1
|
Zhao L, Liu C, Wang T, Sun L, Wu F, Yu D. Combined multispectral analysis and molecular docking to research the interaction of soybean isolate protein with different kinds of phospholipid liposomes and its effect on liposome properties. Food Chem 2025; 474:143160. [PMID: 39899963 DOI: 10.1016/j.foodchem.2025.143160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Liposomes were modified due to suboptimal stability. Soybean lecithin liposomes (SLip), hydrogenated soybean lecithin liposomes (HLip), and egg yolk lecithin liposomes (ELip) were modified with different concentrations of soybean isolate protein (SPI) to form SLip-SPI, HLip-SPI, and ELip-SPI. The physical properties, interactions, and stability of liposomes were investigated. The vesicle size of SPI-liposomes was increased, SLip-SPI5.0, HLip-SPI2.5, and ELip-SPI5.0 had the best micromorphology and lowest surface roughness. The binding of both was dominated by hydrogen bonding and hydrophobic interactions, and SLip exhibited the strongest binding affinity. SPI modification enhanced liposome stability, denser liposome membrane structure, and effective retardation of lipid oxidation during storage. Simulation of digestion showed the release rate of proanthocyanidins from SLip-SPI (43.91 %), HLip-SPI (36.96 %), and ELip-SPI (41.44 %) were less than unmodified liposomes, effectively delayed the release of proanthocyanidins. The above findings contributed to design different types of liposome delivery systems while enhancing the application of SPI.
Collapse
Affiliation(s)
- Linwei Zhao
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunlei Liu
- College of Marine Sciences, Ningde Normal University, Fujian 352000, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libin Sun
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Wu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Cano-Sarabia M, Aydin F, Meng L, Gil-Bonillo M, Fonseca J, Dietrich M, Renner S, Amenitsch H, Falcaro P, Imaz I, Maspoch D. Lipid/ZIF-8 Biocomposites Based on Liposomes or Vesicles: In Situ Formation, and Preliminary Evaluation as Delivery Vehicles for Hydrophobic Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407051. [PMID: 39981973 DOI: 10.1002/smll.202407051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Integrating lipid self-assemblies with metal-organic frameworks (MOFs) creates biocomposites ideal for encapsulation, protection, and delivery of functional species. This can be achieved using preformed MOFs or through in situ MOF formation. Herein, the one-pot formation of ZIF-8 MOF particles in the presence of two lipid self-assemblies (vesicles or liposomes) is reported, generating two types of hybrid lipid/ZIF-8 biocomposites. Each lipid assembly can be used to encapsulate hydrophobic actives into the hybrid lipid/ZIF-8 biocomposites, demonstrated with Nile Red and Astaxanthin (ATX) as representative cargo. In vitro digestion of ATX-loaded hybrid lipid/ZIF-8 particles in simulated intestinal fluid (SIF) shows distinct release kinetics: liposome-based particles offer a more sustained release compared to vesicle-based biocomposites. Intriguingly, in various media (water, simulated gastric fluid, bicarbonate, and SIF), the sodalite ZIF-8 topology in liposome-based lipid/ZIF-8 particles undergoes a crystalline phase transition to the denser, more-stable phase ZIF-C. This phase transition, along with a deeper internalization of ATX in liposome-based particles, accounts for the differences in release kinetics. In summary, the study provides valuable insights for the synthesis of hybrid lipid/ZIF-8 biocomposites, the encapsulation of hydrophobic molecules, the importance of investigating potential crystalline phase transitions of MOFs in different media, and their potential as drug delivery vehicles.
Collapse
Affiliation(s)
- Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Funda Aydin
- Department of Basic Sciences, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, 65080, Turkey
| | - Lingxin Meng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Marta Gil-Bonillo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Manuela Dietrich
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
| | - Simon Renner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Heinz Amenitsch
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
3
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Wadasinghe RR, Kalansuriya P, Attanayake AP. Encapsulation of Gmelina arborea Roxb. and Spondias pinnata (L. F.) Kurz. Aqueous Extracts in Nanoliposomes: Synthesis, Characterization, and In Vitro Screening of Antidiabetic Activity. Chem Biodivers 2024:e202402998. [PMID: 39720874 DOI: 10.1002/cbdv.202402998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024]
Abstract
The present study aimed to synthesize, characterize, and determine the antidiabetic activity of Gmelina arborea and Spondias pinnata aqueous extract-encapsulated nanoliposomes (GAE-NL and SAE-NL). GAE-NL and SAE-NL were synthesized using modified emulsification and ultrasonication. The average size, polydispersity index, and zeta potential of GAE-NL and SAE-NL were 307 ± 2 nm, 0.429 ± 0.006, -19.95 ± 2.47 mV, and 389 ± 1 nm, 0.366 ± 0.011, and -27.27 ± 0.75 mV, respectively. The synthesized GAE-NL and SAE-NL had encapsulation efficiency (EE) of 84.33% ± 0.37% and 95.42% ± 0.56%, and loading capacity (LC) of 2.49% ± 0.08% and 23.83% ± 0.44%, respectively. Fourier transform infrared (FTIR) data indicated successful encapsulation of G. arborea and S. pinnata extracts into liposome matrix. The GAE-NL showed increased/comparable α-glucosidase and dipeptide peptidase-IV (DPP-IV) inhibitory activities and glucose uptake potency. The SAE-NL demonstrated superior α-glucosidase inhibitory activity compared to acarbose, a standard antidiabetic drug. In conclusion, GAE-NL and SAE-NL could be used to develop drug leads against diabetes mellitus.
Collapse
Affiliation(s)
| | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
5
|
Luo F, Wang S, Zhang X, Liu Z, Zhu R, Xue W. Extraction of Astaxanthin from Haematococcus pluvialis and Preparation of Astaxanthin Liposomes. Molecules 2024; 29:3320. [PMID: 39064898 PMCID: PMC11279670 DOI: 10.3390/molecules29143320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Astaxanthin has 550 times more antioxidant activity than vitamin E, so it can scavenge free radicals in vivo and improve body immunity. However, the poor stability of astaxanthin becomes a bottleneck problem that limits its application. Herein, Haematococcus pluvialis (H. pluvialis) as a raw material was used to extract astaxanthin, and the optimal extraction conditions included the extraction solvent (EA:EtOH = 1:6, v/v), extraction temperature (60 °C), and extraction time (70 min). The extracted astaxanthin was then loaded using lecithin to form corresponding liposomes via the ethanol injection method. The results showed that the particle size and zeta potential of the prepared liposomes were 105.8 ± 1.2 nm and -38.0 ± 1.7 mV, respectively, and the encapsulation efficiency of astaxanthin in liposomes was 88.83%. More importantly, the stability of astaxanthin was significantly improved after being embedded in the prepared liposomes.
Collapse
Affiliation(s)
- Fei Luo
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
- COFCO Huaxia Great Wall Wine Co., Ltd., Changli 066600, China
| | - Shuai Wang
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
- COFCO Huaxia Great Wall Wine Co., Ltd., Changli 066600, China
| | - Xuwu Zhang
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
| | - Zhiwei Liu
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
| | - Ruiyan Zhu
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
| | - Weili Xue
- Hebei Key Laboratory of Nano Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (F.L.); (S.W.); (X.Z.); (Z.L.)
| |
Collapse
|
6
|
Ren K, Cao X, Zheng L, Liu S, Li L, Cheng L, Tian T, Tong X, Wang H, Jiang L. Liposomes decorated with β-conglycinin and glycinin: Construction, structure and in vitro digestive stability. Int J Biol Macromol 2024; 269:131900. [PMID: 38677675 DOI: 10.1016/j.ijbiomac.2024.131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Liposomes were modified with different proportions of β-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.
Collapse
Affiliation(s)
- Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Tian
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xiaohong Tong
- College of Agricultural, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
7
|
Besharat M, Islami HR, Soltani M, Mousavi SA. Effects of dietary nanoliposome-coated astaxanthin on haematological parameters, immune responses and the antioxidant status of rainbow trout (Oncorhynchus mykiss). Vet Med Sci 2024; 10:e1461. [PMID: 38648257 PMCID: PMC11034635 DOI: 10.1002/vms3.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Astaxanthin is the most prevalent carotenoid in the marine environment and is widely used as an additive in formulated aquafeeds. OBJECTIVES A 60-day feeding trial was conducted to consider the effect of dietary nanoliposome-coated astaxanthin (NA) on haematological parameters, serum antioxidant activities and immune responses of rainbow trout, Oncorhynchus mykiss. METHODS A total of 450 healthy fish weighing 31.00 ± 2.09 g were randomly assigned in triplicate (30 fish per replicate) to 5 dietary treatments: 0 (control), 25.00, 50.00, 75.00, and 100.00 mg kg-1 NA. RESULTS Fish fed the diet supplemented with 50.00 mg kg-1 NA exhibited the highest values of red blood cells, white blood cells, haemoglobin and haematocrit of 1.64 ± 0.01 × 106 mm-3, 5.54 ± 0.21 × 103 mm-3, 8.73 ± 0.24 g dL-1 and 46.67% ± 0.88%, respectively, which were significantly higher than those fed the basal diet (p < 0.05). The lowest and highest percentages of lymphocytes (67.67% ± 0.33%) and neutrophils (27.33% ± 1.20%) were also obtained in fish fed 50.00 mg kg-1 NA compared to those fed the basal diet (p < 0.05). Fish receiving diet supplemented with 50.00 mg kg-1 NA revealed the highest serum activity in superoxide dismutase, catalase, glutathione peroxidase, lysozyme and alternative complement and the lowest level of total cholesterol, cortisol, aspartate aminotransferase and alanine aminotransferase than fish receiving the basal diet (p < 0.05). Serum immunoglobulin (Ig) and ACH50 contents significantly increased with increasing dietary NA supplementation to the highest values of 43.17 ± 1.46 and 293.33 ± 2.03 U mL-1, respectively, in fish fed diet supplemented with 50 mg kg-1 NA (p < 0.05). CONCLUSIONS Supplementation of NA in rainbow trout diet at 50 mg kg-1 exhibited a positive effect on haematological parameters, antioxidant capacity and immune responses. Administration of such dosage can enhance rainbow trout immune responses against unfavourable or stressful conditions, for example disease outbreaks, hypoxic condition, thermal stress and sudden osmotic fluctuations, which usually happen in an intensive culture system.
Collapse
Affiliation(s)
- Mojdeh Besharat
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary and Life ScienceMurdoch UniversityMurdochAustralia
| | | |
Collapse
|
8
|
Chenet T, Schwarz G, Neff C, Hattendorf B, Günther D, Martucci A, Cescon M, Baldi A, Pasti L. Scallop shells as biosorbents for water remediation from heavy metals: Contributions and mechanism of shell components in the adsorption of cadmium from aqueous matrix. Heliyon 2024; 10:e29296. [PMID: 38601540 PMCID: PMC11004421 DOI: 10.1016/j.heliyon.2024.e29296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To ascertain their potential for heavy metal pollution remedy, we studied the adsorption mechanism of cadmium onto scallop shells and the interactions between the heavy metal and the shell matrix. Intact shells were used to investigate the uptake and diffusion of the metal contaminant onto the shell carbonatic layers, as well as to evaluate the distribution of major and trace elements in the matrix. LA-ICPMS measurements demonstrate that Cd is adsorbed on a very thin layer on the inner and outer surfaces of the shell. Structural and thermal analyses showed the presence of 9 wt.-% of a CdCO3 phase indicating that the adsorption is mainly a superficial process which involves different processes, including ion exchange of Ca by Cd. In addition, organic components of the shell could contribute to adsorption as highlighted by different metal uptake observed for shells with different colours. In particular, darker shells appeared to adsorb more contaminant than the white ones. The contribution of the organic shell components on the adsorption of heavy metals was also highlighted by the element bulk content which showed higher concentrations of different metals in the darker specimen. Raman spectroscopy allowed to identify the pigments as carotenoids, confirmed by XRD measurements which highlighted the presence of astaxanthin phases. The results presented here provide new insights into the Cd adsorption mechanism highlighting the important contribution given by the organic components present in the biogenic carbonate matrix. Furthermore, the high efficiency of Cd removal from water by scallop shells, supported by adsorption kinetic and isotherm studies, has been demonstrated.
Collapse
Affiliation(s)
- Tatiana Chenet
- Department of Environment and Prevention Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Gunnar Schwarz
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Christoph Neff
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Bodo Hattendorf
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Detlef Günther
- Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 1, 8093, Zürich, Switzerland
| | - Annalisa Martucci
- Department of Physics and Earth Science, University of Ferrara, Via Saragat, 1, 44122, Ferrara, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Andrea Baldi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| | - Luisa Pasti
- Department of Environment and Prevention Sciences, University of Ferrara, Via Borsari, 46, 44121, Ferrara, Italy
| |
Collapse
|
9
|
Pan L, Meng H, Li J, Liu Z, Zhang D, Liu Z, Zhao Q, Xu F. Enhancement of Astaxanthin Bioaccessibility by Encapsulation in Liposomes: An In Vitro Study. Molecules 2024; 29:1687. [PMID: 38675507 PMCID: PMC11051820 DOI: 10.3390/molecules29081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin was encapsulated in liposomes by a thin layer dispersion and ultrasound method using soybean phospholipid. The digestion properties of liposomes for encapsulating astaxanthin were investigated in light of particle size, size distribution, zeta potential, and microstructure during in vitro digestion as a function of time. These results exhibited that the average particle size increased gradually with liposomal vesicles retained round shapes and a fairly uniform distribution after passage through the simulated gastric fluid digestion. The result revealed that astaxanthin-loaded liposomes were stable in low pH conditions. It was also found that the mixed micelles formed in a simulated intestinal fluid. The zeta potential of astaxanthin-loaded liposomes had a decrease in negativity after digestion. In comparison with free astaxanthin, there was an appreciable increase in the bioaccessibility of astaxanthin after encapsulation in liposomes. This enhancement can be attributed to more soluble astaxanthin in the mixed micelles for astaxanthin-loaded liposomes. It indicated that the barrier of the liposomal bilayer could inhibit astaxanthin fading and leaking after encapsulation in liposomes. These results provide useful information for designing more stable delivery systems in the gastrointestinal tract and improving the bioaccessibility of lipophilic nutraceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qian Zhao
- Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; (L.P.); (H.M.); (J.L.); (Z.L.); (D.Z.); (Z.L.); (Q.Z.)
| | - Fei Xu
- Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; (L.P.); (H.M.); (J.L.); (Z.L.); (D.Z.); (Z.L.); (Q.Z.)
| |
Collapse
|
10
|
Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Stability and biological activity enhancement of fucoxanthin through encapsulation in alginate/chitosan nanoparticles. Int J Biol Macromol 2024; 263:130264. [PMID: 38368987 DOI: 10.1016/j.ijbiomac.2024.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
A response surface methodology based on the Box-Behnken design was employed to develop fucoxanthin (FX) delivery nanocarrier from alginate (ALG) and chitosan (CS). The FX-loaded ALG/CS nanoparticles (FX-ALG/CS-NPs) were fabricated using oil-in-water emulsification and ionic gelation. The optimal formulation consisted of an ALG:CS mass ratio of 0.015:1, 0.71 % w/v Tween™ 80, and 5 mg/mL FX concentrations. The resulting FX-ALG/CS-NPs had a size of 227 ± 23 nm, a zeta potential of 35.3 ± 1.7 mV, and an encapsulation efficiency of 81.2 ± 2.8 %. These nanoparticles exhibited enhanced stability under simulated environmental conditions and controlled FX release in simulated gastrointestinal fluids. Furthermore, FX-ALG/CS-NPs showed increased in vitro oral bioaccessibility, gastrointestinal stability, antioxidant activity, anti-inflammatory effect, and cytotoxicity against various cancer cells. The findings suggest that ALG/CS-NPs are effective nanocarriers for the delivery of FX in nutraceuticals, functional foods, and pharmaceuticals.
Collapse
Affiliation(s)
- Feuangthit Niyamissara Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Vu NBD, Pham ND, Tran TNM, Pham XH, Ngo DN, Nguyen MH. Possibility of nanostructured lipid carriers encapsulating astaxanthin from Haematococcus pluvialis to alleviate skin injury in radiotherapy. Int J Radiat Biol 2024; 100:209-219. [PMID: 37819928 DOI: 10.1080/09553002.2023.2267650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE The study aimed to protect patients' skin against ionizing irradiation during radiotherapy by using astaxanthin-encapsulated nanostructured lipid carriers (NLC-ATX). MATERIALS AND METHODS NLC-ATX was prepared by a combined method of hot homogenization and sonication. Cytotoxicity of NLC-ATX was evaluated by MTT colorimetric assay. The in vitro radioprotection of NLC-ATX for human fibroblast (HF) cells was investigated based on the level of ROS (reactive oxygen species), DNA damage, and cell death caused by X-irradiation. In addition, the in vivo radioprotection was evaluated based on the appearance and histological structure of the irradiated skin. RESULTS NLC-ATX was successfully prepared, with a mean particle size, zeta potential, and encapsulation efficiency of 114.4 nm, -34.1 mV, and 85.67%, respectively. Compared to the control, NLC-ATX, at an optimum ATX concentration under in vitro condition, reduced the amount of generated ROS and DNA damage of 81.6% and 41.6%, respectively, after X-radiation, resulting in a significant decrease in cell death by 62.69%. Under in vivo condition, after the 9th day of X-irradiation (equivalent to an accumulated dose of 14 Gy), the dorsal skin of five out of six NLC-ATX-untreated mice exhibited grade-1 skin damage, according to CTCAE v5.0, while treatment with NLC-ATX protected 6/6 mice from acute skin damage. Moreover, on the 28th day after the first X-irradiation, the histological images illustrated that NLC-ATX at an ATX concentration of 0.25 µg/mL exhibited good recovery of the skin, with barely any difference noted in the collagen fibers and sebaceous glands compared to normal skin. CONCLUSIONS NLC-ATX shows potential for application in skin protection against adverse effects of ionizing rays during radiotherapy.
Collapse
Affiliation(s)
- Ngoc-Bich-Dao Vu
- Department of Biochemistry, Faculty of Biology - Biotechnology, University of Science, Ho Chi Minh city, Vietnam
- Vietnam National University, Ho Chi Minh city, Vietnam
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Ngoc-Duy Pham
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Thi-Ngoc-Mai Tran
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| | - Xuan-Hai Pham
- Training Center, Nuclear Research Institute, Dalat city, Vietnam
| | - Dai-Nghiep Ngo
- Department of Biochemistry, Faculty of Biology - Biotechnology, University of Science, Ho Chi Minh city, Vietnam
- Vietnam National University, Ho Chi Minh city, Vietnam
| | - Minh-Hiep Nguyen
- Center of Radiation Technology and Biotechnology, Nuclear Research Institute, Dalat city, Vietnam
| |
Collapse
|
12
|
Tu L, Zeng J, Bai X, Wu Z, Wu J, Xu S. Nanoliposome-Mediated Encapsulation of Chlorella Oil for the Development of a Controlled-Release Lipid-Lowering Formulation. Foods 2024; 13:158. [PMID: 38201186 PMCID: PMC10779123 DOI: 10.3390/foods13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Chlorella oil nanoliposomes (CO-NLP) were synthesized through ultrasonic injection with ethanol, and their physicochemical properties and hypolipidemic efficacy were systematically investigated. The results revealed that the mean particle size of CO-NLP was 86.90 nm and the encapsulation efficiency (EE) was 92.84%. Storage conditions at 4 °C were conducive to the stability of CO-NLP, maintaining an EE of approximately 90% even after 10 days of storage. The release profile of CO-NLP adhered more closely to the first-order kinetic model during in vitro assessments, exhibiting a slower release rate compared to free microalgae oil. In simulated in vitro digestion experiments, lipolytic reactions of CO-NLP were observed during intestinal digestion subsequent to nanoliposome administration. Notably, the inhibitory effect of CO-NLP on cholesterol esterase activity was measured at 85.42%. Additionally, the average fluorescence intensity of nematodes in the CO-NLP group was 52.17% lower than in the control group at a CO-NLP concentration of 500 μg/mL, which suggests a pronounced lipid-lowering effect of CO-NLP. Therefore, the CO-NLP exhibited characteristics of small and uniform particle size, elevated storage stability, gradual release during intestinal digestion, and a noteworthy hypolipidemic effect. These findings designate CO-NLP as a novel lipid-lowering active product, demonstrating potential for the development of functional foods.
Collapse
Affiliation(s)
- Lanlan Tu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.T.); (J.Z.); (X.B.); (Z.W.)
| | - Jihao Zeng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.T.); (J.Z.); (X.B.); (Z.W.)
| | - Xue Bai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.T.); (J.Z.); (X.B.); (Z.W.)
| | - Ziyun Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.T.); (J.Z.); (X.B.); (Z.W.)
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.T.); (J.Z.); (X.B.); (Z.W.)
| | - Shannan Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
13
|
Kaag S, Lorentz A. Effects of Dietary Components on Mast Cells: Possible Use as Nutraceuticals for Allergies? Cells 2023; 12:2602. [PMID: 37998337 PMCID: PMC10670325 DOI: 10.3390/cells12222602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Allergic diseases affect an estimated 30 percent of the world's population. Mast cells (MC) are the key effector cells of allergic reactions by releasing pro-inflammatory mediators such as histamine, lipid mediators, and cytokines/chemokines. Components of the daily diet, including certain fatty acids, amino acids, and vitamins, as well as secondary plant components, may have effects on MC and thus may be of interest as nutraceuticals for the prevention and treatment of allergies. This review summarizes the anti-inflammatory effects of dietary components on MC, including the signaling pathways involved, in in vitro and in vivo models. Butyrate, calcitriol, kaempferol, quercetin, luteolin, resveratrol, curcumin, and cinnamon extract were the most effective in suppressing the release of preformed and de novo synthesized mediators from MC or in animal models. In randomized controlled trials (RCT), vitamin D, quercetin, O-methylated epigallocatechin gallate (EGCG), resveratrol, curcumin, and cinnamon extract improved symptoms of allergic rhinitis (AR) and reduced the number of inflammatory cells in patients. However, strategies to overcome the poor bioavailability of these nutrients are an important part of current research.
Collapse
Affiliation(s)
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
14
|
Aung WT, Kopongpanich P, Boonkanokwong V. Supersaturable Solid Self-microemulsifying Delivery Systems of Astaxanthin via Spray Drying: Effects of Polymers and Solid Carriers. AAPS PharmSciTech 2023; 24:218. [PMID: 37891405 DOI: 10.1208/s12249-023-02671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to develop the solid astaxanthin-encapsulated self-microemulsifying delivery system (S-AST SMEDS) spray-dried particles and investigate the effect of materials in formulations on product characteristics. The optimized liquid AST SMEDS incorporated with a polymeric precipitation inhibitor (PI) was solidified with a solid carrier by spray drying. Physicochemical properties of S-AST SMEDS spray-dried powders including morphology, particle size and distribution, flowability, solid-state characters, moisture content, yield, loading capacity of AST, and reconstitution properties were examined. Polymeric PIs seemed to have an impact on particles' size, surface smoothness, and flowability while solid carriers had an effect on the particles' moisture content and droplet size of microemulsions obtained after reconstitution. The amount of AST encapsulated in S-SMEDS powder was influenced by both polymer and solid carriers. Dissolution and short-term stability of S-AST SMEDS were also studied. Our developed spray-dried solid SMEDS particles helped enhance AST dissolution rate.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerawas Kopongpanich
- Pharmaceutical Product Development and Technology Transfer (PDTT) Unit, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CUDHIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Farouk AE, Fahmy SR, Soliman AM, Ibrahim SA, Sadek SA. A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnol 2023; 23:28. [PMID: 37537554 PMCID: PMC10401763 DOI: 10.1186/s12896-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. METHODS The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. RESULTS The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. CONCLUSION These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Asmaa E Farouk
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Shimaa A Sadek
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
16
|
Hua Z, Zhang X, Zhao X, Zhu BW, Liu D, Tan M. Hepatic-targeted delivery of astaxanthin for enhanced scavenging free radical scavenge and preventing mitochondrial depolarization. Food Chem 2023; 406:135036. [PMID: 36459794 DOI: 10.1016/j.foodchem.2022.135036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/24/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Astaxanthin (AST), as natural hydrophobic nutrition, has exhibited health-promoting benefits for its outstanding antioxidant property. However, most studies tend to enhance its stability and solubility while the targeted delivery of AST is limited. In this study, liver-targeted nanocarriers were designed and prepared by lactobionic acid-modified (2-hydroxypropyl-β-cyclodextrin) for efficient controlled delivery of AST. The minimum average size of AST nanoparticles was about 98 nm with a polydispersity index (PDI) of 0.41. The lactobionic acid-modified AST nanoparticles exhibited significant cellular uptake, and an admirable ability to scavenge free radicals for H2O2-induced HepaRG cells in preventing mitochondrial depolarization. Moreover, accumulation of AST nanoparticles in liver was observed due to the modification of lactobionic acid (LA) of the nanocarriers through the specific binding of LA-asialoglycoprotein receptors. The results in this study provided a new idea for liver-specific nutrition delivery of AST in developing functional food for liver disease nutrition intervention.
Collapse
Affiliation(s)
- Zheng Hua
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bei-Wei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
17
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
18
|
Ghosh A, Banik S, Suzuki Y, Mibe Y, Rikimura S, Komamoto T, Kuromi K, Yamada K, Sato H, Onoue S. Lysophosphatidylcholine-based liposome to improve oral absorption and nephroprotective effects of astaxanthin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2981-2988. [PMID: 36350072 DOI: 10.1002/jsfa.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The present study was aimed to develop astaxanthin (AX)-loaded liposomes by the utilization of soybean phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to improve the nutraceutical properties of AX. AX-loaded liposomes consisting of PC (PC/AX) and LPC (LPC/AX) were evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. RESULTS PC/AX and LPC/AX had uniform size distributions with a mean particle size of 254 and 148 nm, respectively. Under pH 6.8 conditions, both liposomes exhibited improved dissolution behavior of AX compared with crystalline AX (cAX). In particular, LPC/AX showed a sevenfold higher release of AX than PC/AX. After the oral administration of LPC/AX (33.2 mg AX kg-1 ) to rats, there was a significant increase in systemic exposure to AX, as evidenced by a 15-fold higher AUC0-24 h than PC/AX. However, the oral absorption of AX in the cAX group was negligible. Based on the results of histological analysis and measurement of plasma biomarkers, LPC/AX exhibited improved nephroprotective effects of AX in the rat model of kidney injury. CONCLUSION From these observations, a strategic application of the LPC-based liposomal approach might be a promising option to improve the nutraceutical properties of AX. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antara Ghosh
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sujan Banik
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yui Suzuki
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
19
|
Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Mar Drugs 2023; 21:md21030176. [PMID: 36976225 PMCID: PMC10056084 DOI: 10.3390/md21030176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Astaxanthin (3,3-dihydroxy-β, β-carotene-4,4-dione) is a ketocarotenoid synthesized by Haematococcus pluvialis/lacustris, Chromochloris zofingiensis, Chlorococcum, Bracteacoccus aggregatus, Coelastrella rubescence, Phaffia rhodozyma, some bacteria (Paracoccus carotinifaciens), yeasts, and lobsters, among others However, it is majorly synthesized by Haematococcus lacustris alone (about 4%). The richness of natural astaxanthin over synthetic astaxanthin has drawn the attention of industrialists to cultivate and extract it via two stage cultivation process. However, the cultivation in photobioreactors is expensive, and converting it in soluble form so that it can be easily assimilated by our digestive system requires downstream processing techniques which are not cost-effective. This has made the cost of astaxanthin expensive, prompting pharmaceutical and nutraceutical companies to switch over to synthetic astaxanthin. This review discusses the chemical character of astaxanthin, more inexpensive cultivating techniques, and its bioavailability. Additionally, the antioxidant character of this microalgal product against many diseases is discussed, which can make this natural compound an excellent drug to minimize inflammation and its consequences.
Collapse
|
20
|
Chen S, Wang J, Feng J, Xuan R. Research progress of Astaxanthin nano-based drug delivery system: Applications, prospects and challenges? Front Pharmacol 2023; 14:1102888. [PMID: 36969867 PMCID: PMC10034004 DOI: 10.3389/fphar.2023.1102888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Astaxanthin (ASX) is a kind of carotenoid widely distributed in nature, which has been shown to extremely strong antioxidative effects and significant preventive and therapeutic effects on cancer, diabetes, cardiovascular disease, etc. However, its application in the medical field is greatly limited due to its poor water solubility, unstable chemical properties and other shortcomings. In recent years, the nano-based drug delivery systems such as nanoparticles, liposomes, nanoemulsions, nanodispersions, and polymer micelles, have been used as Astaxanthin delivery carriers with great potential for clinical applications, which have been proved that they can enhance the stability and efficacy of Astaxanthin and achieve targeted delivery of Astaxanthin. Herein, based on the pharmacological effects of Astaxanthin, we reviewed the characteristics of various drug delivery carriers, which is of great significance for improving the bioavailability of Astaxanthin.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Jiating Feng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Rongrong Xuan,
| |
Collapse
|
21
|
Wu H, Zhang H, Li X, Secundo F, Mao X. Preparation and characterization of phosphatidyl-agar oligosaccharide liposomes for astaxanthin encapsulation. Food Chem 2023; 404:134601. [DOI: 10.1016/j.foodchem.2022.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
22
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
23
|
Yousefi M, Andishmand H, Assadpour E, Barzegar A, Kharazmi MS, Jafari SM. Nanoliposomal delivery systems of natural antibacterial compounds; properties, applications, and recent advances. Crit Rev Food Sci Nutr 2023; 64:6498-6511. [PMID: 36728840 DOI: 10.1080/10408398.2023.2170318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Andishmand
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Barzegar
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade De Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College Of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Liu WY, Hsieh YS, Ko HH, Wu YT. Formulation Approaches to Crystalline Status Modification for Carotenoids: Impacts on Dissolution, Stability, Bioavailability, and Bioactivities. Pharmaceutics 2023; 15:pharmaceutics15020485. [PMID: 36839810 PMCID: PMC9965060 DOI: 10.3390/pharmaceutics15020485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Carotenoids, including carotenes and xanthophylls, have been identified as bioactive ingredients in foods and are considered to possess health-promoting effects. From a biopharmaceutical perspective, several physicochemical characteristics, such as scanty water solubility, restricted dissolution, and susceptibility to oxidation may influence their oral bioavailability and eventually, their effectiveness. In this review, we have summarized various formulation approaches that deal with the modification of crystalline status for carotenoids, which may improve their physicochemical properties, oral absorption, and biological effects. The mechanisms involving crystalline alteration and the typical methods for examining crystalline states in the pharmaceutical field have been included, and representative formulation approaches are introduced to unriddle the mechanisms and effects more clearly.
Collapse
Affiliation(s)
- Wan-Yi Liu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| |
Collapse
|
25
|
Pingle P, Mourya A, Namdeo M, Babu KC, Veerabomma H, Maurya R, Singh PK, Mehra NK, Srivastava S, Madan J. Andrographolide-Soya-L-α-Phosphatidyl Choline Complex Augmented Solubility and Drug Delivery in Leishmania donovani, a Causative Agent for Cutaneous and Visceral Leishmaniasis. AAPS PharmSciTech 2023; 24:46. [PMID: 36702974 DOI: 10.1208/s12249-023-02507-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
The utility of andrographolide (AN) in visceral leishmaniasis (VL) and cutaneous leishmaniasis (CL) is limited owing to poor solubility, hindered permeation, and unstable structure under physiological conditions. The present study mainly focuses on synthesizing of andrographolide-Soya-L-α-phosphatidyl choline (ANSPC) complex in ethanol and its characterization using various spectral and analytical techniques. Results from FT-IR, 1H NMR, ROSEY, and in silico docking techniques suggest ANSPC complex formation due to inter-molecular interaction between the hydrophilic head of SPC and hydroxyl group of AN present at 24th position. ANSPC complex demonstrated the solubility of 113.93 ± 6.66 μg/mL significantly (P < 0.05) greater than 6.39 ± 0.47 μg/mL of AN. The particle size of ANSPC complex was found to be 182.2 ± 2.69 nm. The IC50 value of AN suspension (PBS, pH ~ 7.4) at 24, 48, and 72 h against Leishmania donovani (L. donovani) was noticed to be 32.76 ± 4.53, 20.87 ± 2.37, and 17.71 ± 3.06 μM/mL, respectively. Moreover, augmented aqueous solubility of ANSPC complex led to significant (P < 0.05) reduction in IC50 value, i.e., 25.02 ± 4.35, 11.31 ± 0.60, and 8.33 ± 2.71 μM/mL at 24, 48, and 72 h, respectively. The IC50 values for miltefosine were noted to be 9.84 ± 2.65, 12.13 ± 7.26, and 6.56 ± 0.61 μM/mL at similar time periods. Moreover, ANSPC complex demonstrated augmented cellular uptake at 24 h as compared to 6 h in L. donovani. We suppose that submicron size and phospholipid-mediated complexation might have endorsed the permeation of ANSPC complex across the plasma membrane of L. donovani parasite by transport mechanisms such as P-type ATPase. ANSPC complex warrants further in-depth in vivo studies under a set of stringent parameters for translating the product into a clinically viable form.
Collapse
Affiliation(s)
- Purva Pingle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Madhulika Namdeo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Harithasree Veerabomma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Caimi AT, Yasynska O, Rivas Rojas PC, Romero EL, Morilla MJ. Improved stability and biological activity of bacterioruberin in nanovesicles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Wang T, Zhang L, Chen L, Li X. Preparation of Oxidized Starch/β-Lactoglobulin Complex Particles Using Microfluidic Chip for the Stabilization of Astaxanthin Emulsion. Foods 2022; 11:3078. [PMID: 36230154 PMCID: PMC9563734 DOI: 10.3390/foods11193078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Here, we designed an oxidized starch/β-lactoglobulin (OS/β-lg) complex colloidal particle using a dual-channel microfluidic chip for the stabilization of astaxanthin emulsion. The effect of the mixing ratio, pH, and the degree of substitution (DS) of the oxidized starch on the formation of OS/β-lg complex particles was investigated in detail. The optimal complexation occurred at a pH of 3.6, a mixing ratio of 2:10, and a DS of 0.72%, giving an ideal colloidal particle with near-neutral wettability. With this optimum agent, the astaxanthin-loaded oil-in-water emulsions were successfully prepared. The obtained emulsions showed the typical non-Newton fluid behavior, and the rheological data met the Herschel-Bulkley model. The microscopic images confirmed the dense adsorption of the particle on the oil/water interface. In vitro release and stability studies demonstrated this compact layer contributed to the controlled-release and excellent stability of astaxanthin emulsions facing heat, ultraviolet, and oxidative intervention. This work suggests the potential of microfluidics for the production of food-grade solid emulsifiers.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Huang L, Teng W, Cao J, Wang J. Liposomes as Delivery System for Applications in Meat Products. Foods 2022; 11:foods11193017. [PMID: 36230093 PMCID: PMC9564315 DOI: 10.3390/foods11193017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
In the meat industry, microbial contamination, and lipid and protein oxidation are important factors for quality deterioration. Although natural preservatives have been widely used in various meat products, their biological activities are often reduced due to their volatility, instability, and easy degradation. Liposomes as an amphiphilic delivery system can be used to encapsulate food active compounds, which can improve their stability, promote antibacterial and antioxidant effects and further extend the shelf life of meat products. In this review, we mainly introduce liposomes and methods of their preparation including conventional and advanced techniques. Meanwhile, the main current applications of liposomes and biopolymer-liposome hybrid systems in meat preservation are presented.
Collapse
Affiliation(s)
- Li Huang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence: (J.C.); (J.W.)
| | - Jinpeng Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (J.C.); (J.W.)
| |
Collapse
|
29
|
Yang M, Lu X, Xu J, Liu X, Zhang W, Guan R, Zhong H. Cellular uptake, transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model. Front Nutr 2022; 9:995391. [PMID: 36225868 PMCID: PMC9549275 DOI: 10.3389/fnut.2022.995391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Cyanidin-3-glucoside (C3G), which is the widest and richest anthocyanin (ACN) found in the edible fruit and vegetables, has been illustrated to perform a wide range of bioactivities. Nanoliposomes can inhibit C3G degradation and enhance the absorption rate of C3G as tools for conveying materials to particular locations. This experiment aims to study the absorption, transport and anti-inflammatory effects of C3G nanoliposomes in Caco-2/RAW 264.7 co-culture model, which symbolizes an intestinal inflammation system. The results indicated that the uptake and transport of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model were concentration-dependent as well as affected by temperature (37 and 4°C) and endocytic inhibitors, which revealed C3G nanoliposomes penetrate cells via endocytosis. Moreover, compared with C3G, C3G nanoliposomes significantly decreased pro-inflammatory cytokine expression (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8), suggesting a stronger anti-inflammatory potential. Conclusively, the uptake of C3G nanoliposomes by Caco-2/RAW 264.7 co-culture model is mainly involved in macropinocytosis and endocytosis mediated by carrier protein (clathrin). C3G nanoliposomes may play a better role in the treatment of LPS-induced intestinal inflammation diseases.
Collapse
|
30
|
Gunarto C, Go AW, Ju Y, Angkawijaya AE, Santoso SP, Ayucitra A, Soetaredjo FE, Ismadji S. Activity and stability of castor oil‐based microemulsions with cellulose nanocrystals as a carrier for astaxanthin. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chintya Gunarto
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
- Collaborative Research Center for Sustainable and Zero Waste Industries Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Alchris Woo Go
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
| | - Yi‐Hsu Ju
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City Taiwan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei City Taiwan
- Taiwan Building Technology Center National Taiwan University of Science and Technology Taipei City Taiwan
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei City Taiwan
- Plant Lipid Research Team RIKEN Center for Sustainable Resource Science Yokohama Japan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
- Collaborative Research Center for Sustainable and Zero Waste Industries Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Aning Ayucitra
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Felycia E. Soetaredjo
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
- Collaborative Research Center for Sustainable and Zero Waste Industries Widya Mandala Surabaya Catholic University Surabaya Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering Widya Mandala Surabaya Catholic University Surabaya Indonesia
- Collaborative Research Center for Sustainable and Zero Waste Industries Widya Mandala Surabaya Catholic University Surabaya Indonesia
| |
Collapse
|
31
|
Aung WT, Khine HEE, Chaotham C, Boonkanokwong V. Production, physicochemical investigations, antioxidant effect, and cellular uptake in Caco-2 cells of the supersaturable astaxanthin self-microemulsifying tablets. Eur J Pharm Sci 2022; 176:106263. [PMID: 35853596 DOI: 10.1016/j.ejps.2022.106263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
The purpose of this study was to develop astaxanthin (AST)-loaded self-microemulsifying drug delivery system (SMEDDS) tablets and evaluate their physicochemical and biological properties. The optimized liquid (L)-AST SMEDDS formulation was composed of rice bran oil (33.67%), Kolliphor® RH 40 (34.70%), and Span® 20 (31.63%). Two types of hydrophilic polymers (hydroxypropyl methylcellulose, HPMC, and polyvinyl alcohol, PVA) solutions were selected as a precipitation inhibitor for AST and incorporated into L-AST SMEDDS to obtain supersaturation and enhance dissolution of AST. The formulation was then mixed with microcrystalline cellulose and subsequently transformed to solid S-AST SMEDDS particles using a spray dryer prior to direct compression into tablets. The HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet were characterized for their physicochemical properties, dissolution, AST release, and stabilities. Moreover, the cellular uptake and antioxidant effect of AST SMEDDS tablets were evaluated in Caco-2 cells. With good tablet characters, both HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet dissolution profiles were improved compared to that of raw AST. While initially less than 50% of AST released from HPMC AST SMEDDS tablet and PVA AST SMEDDS tablet in pH 1.2 medium, after 6 h more than 98% of AST releases in pH 6.8 were achieved which was similar to L-AST SMEDDS profile. Cellular antioxidant activities of L-AST SMEDDS and HPMC AST SMEDDS tablet & PVA AST SMEDDS tablet were significantly greater than pure AST powder. HPMC AST SMEDDS tablet showed better uptake and deeper penetration through Caco-2 cells than that in PVA AST SMEDDS tablet and pure powder. Our successfully developed AST SMEDDS tablets were demonstrated to be a potential platform to deliver highly lipophilic AST and improve permeation and bioavailability.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand
| | - Hnin Ei Ei Khine
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
The spatial arrangement of astaxanthin in bilayers greatly influenced the structural stability of DPPC liposomes. Colloids Surf B Biointerfaces 2022; 212:112383. [PMID: 35131712 DOI: 10.1016/j.colsurfb.2022.112383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/16/2022]
Abstract
Liposomes are regarded as the ideal nanocarrier for concurrent or separate delivery of nutraceuticals in the food industries. Precise control of the structural stability is essential for the processing, storage, and nutrition delivery of liposomes. Astaxanthin was found to significantly affect the membrane stability of liposomes by inserting into the phospholipid bilayers in a similar way to cholesterol. Compared with cholesterol, astaxanthin could significantly improve the phase transition temperature, membrane fluidity, and membrane compactness of liposomes. Additionally, the membrane stability was well modulated by controlling the distribution patterns of astaxanthin (monomers, H- and J-aggregates) in bilayers. For instance, astaxanthin H-aggregates could endow the liposomal membrane with highest rigidity and compactness. Additionally, astaxanthin aggregates, especially J-aggregates could greatly improve storage stability of liposomes, thus providing a novel strategy to regulate and optimize the stability of liposomes for their diversified applications.
Collapse
|
33
|
Gastrointestinal digestive fate of whey protein isolate coated liposomes loading astaxanthin: Lipolysis, release, and bioaccessibility. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
35
|
Srihera N, Li Y, Zhang TT, Wang YM, Yanagita T, Waiprib Y, Xue CH. Preparation and Characterization of Astaxanthin-loaded Liposomes Stabilized by Sea Cucumber Sulfated Sterols Instead of Cholesterol. J Oleo Sci 2022; 71:401-410. [DOI: 10.5650/jos.ess21233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nattha Srihera
- College of Food Science and Engineering, Ocean University of China
| | - Yue Li
- College of Food Science and Engineering, Ocean University of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University
| | - Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University
| | - Chang-Hu Xue
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| |
Collapse
|
36
|
Zanghaneh E, Mirzaei H, Jafari SM, Javadi A, Afshar Mogaddam MR. Spirulina platensis extract nanoliposomes: preparation, characterization and application to white cheese. J AOAC Int 2021; 105:827-834. [PMID: 34904627 DOI: 10.1093/jaoacint/qsab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Ultrafiltration cheese is produced in large scale from treated and pasteurized treated and pasteurized milk with mesophilic starter and to expand its shelf life preservatives addition is needed. OBJECTIVE The purpose of the present study was preparation of encapsulate Spirulina platensis algae nanoliposomes to evaluate the characteristics of the nanoliposomes loaded with Spirulina extract (SE-NLs). In addition, the chemical and microbiological properties of white cheese produced with SE-NLs were studied. METHODS Nanoliposomes are composed of lecithin and cholesterol, used for the encapsulation of SE. The SE-NLs were prepared using the thin layer hydration method. The characteristics of produced SE-NLs including particle size, zeta potential, morphology and the encapsulation efficiency (EE) was studied during 4 weeks in different storage conditions (4 °C and 25 °C). In addition, the effect of SE and SE-NLs on the chemical and microbiological properties of white cheese was evaluated during 60 days of ripening. RESULTS The results showed that the nanoliposomes loaded with 3 mg/g of SE had the optimum formulation due to the higher EE, smaller particle size, and higher negatively charged zeta potential. The quality of the produced nanoliposomes decreased by increasing the time of storage but the SE-NLs stored at 4 °C were more stable and possessed higher EE and smaller particle sizes. While the chemical composition of the cheeses manufactured by the nanoliposome loaded with 3 mg/g SE- NLs were comparable to that of control cheese at 60 days of ripening, it showed a significant inhibitory effect on Staphylococcus aureus and Listeria monocytogenes after 30 days. CONCLUSION The utilization of SE-NLs can be considered as a natural antimicrobial and an alternative to the use of synthetic preservatives in the production of white cheese. HIGHLIGHTS Nanoliposomes of Spirulina platensis extracts was prepared.UF white cheese prepared by nanoliposomes and then were evaluated.
Collapse
Affiliation(s)
- Esmaiel Zanghaneh
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Mirzaei
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Clinical Biochemistry, School of medicine, Golestan University of Medical Sciences, Golestan
| | - Afshin Javadi
- Department of Food hygiene, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
37
|
Roychowdhury R, Srivastava N, Kumari S, Pinnaka AK, Roy Choudhury A. Isolation of an exopolysaccharide from a novel marine bacterium Neorhizobium urealyticum sp. nov. and its utilization in nanoemulsion formation for encapsulation and stabilization of astaxanthin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Sun J, Wei Z, Xue C. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34657544 DOI: 10.1080/10408398.2021.1989661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Astaxanthin (AST) is classified as a kind of carotenoid with bright red color, powerful antioxidant activity as well as a range of health benefits. AST-based functional foods present a new thought of healthy diets with both the enhancement of food color and incorporation of nutrients. However, the poor water solubility, easy oxidation, light instability, thermal instability and peculiar smell excessively restrict its application in the food industry. In this review, common bio-based materials for various AST delivery systems suitable for different food products are highlighted. Moreover, characteristics of different delivery systems and current applications in food products are also compared and summarized. This review provides some ideas on the research trends and applications of AST delivery systems in food. The joint use of two or more materials can significantly enhance the stability of delivery systems. All of the encapsulation systems slow down the degradation of AST to a certain extent and can be applied to different food systems. However, studies and applications are still focused on emulsions and microcapsules with unsatisfactory odor masking effects. In the future, diverse AST-loaded delivery systems with high encapsulation efficacy, good stability, odor masking effects and cost-effective preparation technologies will be the major research trends.
Collapse
Affiliation(s)
- Jialin Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
39
|
Yang J, Zhou Q, Huang Z, Gu Z, Cheng L, Qiu L, Hong Y. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Lima SGM, Freire MCLC, Oliveira VDS, Solisio C, Converti A, de Lima ÁAN. Astaxanthin Delivery Systems for Skin Application: A Review. Mar Drugs 2021; 19:md19090511. [PMID: 34564173 PMCID: PMC8471810 DOI: 10.3390/md19090511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
Astaxanthin (AST) is a biomolecule known for its powerful antioxidant effect, which is considered of great importance in biochemical research and has great potential for application in cosmetics, as well as food products that are beneficial to human health and medicines. Unfortunately, its poor solubility in water, chemical instability, and low oral bioavailability make its applications in the cosmetic and pharmaceutical field a major challenge for the development of new products. To favor the search for alternatives to enhance and make possible the use of AST in formulations, this article aimed to review the scientific data on its application in delivery systems. The search was made in databases without time restriction, using keywords such as astaxanthin, delivery systems, skin, cosmetic, topical, and dermal. All delivery systems found, such as liposomes, particulate systems, inclusion complexes, emulsions, and films, presented peculiar advantages able to enhance AST properties, among which are stability, antioxidant potential, biological activities, and drug release. This survey showed that further studies are needed for the industrial development of new AST-containing cosmetics and topical formulations.
Collapse
Affiliation(s)
| | | | - Verônica da Silva Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (S.G.M.L.); (V.d.S.O.)
| | - Carlo Solisio
- Department of Civil, Chemical and Environment Engineering, Pole of Chemical Engineering, University of Genoa, I-16145 Genoa, Italy; (C.S.); (A.C.)
| | - Attilio Converti
- Department of Civil, Chemical and Environment Engineering, Pole of Chemical Engineering, University of Genoa, I-16145 Genoa, Italy; (C.S.); (A.C.)
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (S.G.M.L.); (V.d.S.O.)
- Correspondence: ; Tel.: +55-(84)99928-8864
| |
Collapse
|
41
|
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer's disease. Open Biol 2021; 11:210013. [PMID: 34186009 PMCID: PMC8241491 DOI: 10.1098/rsob.210013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (Aβ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.
Collapse
Affiliation(s)
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| |
Collapse
|
42
|
Beneficial effects and health benefits of Astaxanthin molecules on animal production: A review. Res Vet Sci 2021; 138:69-78. [PMID: 34111716 DOI: 10.1016/j.rvsc.2021.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AST) is a red pigment of carotenoid and is considered a high-quality keto-carotenoid pigment with food, livestock, cosmetic, therapeutic and nutraceutical proposes. Astaxanthin exists naturally in fish, crustacean, algae, and birds that naturally exists, principally as fatty acid esters. Many investigations have exhibited the beneficial impacts of astaxanthin when utilized as a pharmaceutical agent in animal nutrition. Astaxanthin has a variety of considerable biological actions, such as being antihypertensive, an antioxidant, anti-obesity properties, and anti-carcinogenic. Astaxanthin has recently acquired popularity as a powerful immunomodulator to maintain the health status and well-being of both animals and humans. The use of astaxanthin is broadly utilized in medical sciences and the nutrition pf aquatic species; however, it presently has limited applications in broader animal nutrition. Understanding astaxanthin's structure, source, and mode of action in the body provides a conceptual base for its clinical application and could enhance the screening of compounds associated with the treatment of many diseases. This review article aims to clarify the important aspects of astaxanthin such as its synthesis, bioavailability, and therapeutics actions, with special interest in practical applications. Awareness of this benefits and production is expected to aid the livestock industry to develop nutritional strategies that ensure the protection of animal health.
Collapse
|
43
|
Sridhar K, Inbaraj BS, Chen BH. Recent Advances on Nanoparticle Based Strategies for Improving Carotenoid Stability and Biological Activity. Antioxidants (Basel) 2021; 10:713. [PMID: 33946470 PMCID: PMC8147144 DOI: 10.3390/antiox10050713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Carotenoids are natural pigments widely used in food industries due to their health-promoting properties. However, the presence of long-chain conjugated double bonds are responsible for chemical instability, poor water solubility, low bioavailability and high susceptibility to oxidation. The application of a nanoencapsulation technique has thus become a vital means to enhance stability of carotenoids under physiological conditions due to their small particle size, high aqueous solubility and improved bioavailability. This review intends to overview the advances in preparation, characterization, biocompatibility and application of nanocarotenoids reported in research/review papers published in peer-reviewed journals over the last five years. More specifically, nanocarotenoids were prepared from both carotenoid extracts and standards by employing various preparation techniques to yield different nanostructures including nanoemulsions, nanoliposomes, polymeric/biopolymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid nanoparticles, supercritical fluid-based nanoparticles and metal/metal oxide nanoparticles. Stability studies involved evaluation of physical stability and/or chemical stability under different storage conditions and heating temperatures for varied lengths of time, while the release behavior and bioaccessibility were determined by various in vitro digestion and absorption models as well as bioavailability through elucidating pharmacokinetics in an animal model. Moreover, application of nanocarotenoids for various biological applications including antioxidant, anticancer, antibacterial, antiaging, cosmetics, diabetic wound healing and hepatic steatosis were summarized.
Collapse
Affiliation(s)
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (K.S.); or (B.S.I.)
| |
Collapse
|
44
|
Seyedabadi MM, Rostami H, Jafari SM, Fathi M. Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr Rev Food Sci Food Saf 2021; 20:1280-1306. [PMID: 33665991 DOI: 10.1111/1541-4337.12725] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.
Collapse
Affiliation(s)
| | | | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mathew Suseela
- ICAR - Central Institute of Fisheries Technology, Cochin, Kerala, 682029, India
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
46
|
Katouzian I, Taheri RA. Preparation, characterization and release behavior of chitosan-coated nanoliposomes (chitosomes) containing olive leaf extract optimized by response surface methodology. Journal of Food Science and Technology 2021; 58:3430-3443. [PMID: 34366460 DOI: 10.1007/s13197-021-04972-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
This study was dedicated to the optimization and preparation of chitosan-coated liposomes (chitosomes) as promising nanocarriers for retention of olive leaf extract optimized by Response surface methodology (RSM) based on central composite design. Accordingly, the best sample was chosen for further tests with the encapsulation efficiency, stability and electrical conductivity of 94%, 98% and 9.545 mS respectively. The average size of the optimal chitosome and nanoliposome were lower than 100 nm and the zeta potential was altered from a negative charge to positive after addition coating process with chitosan. Moreover, the differential scanning calorimetry of blank and loaded chitosome revealed the increase of fluidity and lower temperature of phase transition in loaded chitosome compared to blank one. FTIR spectra demonstrated that electrostatic interactions and hydrogen bonds occur between phospholipid polar groups, chitosan amine moieties and major olive leaf extract polyphenols including oleuropein and hydroxy tyrosol. Furthermore, the optimal loaded chitosome had the highest stability during 25 days at the temperature of 4 °C. Finally, the in vitro release tests were best fitted with Peppas-Sahlin and Kopcha models in food simulants and gastrointestinal simulated juice respectively revealing erosion-based release model. Supplementary Information The online version contains supplementary material available at (10.1007/s13197-021-04972-2).
Collapse
Affiliation(s)
- Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Bagherzadeh M, Dinarvand R, Ahmadi S, Rabiee M, Tahriri M, Hamblin MR, Tayebi L, Webster TJ. The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems. Crit Rev Food Sci Nutr 2021; 62:3658-3697. [PMID: 33399020 DOI: 10.1080/10408398.2020.1867958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as β-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA.,Department of Dermatology, Harvard Medical School, Boston, USA
| | - Lobat Tayebi
- Department of Engineering, Norfolk State University, Norfolk, VA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
48
|
Lee YS, Jeon SH, Ham HJ, Lee HP, Song MJ, Hong JT. Improved Anti-Inflammatory Effects of Liposomal Astaxanthin on a Phthalic Anhydride-Induced Atopic Dermatitis Model. Front Immunol 2020; 11:565285. [PMID: 33335525 PMCID: PMC7736086 DOI: 10.3389/fimmu.2020.565285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we found that astaxanthin (AST) elicited an anti-inflammatory response in an experimental atopic dermatitis (AD) model. However, the use of AST was limited because of low bioavailability and solubility. We hypothesized that liposome formulation of AST could improve this. In this study, we compared the anti-inflammatory and anti-dermatotic effects of liposomal AST (L-AST) and free AST. We evaluated the effect of L-AST on a phthalic anhydride (PA)-induced animal model of AD by analyzing morphological and histopathological changes. We measured the mRNA levels of AD-related cytokines in skin tissue and immunoglobulin E concentrations in the serum. Oxidative stress and transcriptional activities of signal transducer and activator of transcription 3 (STAT3) and nuclear factor (NF)-κB were analyzed via western blotting and enzyme-linked immunosorbent assay. PA-induced dermatitis severity, epidermal thickening, and infiltration of mast cells in skin tissues were ameliorated by L-AST treatment. L-AST suppressed AD-related inflammatory mediators and the inflammation markers, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 in PA-induced skin conditions. Oxidative stress and expression of antioxidant proteins, glutathione peroxidase-1 (GPx-1) and heme oxygenase-1 (HO-1), were recovered by L-AST treatment in skin tissues from PA-induced mice. L-AST treatment reduced transcriptional activity of STAT3 and NF-κB in PA-induced skin tissues. Our results indicate that L-AST could be more effective than free AST for AD therapy.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| |
Collapse
|
49
|
Hassane Hamadou A, Huang WC, Xue C, Mao X. Comparison of β-carotene loaded marine and egg phospholipids nanoliposomes. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|