Kshirsagar PG, Gautam SK, Gulati M, Wafa EI, Christiansen JC, White BM, Mallapragada SK, Wannemuehler MJ, Kumar S, Solheim JC, Batra SK, Salem AK, Narasimhan B, Jain M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics 2022; 12:1030-1060. [PMID: 35154473 PMCID: PMC8771545 DOI: 10.7150/thno.64805] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/03/2021] [Indexed: 01/28/2023] Open
Abstract
Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Emad I. Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - John C. Christiansen
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
| | - Brianna M. White
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
| | - Joyce C. Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA
- Nanovaccine Institute, Iowa State University, Ames, IA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha NE
- Nanovaccine Institute, Iowa State University, Ames, IA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha NE
| |
Collapse
|
16
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
18
|
Nedelcu A, Mocan T, Grapa C, Mocan L. Recent Advances in Nanoparticle-Mediated Diagnosis and the Treatment of Pancreatic Cancer. Int J Mol Sci 2021; 22:ijms22158060. [PMID: 34360829 PMCID: PMC8347356 DOI: 10.3390/ijms22158060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC), one of the most lethal solid tumors in humans, has a five-year survival rate of only 4%. Surgical treatment is the only accepted therapy with curative intent because the vast majority of these tumors are chemoresistant. Unfortunately, due to the aggressive nature of these tumors, fewer than 20% are resectable when the first symptoms occur. Novel therapies are required to overcome all these therapeutic issues, and the development of active nanocarriers represents an exciting opportunity to improve PC outcomes. The present review focuses on recent advances in the field of nanotechnology with application in PC treatment.
Collapse
Affiliation(s)
- Andreea Nedelcu
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania; (A.N.); (L.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Regina Maria Hospital, 400158 Cluj-Napoca, Romania
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-439696; Fax: +40-264-439696
| | - Cristiana Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania
| | - Lucian Mocan
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400158 Cluj-Napoca, Romania; (A.N.); (L.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, Octavian Fodor, 400158 Cluj-Napoca, Romania;
| |
Collapse
|
19
|
Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J, Li W. The Application of Inorganic Nanoparticles in Molecular Targeted Cancer Therapy: EGFR Targeting. Front Pharmacol 2021; 12:702445. [PMID: 34322025 PMCID: PMC8311435 DOI: 10.3389/fphar.2021.702445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is an anticancer drug target for a number of cancers, such as non-small cell lung cancer. However, unsatisfying treatment effects, terrible side-effects, and development of drug resistance are current insurmountable challenges of EGFR targeting treatments for cancers. With the advancement of nanotechnology, an increasing number of inorganic nanomaterials are applied in EGFR-mediated therapy to improve those limitations and further potentiate the efficacy of molecular targeted cancer therapy. Given their facile preparation, easy modification, and biosecurity, inorganic nanoparticles (iNPs) have been extensively explored in cancer treatments to date. This review presents an overview of the application of some typical metal nanoparticles and nonmetallic nanoparticles in EGFR-targeted therapy, then discusses and summarizes the relevant advantages. Moreover, we also highlight future perspectives regarding their remaining issues. We hope these discussions inspire future research on EGFR-targeted iNPs.
Collapse
Affiliation(s)
- Meng Sun
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Ting Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiangyang Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Yutong Zhai
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Jiantao Zhang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| |
Collapse
|
20
|
Xiao Y, Huang G, Xiang Y. Research on Anti-Tumor Nano-Particle with New Type 5-Fluorouracil on the Peritoneal Metastasis of Breast Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 5-fluorouracil (5-FU) was a classical chemotherapy drug. The administrational carrier of nano-particle provides enhancement effect prior to target and reduce side effect. But the specific function of nano-particle on the peritoneal metastasis of breast cancer was poorly understood.
Our study was designed to discover the biological function of anti-tumor nano-particle with new type 5-FU on breast cancer. The nano-particle of 5-fluorouracil (5-FU-NPs) was prepared by multiple emulsion method. The distribution of particle size was analyzed by electron microscope. The proliferation
and apoptosis of cell in breast cancer was interfered by 5-FU solution (control group) or 5-FU-NPs. Cell cycle was assessed by flow cytometry and proliferation was detected by MTT and cell clone technology. The rat was injected with 5-FU solution (control group) or 5-FU-NPs intraperitoneally
followed by analysis of tumor volume and size. The average tumor diameter was 200±10.84 nm. The encapsulation rate and loading rate was 81.6±5.7% and 7.29±0.14% respectively. The apoptosis of MCF-7 cell treated by 5-FU-NPs was increased significantly with abundant rounded
and floating apoptotic cellular morphology as well as reduced quantity of surviving cells. The number of bacterial colony induced by 5-FU-NPs, which could interdict cell cycle. The 5-FU-NPs could restrain tumor cell growth in peritoneal metastasis of breast cancer. The new-type nano-particle
of 5-FU loaded with PEG-PLGA could retard breast cancer cell proliferation and peritoneal metastasis of breast cancer in rats.
Collapse
Affiliation(s)
- Yujie Xiao
- Thyroid and Breast Surgery, The First People’s Hospital of Yichang, Yichang, Hubei, 434000, China
| | - Guilin Huang
- General Surgery Department II, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yibo Xiang
- Department of Otolaryngology, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao City, Hubei Province, 433000, China
| |
Collapse
|
21
|
Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. NANO-MICRO LETTERS 2021; 13:35. [PMID: 34138222 PMCID: PMC8187547 DOI: 10.1007/s40820-020-00561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 05/13/2023]
Abstract
Patients with pancreatic cancer (PCa) have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic. Yet, it suffers from certain limitations during clinical exploitation, including insufficient photosensitizers (PSs) delivery, tumor-oxygenation dependency, and treatment escape of aggressive tumors. To overcome these obstacles, an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles (NPs) by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers. Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation. A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment. This review provides an overview of available data regarding the design, methodology, and oncological outcome of the innovative NPs-based PDT of PCa.
Collapse
Affiliation(s)
- Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
23
|
Wang K, Yu B, Pathak JL. An update in clinical utilization of photodynamic therapy for lung cancer. J Cancer 2021; 12:1154-1160. [PMID: 33442413 PMCID: PMC7797657 DOI: 10.7150/jca.51537] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide, with nearly 1.8 million-diagnosis and 1.59 million deaths. Surgery, radiotherapy, and chemotherapy in individual or combination are commonly used to treat lung cancers. Photodynamic therapy (PDT) is a highly selective method for the destruction of cancer cells by exerting cytotoxic activity on malignant cells. PDT has been the subject of numerous clinical studies and has proven to be an effective strategy for cancer therapy. Clinical studies revealed that PDT could prolong survival in patients with inoperable cancers and significantly improve quality of life. For inoperable lung cancer cases, PDT could be an effective therapy. Despite the clinical success reported, PDT is still currently underutilized to treat lung cancer and other tumors. PTD is still a new treatment approach for lung cancer mainly due to the lack of enough clinical research evaluating its' effectiveness and side effects. In this review, we discuss the current prospects and future potentials of PDT in lung cancer treatment.
Collapse
Affiliation(s)
- Kai Wang
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Boxin Yu
- International Medicine Center, Tianjin Hospital, 406 south of JieFang road, HeXi District, Tianjin, China
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
24
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
25
|
Gisbert-Garzarán M, Lozano D, Vallet-Regí M. Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. Int J Mol Sci 2020; 21:ijms21249696. [PMID: 33353212 PMCID: PMC7766291 DOI: 10.3390/ijms21249696] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Current chemotherapy treatments lack great selectivity towards tumoral cells, which leads to nonspecific drug distribution and subsequent side effects. In this regard, the use of nanoparticles able to encapsulate and release therapeutic agents has attracted growing attention. In this sense, mesoporous silica nanoparticles (MSNs) have been widely employed as drug carriers owing to their exquisite physico-chemical properties. Because MSNs present a surface full of silanol groups, they can be easily functionalized to endow the nanoparticles with many different functionalities, including the introduction of moieties with affinity for the cell membrane or relevant compartments within the cell, thus increasing the efficacy of the treatments. This review manuscript will provide the state-of-the-art on MSNs functionalized for targeting subcellular compartments, focusing on the cytoplasm, the mitochondria, and the nucleus.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.G.-G.); (D.L.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-1843
| |
Collapse
|
26
|
Zhang J, Zhong X, Jiang H, Jiang H, Xie T, Tian Y, Li R, Wang B, Zhang J, Yuan Y. Comprehensive characterization of the tumor microenvironment for assessing immunotherapy outcome in patients with head and neck squamous cell carcinoma. Aging (Albany NY) 2020; 12:22509-22526. [PMID: 33216727 PMCID: PMC7746351 DOI: 10.18632/aging.103460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
The tumor microenvironment (TME) constitutes a complex milieu of cells and cytokines that maintain equilibrium between tumor progression and prognosis. However, comprehensive analysis of the TME and its clinical significance in head and neck squamous cell carcinoma (HNSCC) remains to be unreported. In this study, based on large-scale RNA sequencing data pertaining to single nucleotide variants (SNVs) and copy number variations (CNVs) in HNSCC patients from The Cancer Genome Atlas database, we analysed subpopulations of infiltrating immune cells and evaluated the role of TME infiltration pattern (TME score) in assessing immunotherapy outcome. TME signature genes involved in several inflammation and immunity signalling pathways were observed in the TME score subtype, which were considered immunosuppressive and potentially responsible for significantly worse prognosis. In comparison with SNV- and CNV-mediated tumor mutation burden, TME score can significantly differentiate between high- and low-risk HNSCC and predict immunotherapy outcome. Our data provide clarity on the comprehensive landscape of interactions between clinical characteristics of HNSCC and tumor-infiltrating immune cells. TME score seems to be a useful biomarker that can predict immunotherapy outcome in HNSCC patients.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| | - Xi Zhong
- Department of Radiation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, 523000, P. R. China
| | - Hualong Jiang
- Department of Urology, Tungwah Hospital of Sun Yat-sen University, Dongguan, 523000, P. R. China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| | - Jiexia Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, 510095, P. R. China
| |
Collapse
|
27
|
Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy. Sci Rep 2020; 10:14447. [PMID: 32879359 PMCID: PMC7467921 DOI: 10.1038/s41598-020-71071-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
In this work, we developed a new antibody-targeted and redox-responsive drug delivery system “MSNs-CAIX” by binding the anti-carbonic anhydrase IX antibody (A-CAIX Ab) on the surface of mesoporous silica nanoparticles (MSNs) via disulfide linkages. The design of the composite particles “MSNs-CAIX” involved the synthesis and surface functionalization with thiol groups, 2,2′-dipyridyl disulfide and CAIX antibody. In vitro, CAIX capping the doxorubicin hydrochloric (DOX)-loaded nanoparticles (DOX@MSNs-CAIX) exhibited effectively redox-responsive release in the presence of glutathione (GSH) owing to the cleavage of the disulfide bond. Compared with CAIX negative Mef cells (mouse embryo fibroblast), remarkably more DOX@MSNs-CAIX was internalized into CAIX positive 4T1 cells (mouse breast cancer cells) by receptor-mediation. Tumor targeting in vivo studies clearly demonstrated DOX@MSNs-CAIX accumulated in tumors and induced more tumor cells apoptosis in 4T1 tumor-bearing mice. With great potential, this drug delivery system is a promising candidate for targeted and redox-responsive cancer therapy.
Collapse
|
28
|
Photocytotoxicity of liposomal zinc phthalocyanine in oral squamous cell carcinoma and pharyngeal carcinoma cells. Ther Deliv 2020; 11:547-556. [DOI: 10.4155/tde-2020-0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Photodynamic therapy utilizes a light-sensitive molecule that produces reactive oxygen species following irradiation. Photodynamic activities of free Zn phthalocyanine (ZnPc) and its liposomal formulations on human oral squamous cell carcinoma and pharyngeal carcinoma cells were assessed. Materials & methods: ZnPc was incorporated in extruded and nonextruded liposomes composed of palmitoyloleoylphosphatidylglycerol (POPG):palmitoyloleoylphosphatidylcholine (POPC) or POPG:dioleoylphosphatidylethanolamine liposomes and incubated with CAL 27 or FaDu cells. Cell viability was assessed following illumination and further incubation. Results: ZnPc incorporated in extruded POPG:POPC liposomes caused extensive cytotoxicity, while ZnPc in extruded or nonextruded POPG:dioleoylphosphatidylethanolamine liposomes or in multilamellar POPG:POPC liposomes were not effective. Conclusion: Extruded POPG:POPC liposomes are a useful delivery vehicle for ZnPc in photodynamic therapy of oral and pharyngeal cancers.
Collapse
|
29
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
30
|
Greene MK, Nogueira JCF, Tracey SR, Richards DA, McDaid WJ, Burrows JF, Campbell K, Longley DB, Chudasama V, Scott CJ. Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. NANOSCALE 2020; 12:11647-11658. [PMID: 32436550 DOI: 10.1039/d0nr02387f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibody-targeted nanoparticles have shown exceptional promise as delivery vehicles for anticancer drugs, although manufacturability challenges have hampered clinical progress. These include the potential for uncontrolled and random antibody conjugation, resulting in masked or inactive paratopes and unwanted Fc domain interactions. To circumvent these issues, we show that the interchain disulfide of cetuximab F(ab) may be selectively re-bridged with a strained alkyne handle, to permit 'click' coupling to azide-capped nanoparticles in a highly uniform and oriented manner. When compared to conventional carbodiimide chemistry, this conjugation approach leads to the generation of nanoparticles with a higher surface loading of cetuximab F(ab) and with markedly improved ability to bind to the target epidermal growth factor receptor. Moreover, we show that entrapment of a camptothecin payload within these nanoparticles can enhance drug targeting to antigen-expressing pancreatic cancer cells, resulting in superior cytotoxicity versus the conventional nanoformulation. Collectively, this work highlights the critical need to develop refined methods for the construction of targeted nanoparticles that will accelerate their clinical translation through improved performance and manufacturability.
Collapse
Affiliation(s)
- Michelle K Greene
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Shannon R Tracey
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - William J McDaid
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
31
|
Er O, Tuncel A, Ocakoglu K, Ince M, Kolatan EH, Yilmaz O, Aktaş S, Yurt F. Radiolabeling, In Vitro Cell Uptake, and In Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Mol Pharm 2020; 17:2648-2659. [PMID: 32412765 DOI: 10.1021/acs.molpharmaceut.0c00331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive therapy based on the photodynamic effect. In this study, we sought to determine intracellular uptake and in vivo photodynamic therapy potential of Zn phthalocyanine-loaded mesoporous silica nanoparticles (MSNP5) against pancreatic cancer cells. MSNP5 were labeled with 131I; the radiolabeling efficiency was found to 95.5 ± 1.2% in pH 9 and 60 min reaction time. Besides, the highest intracellular uptake yields of 131I-MSNP5 nanoparticles in MIA PaCa-2, AsPC-1, and PANC-1 cells were determined as 43.9 ± 3.8%, 41.8 ± 0.2%, and 37.9 ± 1.3%, respectively, at 24 h incubation time. In vivo PDT studies were performed with subcutaneous xenograft cancer model nude mice with AsPC-1 pancreatic cancer cells. For photodynamic therapy, 685 nm red laser light 100 J/cm2 light dose using and 5-20 μM ZnPc containing MSNP5 concentrations were applied. Histopathological studies revealed that the ratio of necrosis in tumor tissue was higher in the treatment group than the control groups.
Collapse
Affiliation(s)
- Ozge Er
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100, Izmir, Izmir, Turkey
| | - Ayca Tuncel
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100, Izmir, Izmir, Turkey
| | - Kasim Ocakoglu
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, 33400 Tarsus, Mersin, Turkey
| | - Mine Ince
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, 33400 Tarsus, Mersin, Turkey
| | - Efsun Hatice Kolatan
- Department of Animal Research Center, Dokuz Eylul University, 35340, Izmir, Izmir,Turkey
| | - Osman Yilmaz
- Department of Animal Research Center, Dokuz Eylul University, 35340, Izmir, Izmir,Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, 35340, Izmir, Izmir,Turkey
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Bornova, 35100, Izmir, Izmir, Turkey
| |
Collapse
|
32
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
33
|
Wu P, Zhou Q, Zhu H, Zhuang Y, Bao J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer 2020; 20:354. [PMID: 32345258 PMCID: PMC7189558 DOI: 10.1186/s12885-020-06803-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tumor recurrence and metastasis occur at a high rate in patients with colon cancer. Identification of effective strategies for the treatment of colon cancer is critical. Recently, poly (lactic-co-glycolic acid) (PLGA) has been shown to have potential as a broad therapeutic drug delivery system. We designed a dual-loaded nanoparticle drug delivery system to overcome the limitations of chemotherapeutic drugs used to treat colon cancer. Methods We developed epidermal growth factor (EGF) functionalized PLGA nanoparticles (NPs) co-loaded with 5-fluorouracil (5Fu) and perfluorocarbon (PFC) (EGF-PLGA@5Fu/PFC) for targeted treatment of colon cancer. CCK-8 assay, Hoechst33342 staining and flow cytometry were performed to investigate the functions of EGF-PLGA@5Fu/PFC NPs in SW620 cells. Beside, animal experiment, histological analysis and immunofluorescence staining were adopted to further confirm the role of EGF-PLGA@5Fu/PFC NPs in vivo. Results The findings showed that EGF-PLGA@5Fu /PFC NPs had an average size 200 nm and a 5Fu-loading efficiency of 7.29%. Furthermore, in vitro release was pH-sensitive. Targeted EGF-PLGA@5Fu/PFC NPs exhibited higher cellular uptake than non-targeted NPs into colon cancer cells. In addition, EGF-PLGA@5Fu/PFC NPs suppressed cell viability and induced apoptosis in SW620 cells to a greater extent than non-targeted NPs. In tumor xenografted mice, EGF-PLGA@5Fu/PFC NPs suppressed tumor growth more effectively than 5Fu, PLGA@5Fu or PLGA@5Fu/PFC NPs. Histopathological analysis further demonstrated that EGF-targeted NPs inhibited tumor growth to a greater extent than non-targeted or non-NP treatments. The improved therapeutic outcomes observed in this study were due to relief of tumor hypoxia by transport of oxygen by PFC to the tumors. Conclusion We constructed a biocompatible nanodrug delivery system based on functionalized nanoparticles that provided a novel strategy for selective delivery of chemotherapy drugs to tumors.
Collapse
Affiliation(s)
- Pingping Wu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qing Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Huayun Zhu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yan Zhuang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Ribeiro VGP, Mota JPF, Júnior AEC, Lima NMA, Fechine PBA, Denardin JC, Carbone L, Bloise E, Mele G, Mazzetto SE. Nanomaterials Based on Fe 3O 4 and Phthalocyanines Derived from Cashew Nut Shell Liquid. Molecules 2019; 24:molecules24183284. [PMID: 31505873 PMCID: PMC6767058 DOI: 10.3390/molecules24183284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
In this work we report the synthesis of new hybrid nanomaterials in the core/shell/shell morphology, consisting of a magnetite core (Fe3O4) and two consecutive layers of oleic acid (OA) and phthalocyanine molecules, the latter derived from cashew nut shell liquid (CNSL). The synthesis of Fe3O4 nanoparticle was performed via co-precipitation procedure, followed by the nanoparticle coating with OA by hydrothermal method. The phthalocyanines anchorage on the Fe3O4/OA core/shell nanomaterial was performed by facile and effective sonication method. The as obtained Fe3O4/OA/phthalocyanine hybrids were investigated by Fourier transform infrared spectroscopy, X-ray diffraction, UV-visible spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis and magnetic measurements. TEM showed round-shaped nanomaterials with sizes in the range of 12–15 nm. Nanomaterials presented saturation magnetization (Ms) in the 1–16 emu/g and superparamagnetic behavior. Furthermore, it was observed that the thermal stability of the samples was directly affected by the insertion of different transition metals in the ring cavity of the phthalocyanine molecule.
Collapse
Affiliation(s)
- Viviane G P Ribeiro
- Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceará (UFC), Campus do Pici, Fortaleza-CE 60440-900, Brazil.
| | - João P F Mota
- Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceará (UFC), Campus do Pici, Fortaleza-CE 60440-900, Brazil.
| | - Antônio E Costa Júnior
- Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceará (UFC), Campus do Pici, Fortaleza-CE 60440-900, Brazil.
| | - Nayane M A Lima
- Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceará (UFC), Campus do Pici, Fortaleza-CE 60440-900, Brazil.
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará-UFC, Campus do Pici, CP 12100, Fortaleza CEP 60451-970, CE, Brazil.
| | - Juliano C Denardin
- Department of Physics, Universidad de Santiago de Chile and CEDENNA, USACH, Av. Ecuador, Santiago 3493, Chile.
| | - Luigi Carbone
- CNR NANOTEC-Istituto di Nanotecnologia, c/o Campus Ecotekne, Università del Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Ermelinda Bloise
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy.
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy.
| | - Selma E Mazzetto
- Laboratory of Products and Process Technology (LPT), Organic and Inorganic Chemistry Department, Federal University of Ceará (UFC), Campus do Pici, Fortaleza-CE 60440-900, Brazil.
| |
Collapse
|
35
|
Lu W, Du F, Zhao X, Shi L, Shuang S, Cui XT, Dong C. Sulforaphane-Conjugated Carbon Dots: A Versatile Nanosystem for Targeted Imaging and Inhibition of EGFR-Overexpressing Cancer Cells. ACS Biomater Sci Eng 2019; 5:4692-4699. [PMID: 33448841 DOI: 10.1021/acsbiomaterials.9b00690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Because of the demand for precision medicine, the investigatation on the application of carbon-dots-based nanosystems in the field of biomedicine is attracting more and more attention. Therefore, we have built a multifunctional nanosystem based on sulforaphane-conjugated carbon dots (SFN-CDs) with thiourea skeleton and applied for EGFR-overexpressing cancer cells targeted imaging and inhibiting. The SFN-CDs are formed by grafting sulforaphane on the amino-rich yellow fluorescent carbon dots, which have excellent optical stability and can be distinguished from normal cells for targeted imaging of cancer cells. The vitro toxicity experiments demonstrated that the SFN-CDs can effectively inhibit EGFR-overexpressing cancer cell proliferation at concentrations below 100 μg mL-1. All these results validated that SFN-CDs nanoparticles with integration of diagnostic and therapeutic functions can be used as a potential nanodurg in early stage of cancer control. Moreover, this work provides useful insight into targeted nanoparticle design in the biological nanomedicine field.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fangfang Du
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xuewei Zhao
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Lihong Shi
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260 United States
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
36
|
Hamblin MR. Introduction to "Advances in Photodynamic Therapy 2018". Molecules 2019; 24:E160. [PMID: 30609848 PMCID: PMC6337634 DOI: 10.3390/molecules24010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022] Open
Abstract
This Special Issue of Molecules entitled "Advances in Photodynamic Therapy 2018" contains seven papers, including five original reports and two reviews. [...].
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|