1
|
Yang W, Tian Y, Yang M, Mauck J, Loor JJ, Jia B, Wang S, Fan W, Li Z, Zhang B, Xu C. β-sitosterol alleviates high fatty acid-induced lipid accumulation in calf hepatocytes by regulating cholesterol metabolism. J Steroid Biochem Mol Biol 2024; 243:106543. [PMID: 38740074 DOI: 10.1016/j.jsbmb.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2 mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50 μM β-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50 μM β-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the β-sitosterol + FA group were lower. Overall, β-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.
Collapse
Affiliation(s)
- Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mingmao Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A & F University, Xianyang 712100, China
| | - John Mauck
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Mammalian Nutri Physio Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Bin Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 163005, China
| | - Shuang Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wenwen Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhendong Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, Pedroche J, Aparicio N, Fernández-García N, Aguiló-Aguayo I, Soler-Rivas C, Caballero PA, Morte A, Rico D, Reguera M. From 'Farm to Fork': Exploring the Potential of Nutrient-Rich and Stress-Resilient Emergent Crops for Sustainable and Healthy Food in the Mediterranean Region in the Face of Climate Change Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1914. [PMID: 39065441 PMCID: PMC11281201 DOI: 10.3390/plants13141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development. By analysing how promoting agricultural diversification can enhance food system adaptability to evolving environmental conditions, fostering sustainability and resilience, we discuss recent findings that underscore the main benefits and limitations of these crops from agricultural, food science, and health perspectives, all crucial for responsible and sustainable adoption. Thus, by using a sustainable and holistic approach, this revision analyses how the integration of NUS crops into Mediterranean agrifood systems can enhance agriculture resilience and food quality addressing environmental, nutritional, biomedical, economic, and cultural dimensions, thereby mitigating the risks associated with monoculture practices and bolstering local economies and livelihoods under new climate scenarios.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Guadajira (Badajoz), Spain;
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (INTAEX-CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain;
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Joan Casals
- Fundació Miquel Agustí/HorPTA, Department of Agri-Food Engineering and Biotechnology, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08860 Castelldefels, Spain;
| | - Sara Fondevilla
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Claudia Mónika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Valencia, Spain;
| | - Justo Pedroche
- Group of Plant Proteins, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Burgos Km. 119, 47071 Valladolid, Spain;
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Ingrid Aguiló-Aguayo
- Postharvest Programme, Institute of Agrifood Research and Technology (IRTA), Parc Agrobiotech Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003 Lleida, Spain;
| | - Cristina Soler-Rivas
- Departamento de Producción y Caracterización de Nuevos Alimentos, Institute of Food Science Research-CIAL (UAM+CSIC), Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Nicolas Cabrera 9, 28049 Madrid, Spain;
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Pedro A. Caballero
- Food Technology, Department of Agriculture and Forestry Engineering, Universidad de Valladolid, 34004 Palencia, Spain;
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, Campus Universitario de Espinardo, Universidad de Murcia, 30100 Murcia, Spain;
| | - Daniel Rico
- Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain;
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
3
|
Bozorgzade SA, Kalantar-Khandani S, Amiri R, Dehesh T, Karegar-Borzi H. Efficacy of a Combined Herbal Product Containing Indigofera argentea, Pistacia atlantica and Salvia hispanica in Zoonotic Cutaneous Leishmaniasis Patients Treated along Glucantime ®. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:203-213. [PMID: 39011534 PMCID: PMC11246213 DOI: 10.18502/ijpa.v19i2.15856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/12/2024] [Indexed: 07/17/2024]
Abstract
Background Leishmaniasis is highly prevalent worldwide, and while conventional medicine offers numerous treatment methods for cutaneous leishmaniasis, Iranian traditional medicine suggests various remedies. We aimed to evaluate the efficacy of an herbal combination containing Indigofera argentea leaves, Pistacia atlantica resin, and Salvia hispanica seeds in patients with zoonotic cutaneous leishmaniasis. Methods This study was conducted at the Leishmaniasis Department of Chabahar Health Center in southeastern Iran in 2021. It was a double-blinded randomized clinical trial involving 68 patients enrolled after clinical diagnosis, examination of smear samples using Giemsa staining, and PCR confirmation. The volunteers were randomly divided into intervention and control groups. Both groups received 'Glucantime ® as the primary medication weekly until complete healing or up to 12 weeks. Glucantime ® was administered intralesionally at a dosage of 0.1 cc on the wound's margin, with repeat injections at 1 cm intervals along the wound edge when necessary. In addition to the main drug, the intervention group received the herbal product topically twice daily until wound healing or for up to 4 weeks, while the control group received a placebo in the same manner. Results 82.35% of patients in the intervention group and 20.58% in the control group achieved complete healing within four weeks. There was a significant difference between the two groups (P < 0.001). Conclusion The herbal product demonstrated effectiveness in treating patients with zoonotic cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Saeid-Ali Bozorgzade
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahram Kalantar-Khandani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Pharmacy, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Rezvan Amiri
- Leishmaniosis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Dermatology, Afzalipour Hospital, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tania Dehesh
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Karegar-Borzi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Peng Y, Zhu X, Yang G, Zhang J, Wang R, Shen Y, Li H, Gatasheh MK, Abbasi AM, Yang X. Ultrasonic extraction of Moringa oleifera seeds polysaccharides: Optimization, purification, and anti-inflammatory activities. Int J Biol Macromol 2024; 258:128833. [PMID: 38128806 DOI: 10.1016/j.ijbiomac.2023.128833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Natural polysaccharides exhibit numerous beneficial properties, such as antioxidant, antitumor, hypoglycemic, and hypolipidemic activities. Moringa oleifera seeds are of high dietary and therapeutic value which drew a lot of attention. However, the regulation effect on anti-inflammatory activity of polysaccharides remains to be studied. Herein, novel bioactive polysaccharides (MOSP-1) were extracted from Moringa oleifera seeds, and the anti-inflammatory properties of MOSP-1 were uncovered. Ultrasound-assisted extraction (UAE) was used to prepare the polysaccharides with optimized conditions (70 °C, 43 min, and liquid-solid-ratio 15 mL/g). Then, DEAE-Sepharose Fast Flow columns were applied to isolate and purify MOSP-1. Rhamnose, arabinose, galactose, and glucose were identified as the monosaccharide constituents of MOSP-1, with a molecular weight of 5.697 kDa. Their proportion in molarity was 1:0.183:0.108:0.860 and 8 types of glycosidic linkages were discovered. Bioactive assays showed that MOSP-1 possessed scavenging activities against DPPH and ABTS radicals, confirming its potential antioxidation efficacy. In vitro experiments revealed that MOSP-1 could reduce the expression of inflammation-related cytokines, inhibit the activation of ERK, JNK, and p38 (the MAPK signaling pathway), and enhance phagocytic functions. This study indicates that polysaccharides (MOSP-1) from Moringa oleifera seeds with anti-inflammatory properties may be used for functional food and pharmaceutical product development.
Collapse
Affiliation(s)
- Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Rui Wang
- International Education College, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yingbin Shen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Xinquan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Chauhan K, Bhalla P, Chitme HR, Varshney VK. Exploring the therapeutic potential of Prinsepia utilis Royle seed oil: A comprehensive study on chemical composition, physicochemical properties, anti-inflammatory, and analgesic activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117312. [PMID: 37844743 DOI: 10.1016/j.jep.2023.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepiautilis (PU) Royle, native to the Himalayan region, is a deciduous thorny shrub with numerous traditional uses of its roots, leaves and seeds for treatment of conditions such as rheumatic pain, joint pain, arthritis, and inflammation. AIM OF THE STUDY Keeping in mind the growing demand of products of natural origin as alternate medicine, the present study was undertaken to scientifically validate for the first time the traditional claims of healing pain and inflammation by evaluating the fatty oil isolated from the seeds using established in vitro and in vivo models. MATERIALS AND METHODS PU Seeds were Soxhlet extracted using n-hexane and fatty oil was isolated. Chemical composition of the oil was established with the aid of Gas Chromatography-Flame Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). The oil was then subjected to in vitro anti-inflammatory activity by following the established protocols of trypsin inhibitory and bovine serum albumin denaturation assays. The acute toxicity of the oil was also studied using OECD guidelines 423. The anti-inflammatory property of the oil was further evaluated using carrageenan-induced and formalin-induced edema in the rat paw. Moreover, hot plate latency and tail immersion assay were employed to evaluate analgesic activity of the oil. To establish the quality of the oil, various physicochemical properties were also studied. RESULTS GC-FID and GC-MS analysis of the oil revealed the presence of linoleic acid (59.06 ± 0.00%), oleic acid (28.11 ± 0.01%), palmitic acid (9.51 ± 0.01%) and stearic acid (3.32 ± 0.01%). In vitro trypsin inhibitory and bovine serum albumin denaturation assay revealed dose-dependent notable activity of the oil with IC50 value of 63.57 μg/mL and 518.14 μg/mL, respectively. The physico-chemical characterization demonstrated that the oil possesses a low acidity and a high oxidative stability index. The oil was found to be non-toxic and displayed effective anti-inflammatory activities with significant inhibition till 4 h in carrageenan-induced and formalin-induced rat paw edema at maximum tested dose of 200 mg/kg b.w. The oil also exhibited significant results in hot plate latency and tail immersion assay with positive effects showing up to 4 h after dose administration. CONCLUSION These findings, besides supporting the traditional claims, suggest that P. utilis seed oil has potential therapeutic applications as a natural anti-inflammatory and analgesic agent. Further studies are warranted to explore its mechanisms of action and potential use in pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Kiran Chauhan
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| | - Piyush Bhalla
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| | - H R Chitme
- Faculty of Pharmacy, DIT University, Dehradun, India.
| | - V K Varshney
- Chemistry and Bio-prospecting Division, Forest Research Institute, Dehradun, India.
| |
Collapse
|
6
|
Khursheed T, Fatima T, Qadri T, Rafiq A, Malik A, Naseer B, Hussain SZ. Biochemical, nutraceutical and phytochemical characterization of chia and basil seeds: A comparative study. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2151617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tabeen Khursheed
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Tabasum Fatima
- Department of Moalijat, Regional Research Institute of Unani Medicine, Naseem Bagh, Srinagar, India
| | - Tahiya Qadri
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asima Rafiq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ajaz Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Stefanidis S, Ordoudi SA, Nenadis N, Pyrka I. Improving the functionality of virgin and cold-pressed edible vegetable oils: Oxidative stability, sensory acceptability and safety challenges. Food Res Int 2023; 174:113599. [PMID: 37986461 DOI: 10.1016/j.foodres.2023.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
In recent years, there has been a growing demand for minimally processed foods that offer health benefits and premium sensory characteristics. This trend has led to increased consumption of virgin (VOs) and cold-pressed (CPOs) oils, which are rich sources of bioactive substances. To meet consumer needs for new oil products conferring multi-functional properties over a longer storage period, the scientific community has been revisiting traditional enrichment practices while exploring novel fortification technologies. In the last four years, the interest has been growing faster; an ascending number of annually published studies are about the addition of different plant materials, agri-food by-products, or wastes (intact or extracts) to VOs and CPOs using traditional or innovative fortification processes. Considering this trend, the present review aims to provide an overview and summarize the key findings from relevant papers that were retrieved from extensively searched databases. Our meta-analysis focuses on exposing the most recent trends regarding the exploitation of VOs and CPOs as substrates, the fortification agents and their form of use, as well as the fortification technologies employed. The review critically discusses possible health claim and labeling issues and highlights some chemical and microbial safety concerns along with authenticity issues and gaps in quality specifications that manufacturers have yet to address. All these aspects are examined from the perspective of developing new oil products with well-balanced techno-, senso- and bio-functional characteristics.
Collapse
Affiliation(s)
- Stavros Stefanidis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Stella A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioanna Pyrka
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
8
|
Rahim M, Imran M, Ambreen S, Khan FA, Regenstein JM, Al-Asmari F, Oranab S, Nadeem M, Hussain I, Khalid MZ, Khalid W, Aljobair MO, Mohamed Ahmed IA. Stabilization of the Antioxidant Properties in Spray-Dried Microcapsules of Fish and Chia Oil Blends. ACS OMEGA 2023; 8:35183-35192. [PMID: 37780009 PMCID: PMC10536043 DOI: 10.1021/acsomega.3c04634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Even with healthy foods, there is still a need to protect the functionality during processing. The stabilization and enrichment of fish oil (FO) extracted from fish fillets using solvent extraction might make this healthy oil more available. FO was stabilized by mixing it with chia seed oil (CSO) at 50:50 at room temperature. The antioxidant properties of the blends were evaluated using the total phenolic content (TPC), free radical scavenging activity (DPPH), ferric reducing antioxidant potential (FRAP), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activities with FO and CSO as controls. The blends of FO and CSO increased the oxidative stability, while FO was the most susceptible to degradation. The stability and bioactivity of antioxidants against environmental factors were improved by using encapsulation. Response surface methodology (RSM) was used to optimize spray-drying operating conditions for spray-dried microcapsules (SDMs). The independent variables were the inlet air temperature (IAT), which varied from 125 to 185 °C; wall material (WM) concentration, which varied from 5 to 25%; pump speed (PS), which varied from 3 to 7 mL/min; and needle speed (NS), which varied from 3 to 11 s. The results indicated that the maximum antioxidant activity of SDM was obtained at 140 °C IAT, 10% WM, 4 mL/min PS, and 5 s NS, while the minimum value was obtained at 170 °C IAT, 20% WM, 6 mL/min PS, and 9 s NS. The IAT had a significant effect on the antioxidant activities, and the stability of SDMs was increased. These SDMs can be used in the formulation of food matrices due to their therapeutic and nutritional properties.
Collapse
Affiliation(s)
- Muhammad
Abdul Rahim
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saadia Ambreen
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Joe M. Regenstein
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Fahad Al-Asmari
- Department
of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sadaf Oranab
- Department
of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem
- Department
of Dairy Technology, University of Veterinary
and Animal Sciences Lahore 54000, Pakistan
| | - Imtiaz Hussain
- Department
of Food Science and Technology, Faculty of Agriculture, University of Poonch Rawalakot, Rawalakot 10250, Azad Kashmir, Pakistan
| | - Muhammad Zubair Khalid
- Department
of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Moneera O. Aljobair
- Department
of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Isam A. Mohamed Ahmed
- Department
of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Vera-Cespedes N, Muñoz LA, Rincón MÁ, Haros CM. Physico-Chemical and Nutritional Properties of Chia Seeds from Latin American Countries. Foods 2023; 12:3013. [PMID: 37628012 PMCID: PMC10453379 DOI: 10.3390/foods12163013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In the last few decades, chia (Salvia hispanica L.) cultivation has expanded around the world, and the seeds have become well known due to their rich composition of nutrients and bioactive compounds. The aim of this work was to evaluate the physical, chemical, and nutritional profile of eight types of chia seeds grown in different Latin-American countries (Argentina, Bolivia, Chile, Ecuador, Mexico, Paraguay, and Peru). The results showed that several nutritional parameters of the seeds, such as the protein content and amino acid profile, dietary fiber content, lipid content, mineral composition, and presence of phytate, depend on the location in which they were grown. Other parameters, such as ash content, fatty acid profile, or various physical parameters, were uniform across locations (except for color parameters). The results support the notion that the nutritional characteristics of seeds are determined by the seeds' origin, and further analysis is needed to determine the exact mechanisms that control the changes in the seed nutritional properties of chia seeds.
Collapse
Affiliation(s)
- Natalia Vera-Cespedes
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Spanish Council for Scientific Research (CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain;
- Laboratorio de Ciencias de los Alimentos, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330546, CP, Chile
| | - Loreto A. Muñoz
- Laboratorio de Ciencias de los Alimentos, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330546, CP, Chile
| | - Miguel Ángel Rincón
- Department of Agronomy, Food Technology Division, University of Almería, La Cañada de San Urbano s/n, 04120 Almería, Spain;
- Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago 7830490, CP, Chile
| | - Claudia M. Haros
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Spanish Council for Scientific Research (CSIC), C/Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
10
|
Hernández-Olivas E, Muñoz-Pina S, Andrés A, Heredia A. The impact of age-related digestive disorders on in vitro digestibility of macronutrients and bioaccessibility of minor components of chia seeds. Food Res Int 2023; 169:112874. [PMID: 37254324 DOI: 10.1016/j.foodres.2023.112874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
Gastrointestinal (GI) functions deteriorate with age, primarily affecting protein digestion. The consumption of chia seeds may be helpful for the elderly because they offer a vegetable-based source of proteins, healthy lipids, fibre and micronutrients. The impact of common age-related GI deterioration on chia seed digestibility was assessed using in vitro digestion models. The goal was to study the potential of chia seeds as part of the diet of seniors. Deterioration in the oral, gastric and intestinal stages of digestion was cumulatively assessed in three digestion models: E1 (deterioration in oral conditions), E2 (deterioration in oral and gastric conditions) and E3 (deterioration in oral, gastric and intestinal conditions). Less efficient chewing (E1) decreased proteolysis, lipolysis and antioxidant capacity (p < 0.05). In contrast, deterioration in gastric functions seemed to affect only total polyphenolic content. Finally, in the model simulating the greatest deterioration in digestive functions (E3), all measured variables were negatively affected (proteolysis, lipolysis, amino acid release, total phenolic content, antioxidant capacity and calcium). Calcium bioaccessibility fell by 24 % with a decrease in pancreatic enzymes and bile secretion (E3). Age-related reduced digestive function did not affect the ratio of essential to non-essential amino acids in the digested samples in any case. However, under suboptimal GI conditions (E3), amino acids such as valine, leucine and isoleucine, which are important for sarcopenia prevention in the elderly, fell by 39 %, 49 % and 44 %, respectively. These findings might be helpful for further in vitro studies of chia seeds as a possible food ingredient. They may also be useful for the development of more targeted nutrition strategies in the elderly.
Collapse
Affiliation(s)
- Ever Hernández-Olivas
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Shuai X, Dai T, McClements DJ, Ruan R, Du L, Liu Y, Chen J. Hypolipidemic effects of macadamia oil are related to AMPK activation and oxidative stress relief: In vitro and in vivo studies. Food Res Int 2023; 168:112772. [PMID: 37120222 DOI: 10.1016/j.foodres.2023.112772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Macadamia oil is rich in monounsaturated fatty acids, especially a high level of palmitoleic acid, which may have beneficial health effects by lowering blood lipid levels. In our study, the hypolipidemic effects of macadamia oil and its potential mechanisms of action were investigated using a combination of in vitro and in vivo assays. The results showed that macadamia oil significantly reduced lipid accumulation, and improved triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels in oleic acid-induced high-fat HepG2 cells. The macadamia oil treatment also exhibited antioxidant effects, as seen by its ability to reduce reactive oxygen species and malondialdehyde (MDA) levels, and increase superoxide dismutase (SOD) activity. The effects of 1000 μg/mL of macadamia oil were comparable to that of 4.19 μg/mL simvastatin. The results of qRT-PCR and western blotting analyses indicated that macadamia oil effectively inhibited hyperlipidemia by reducing the expression levels of SREBP-1c, PPAR-γ, ACC and FAS and by enhancing the expression levels of HO-1, NRF2 and γ-GCS, via AMPK activation and oxidative stress relief, respectively. In addition, different doses of macadamia oil were found to significantly improve liver lipid accumulation, reduce serum and liver TC, TG, and LDL-C levels, increase HDL-C levels, increase antioxidant enzyme (SOD, GSH-Px, and T-AOC) activity, and decrease the MDA content of mice on a high-fat diet. These results indicated that macadamia oil had a hypolipidemic effect and provide insights that might facilitate the development of functional food and dietary supplements.
Collapse
Affiliation(s)
- Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liqing Du
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
12
|
Lopez C, Sotin H, Rabesona H, Novales B, Le Quéré JM, Froissard M, Faure JD, Guyot S, Anton M. Oil Bodies from Chia ( Salvia hispanica L.) and Camelina ( Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023; 12:foods12010211. [PMID: 36613428 PMCID: PMC9818916 DOI: 10.3390/foods12010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed OBs. A green refinery process including ultrasound to remove mucilage, aqueous extraction by grinding and centrifugation to recover OBs from the seeds was used. The microstructure, composition and physical stability of the OBs were examined. Confocal laser scanning microscopy images showed that chia and camelina seed OBs are spherical assemblies coated by a layer of phospholipids and proteins, which have been identified by gel electrophoresis. The mean diameters determined by laser light scattering measurements were 2.3 and 1.6 µm for chia and camelina seed OBs, respectively. The chia and camelina seed OBs were rich in lipids and other bioactive components with, respectively, 64% and 30% α-linolenic acid representing 70% and 53% of the total fatty acids in the sn-2 position of the triacylglycerols, 0.23% and 0.26% phospholipids, 3069 and 2674 mg/kg oil of β-sitosterol, and lipophilic antioxidants: 400 and 670 mg/kg oil of γ-tocopherol. Phenolic compounds were recovered from the aqueous extracts, such as rutin from camelina and caffeic acid from chia. Zeta-potential measurements showed changes from about -40 mV (pH 9) to values that were positive below the isoelectric points of pH 5.1 and 3.6 for chia and camelina seed OBs, respectively. Below pH 6.5, physical instability of the natural oil-in-water emulsions with aggregation and phase separation was found. This study will contribute to the development of innovative and sustainable food products based on natural oil-in-water emulsions containing chia and camelina seed OBs for their nutritional and health benefits.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | | | | |
Collapse
|
13
|
Oteri M, Bartolomeo G, Rigano F, Aspromonte J, Trovato E, Purcaro G, Dugo P, Mondello L, Beccaria M. Comprehensive Chemical Characterization of Chia ( Salvia hispanica L.) Seed Oil with a Focus on Minor Lipid Components. Foods 2022; 12:foods12010023. [PMID: 36613240 PMCID: PMC9818636 DOI: 10.3390/foods12010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A comprehensive chemical characterization of different lipid components, namely fatty acid composition after derivatization in fatty acid methyl esters (FAMEs), triacylglycerols (TAGs), phospholipids (PLs), free fatty acids (FFAs), sterols, carotenoids, tocopherols, and polyphenols in Chia seed oil, obtained by Soxhlet extraction, was reported. Reversed phase liquid chromatography (RP-LC) coupled to UV and mass spectrometry (MS) detectors was employed for carotenoids, polyphenols, and TAGs determination; normal phase-LC in combination with fluorescence detector (FLD) was used for tocopherols analysis; PL and FFA fractions were investigated after a rapid solid phase extraction followed by RP-LC-MS and NanoLC coupled to electron ionization (EI) MS, respectively. Furthermore, gas chromatography (GC)-flame ionization (FID) and MS detectors were used for FAMEs and sterols analysis. Results demonstrated a significant content of bioactive compounds, such as the antioxidant tocopherols (22.88 µg mL-1), and a very high content of essential fatty acids (81.39%), namely α-linolenic (62.16%) and linoleic (19.23%) acids. In addition, for the best of authors knowledge, FFA profile, as well as some carotenoid classes has been elucidated for the first time. The importance of free fatty acids in vegetable matrices is related to the fact that they can be readily involved in metabolic processes or biosynthetic pathways of the plant itself. For a fast and reliable determination of this chemical class, a very innovative and sensitive NanoLC-EI-MS analytical determination was applied.
Collapse
Affiliation(s)
- Marianna Oteri
- Department of Veterinary Sciences, Section of Animal Production, University of Messina, I-98168 Messina, Italy
| | - Giovanni Bartolomeo
- Science4Life S.r.l., an Academic Spin-Off of University of Messina, I-98168 Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5722
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 esq. 115, La Plata 1900, Argentina
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, I-00128 Rome, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), Via Luigi Borsari 46, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Gao F, Wang C, Zhang W, Shi B. Effects of oxidized soybean oil on the performance of sows and jejunum health of suckling piglets. J Anim Physiol Anim Nutr (Berl) 2022; 107:830-838. [PMID: 36224721 DOI: 10.1111/jpn.13774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Oils provide a considerable amount of energy to the swine diet, but they are prone to lipid oxidation if not properly preserved. Consumption of oxidized oils can adversely affect the animal organism and even the offspring. This study investigated the impact of oxidized soybean oil in the diets of sows from 107 days gestation to 21 days of lactation on the performance of sows and jejunum health of suckling piglets. Sixteen sows were randomly allocated into two groups: one group (n = 8) was fed with the fresh soybean oil (FSO) diet, and another group (n = 8) was treated with the oxidized soybean oil (OSO) diet. Dietary oxidized soybean oil does not affect sow performance. Antioxidant enzyme activity in the milk was reduced significantly in the OSO group, such as the superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and catalase (CAT) activities (p < 0.05). On Day 21, oxidized soybean oil increased tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) levels in sow milk and the concentrations of TNF-α and IL-8 cytokines in plasma (p < 0.05). Suckling piglets from sows fed on OSO showed a trend towards increased IL-6 and TNF-α in plasma (p < 0.1). The mRNA expression of interleukin 1β (IL-1β) was augmented, whereas interleukin 10 (IL-10) was decreased, and zonula occludens-1 (ZO-1) had a tendency to be down-regulated in OSO treatment. This study revealed that the OSO of feed decreased the antioxidant capacity of milk, further contributing to the inflammatory response in the jejunum of suckling piglets.
Collapse
Affiliation(s)
- Feng Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chuanqi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
16
|
Tak Y, Kaur M, Kumar R, Gautam C, Singh P, Kaur H, Kaur A, Bhatia S, Jha NK, Gupta PK, Amarowicz R. Repurposing chia seed oil: A versatile novel functional food. J Food Sci 2022; 87:2798-2819. [PMID: 35708201 DOI: 10.1111/1750-3841.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.
Collapse
Affiliation(s)
- Yamini Tak
- Department of Biochemistry, Agriculture University, Kota, Rajasthan, India
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajendra Kumar
- Department of Entomology, MBDDS Girls College, Siswali, Baran, Rajasthan, India
| | - Chirag Gautam
- Department of Plant Pathology, Agriculture University, Kota, Rajasthan, India
| | - Prabhjot Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harjeet Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surekha Bhatia
- Department of Processing & Food engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
17
|
Muñoz AM, Casimiro-Gonzales S, Gómez-Coca RB, Moreda W, Best I, Cajo-Pinche MI, Loja JF, Ibañez E, Cifuentes A, Ramos-Escudero F. Comparison of Four Oil Extraction Methods for Sinami Fruit ( Oenocarpus mapora H. Karst): Evaluating Quality, Polyphenol Content and Antioxidant Activity. Foods 2022; 11:1518. [PMID: 35627087 PMCID: PMC9141738 DOI: 10.3390/foods11101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/26/2023] Open
Abstract
The sinami palm (Oenocarpus mapora H. Karst) is a plant from the South American Amazonia that has great potential for industrial applications in the development of functional foods, nutraceuticals and cosmeceuticals. In this manuscript, the physicochemical properties, total polyphenol content and antioxidant activity of sinami oil that was obtained using four extraction systems, namely expeller press extraction (EPE), cold press extraction (CPE), ultrasound-assisted extraction (UAE) and supercritical fluid extraction (SFE), were studied and compared. The oxidative stability (OSI) was statistically non-significant in EPE and SFE. The chromatic properties (CIELab) were influenced by the extraction methods and SFE presented high values of L* and a lower content of plant pigments. Ultrasound-assisted extraction showed a higher content of polyphenols and higher antioxidant activity. Different analyses for the evaluation of the physicochemical properties, the content of total polyphenols and antioxidant activity were used to classify sinami oil according to chemometrics using principal component analysis (PCA). For example, the sinami oil that was obtained using each extraction method was in a different part of the plot. In summary, sinami oil is an excellent resource for plant pigments. Additionally, the information that was obtained on the quality parameters in this study provided a good foundation for further studies on the characterization of major and minor compounds.
Collapse
Affiliation(s)
- Ana María Muñoz
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - Sandra Casimiro-Gonzales
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
| | - Raquel B. Gómez-Coca
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Wenceslao Moreda
- Instituto de la Grasa, CSIC, Campus Universidad Pablo de Olavide, Building 46, Ctra. de Utrera km 1, 41013 Sevilla, Spain; (R.B.G.-C.); (W.M.)
| | - Ivan Best
- Instituto de Ciencias de Los Alimentos y Nutrición, Universidad San Ignacio de Loyola (ICAN-USIL), Campus Pachacamac, Sección B, Parcela 1, Fundo La Carolina, Pachacamac, Lima 15823, Peru; (A.M.M.); (S.C.-G.); (I.B.)
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
| | - María Isabel Cajo-Pinche
- Carrera Profesional de Ingeniería Agroindustrial, Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Jr. Jorge Chávez 1160, Puerto Maldonado 17001, Peru;
| | - Juan Francisco Loja
- Asociación para la Conservación de la Cuenca Amazónica (ACCA), Madre de Dios 17001, Peru;
| | - Elena Ibañez
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain; (E.I.); (A.C.)
| | - Fernando Ramos-Escudero
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutraceúticos, Universidad San Ignacio de Loyola (UNUSAN-USIL), Av. La Fontana 750, Lima 15024, Peru
- Facultad de Ciencias de la Salud, Universidad San Ignacio de Loyola, Av. La Fontana 750, Lima 15024, Peru
| |
Collapse
|
18
|
Dominguez-Candela I, Lerma-Canto A, Cardona SC, Lora J, Fombuena V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3250. [PMID: 35591583 PMCID: PMC9100186 DOI: 10.3390/ma15093250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.
Collapse
Affiliation(s)
- Ivan Dominguez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Salvador Cayetano Cardona
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Jaime Lora
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| |
Collapse
|
19
|
Shen Y, Zheng L, Peng Y, Zhu X, Liu F, Yang X, Li H. Physicochemical, Antioxidant and Anticancer Characteristics of Seed Oil from Three Chenopodium quinoa Genotypes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082453. [PMID: 35458651 PMCID: PMC9025313 DOI: 10.3390/molecules27082453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Chenopodium quinoa Willd. is recognized to be an excellent nutrient with high nutritional content. However, few genotypes of quinoa were analyzed, so we found a knowledge gap in the comparison of quinoa seeds of different genotypes. This study aims to compare the physicochemical, antioxidant, and anticancer properties of seed oil from three C. quinoa genotypes. Seeds of three genotypes (white, red, and black) were extracted with hexane and compared in this study. The oil yields of these quinoa seeds were 5.68–6.19% which contained predominantly polyunsaturated fatty acids (82.78–85.52%). The total tocopherol content ranged from 117.29 to 156.67 mg/kg and mainly consisted of γ-tocopherol. Total phytosterols in the three oils ranged from 9.4 to 12.2 g/kg. Black quinoa seed oil had the highest phytosterols followed by red and white quinoas. The chemical profile of quinoa seed oils paralleled by their antioxidant and anticancer activities in vitro was positively correlated with the seed coat color. Black quinoa seed oil had the best antioxidant and anti-proliferation effect on HCT 116 cells by the induction of apoptosis in a dose-dependent manner, which may play more significant roles in the chemoprevention of cancer and other diseases related to oxidative stress as a source of functional foods.
Collapse
Affiliation(s)
- Yingbin Shen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.S.); (Y.P.); (X.Z.)
| | - Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;
| | - Yao Peng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.S.); (Y.P.); (X.Z.)
| | - Xucheng Zhu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.S.); (Y.P.); (X.Z.)
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China;
| | - Xinquan Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.S.); (Y.P.); (X.Z.)
- Correspondence: (X.Y.); (H.L.)
| | - Haimei Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.S.); (Y.P.); (X.Z.)
- Correspondence: (X.Y.); (H.L.)
| |
Collapse
|
20
|
Gopalam R, Manasa V, Vaishnav SR, Daga P, Tumaney AW. Profiling of Lipids, Nutraceuticals, and Bioactive Compounds Extracted from an Oilseed Rich in PUFA. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:98-104. [PMID: 35088213 DOI: 10.1007/s11130-021-00945-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Polyunsaturated fatty acid (PUFA) rich vegetable oils are nutritionally and economically important agriculture based commodities. The lipid profile, nutraceutical content, and antioxidant activity of Indian chia seed oil (CSO) were analysed and compared with PUFA rich vegetable oils. The total oil content was 28% (w/w) with α-linolenic acid (ALA; 65%) as the predominant fatty acid and a n-3/n-6 ratio of 3.5. The tocopherol content was 144 mg/kg of oil, with γ + β being the most abundant. The squalene content was 178.47 mg/100 g of oil, and the total phenolic content was 0.014 mg GAE/g of oil. The identity of major polyphenols in the methanolic extract of CSO were established by LC-HRMS. FTIR spectra of CSO exhibited characteristic features that were identical to other PUFA rich oils. Results demonstrate that the Indian CSO is an excellent source of essential fatty acids and key nutraceuticals.
Collapse
Affiliation(s)
- Rahul Gopalam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020, India
| | - Vallamkondu Manasa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020, India
| | - Salony R Vaishnav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020, India
| | - Palak Daga
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020, India
| | - Ajay W Tumaney
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
- Department of Lipid Science, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, 570 020, India.
| |
Collapse
|
21
|
Villanueva-Lazo A, Montserrat-de la Paz S, Grao-Cruces E, Pedroche J, Toscano R, Millan F, Millan-Linares MC. Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte-Macrophage Plasticity. Foods 2022; 11:foods11050623. [PMID: 35267256 PMCID: PMC8909891 DOI: 10.3390/foods11050623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte–macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.
Collapse
Affiliation(s)
- Alvaro Villanueva-Lazo
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
- Correspondence:
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Justo Pedroche
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Francisco Millan
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| |
Collapse
|
22
|
Manasa V, Tumaney AW. Evaluation of the anti-dyslipidemic effect of spice fixed oils in the in vitro assays and the high fat diet-induced dyslipidemic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Carlini GCG, Roschel GG, Ferrari RA, Alencar SM, Ota HC, da Silveira TFF, Castro IA. Chemical characterization of Echium plantagineum seed oil obtained by three methods of extraction. J Food Sci 2021; 86:5307-5317. [PMID: 34841517 DOI: 10.1111/1750-3841.15972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Echium seed oil has been considered an important alternative source of omega 3 fatty acids (n-3 FA) for human consumption. Considering the oxidative instability of n-3 FA richer oils, the objective of this study was to determine the chemical and sensory parameters of the oil obtained from Echium plantagineum seeds obtained by three extraction methods (hydraulic press: HYD; continuous screw press: PRESS; and solvent technique: SOLV). Stearidonic acid (C18:4, n3), the most important n-3 FA present in the oil, changed from 12.5% to 12.7%. Regarding the minor compounds, PRESS sample showed the highest concentration of gamma-tocopherol (782.24 mg/kg oil), while SOLV samples presented the highest amount of β-sitosterol (73.46 mg/100 g) with no difference of campesterol concentration (159.56 mg/100 g) among the samples. Higher values of total phenolics (19.65 mg GAE/kg oil) and β-carotene (34.83 mg/kg oil) were also found in the SOLV samples, suggesting the influence of hexane in the extraction of these bioactive compounds. High resolution mass spectrometry identified caffeic acid and its derivatives as the main phenolic compounds present in the echium oil. PRESS sample showed the best oxidative stability as measured by PV (0.61 mmol/kg oil) and malondialdehyde (173.13 µmol), probably due to faster time of processing compared to HYD and SOLV samples. Our data showed that the extraction method changed the chemical composition of the minor compounds in the echium oil, but these alterations did not reduce its nutritional quality or sensory acceptability. PRACTICAL APPLICATION: Echium oil represents a great potential source of omega 3 fatty acids, but there is not enough information about its oxidative stability and chemical composition, especially toward minor compounds. Our study characterizes echium oil composition obtained from three extraction methods, contributing to amplify the technical information about this important alternative oil for human consumption.
Collapse
Affiliation(s)
- Giovanna Calixto Garcia Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Severino Mathias Alencar
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helton Cherubim Ota
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Jiang W, Ma Y, Chen R. Gutter oil detection for food safety based on multi-feature machine learning and implementation on FPGA with approximate multipliers. PeerJ Comput Sci 2021; 7:e774. [PMID: 34901430 PMCID: PMC8627233 DOI: 10.7717/peerj-cs.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Since consuming gutter oil does great harm to people's health, the Food Safety Administration has always been seeking for a more effective and timely supervision. As laboratory tests consume much time, and existing field tests have excessive limitations, a more comprehensive method is in great need. This is the first time a study proposes machine learning algorithms for real-time gutter oil detection under multiple feature dimensions. Moreover, it is deployed on FPGA to be low-power and portable for actual use. Firstly, a variety of oil samples are generated by simulating the real detection environment. Next, based on previous studies, sensors are used to collect significant features that help distinguish gutter oil. Then, the acquired features are filtered and compared using a variety of classifiers. The best classification result is obtained by k-NN with an accuracy of 97.18%, and the algorithm is deployed to FPGA with no significant loss of accuracy. Power consumption is further reduced with the approximate multiplier we designed. Finally, the experimental results show that compared with all other platforms, the whole FPGA-based classification process consumes 4.77 µs and the power consumption is 65.62 mW. The dataset, source code and the 3D modeling file are all open-sourced.
Collapse
Affiliation(s)
- Wei Jiang
- School of Mechanical, Electrical and Information Engineering, Wuxi Vocational Institute of Arts & Technology, Wuxi, Jiangsu Province, China
| | - Yuhanxiao Ma
- New York University, Gallatin School of Individualized Study, New York, NY, United States of America
- VeriMake Innovation Lab, Nanjing Renmian Integrated Circuit Co.,Ltd., Nanjing, Jiangsu Province, China
| | - Ruiqi Chen
- VeriMake Innovation Lab, Nanjing Renmian Integrated Circuit Co.,Ltd., Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Hasnul Hadi MH, Ker PJ, Lee HJ, Leong YS, Hannan MA, Jamaludin MZ, Mahdi MA. Color Index of Transformer Oil: A Low-Cost Measurement Approach Using Ultraviolet-Blue Laser. SENSORS 2021; 21:s21217292. [PMID: 34770602 PMCID: PMC8587144 DOI: 10.3390/s21217292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The color of transformer oil can be one of the first indicators determining the quality of the transformer oil and the condition of the power transformer. The current method of determining the color index (CI) of transformer oil utilizes a color comparator based on the American Society for Testing and Materials (ASTM) D1500 standard, which requires a human observer, leading to human error and a limited number of samples tested per day. This paper reports on the utilization of ultra violet-blue laser at 405- and 450-nm wavelengths to measure the CI of transformer oil. In total, 20 transformer oil samples with CI ranging from 0.5 to 7.5 were measured at optical pathlengths of 10 and 1 mm. A linear regression model was developed to determine the color index of the transformer oil. The equation was validated and verified by measuring the output power of a new batch of transformer oil samples. Data obtained from the measurements were able to quantify the CI accurately with root-mean-square errors (RMSEs) of 0.2229 for 405 nm and 0.4129 for 450 nm. This approach shows the commercialization potential of a low-cost portable device that can be used on-site for the monitoring of power transformers.
Collapse
Affiliation(s)
- Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
- Correspondence:
| | - Hui Jing Lee
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
| | - Yang Sing Leong
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environmental, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| | - Mahammad A. Hannan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (M.A.H.)
| | - Md. Zaini Jamaludin
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (Y.S.L.); (M.Z.J.)
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| |
Collapse
|
26
|
Hasnul Hadi MH, Ker PJ, Thiviyanathan VA, Tang SGH, Leong YS, Lee HJ, Hannan MA, Jamaludin MZ, Mahdi MA. The Amber-Colored Liquid: A Review on the Color Standards, Methods of Detection, Issues and Recommendations. SENSORS 2021; 21:s21206866. [PMID: 34696079 PMCID: PMC8540017 DOI: 10.3390/s21206866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
For most natural or naturally-derived liquid products, their color reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for color measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as color is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-colored liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for color measurement of amber-colored liquids. The pros and cons of the measurement methods, the effects of the color on customer preferences, and the international industry standards on color measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the color measurement techniques as well as recommendations for future research. This review demonstrates that the existing color measurement technique can determine the color according to the standards and color scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for color measurement of liquids and thus expedite the development of a portable device that can measure color accurately.
Collapse
Affiliation(s)
- Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Pin Jern Ker
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
- Correspondence:
| | - Vimal A. Thiviyanathan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Shirley Gee Hoon Tang
- Department of Microbiology, Faculty of Medicine, Manipal University College Malaysia, Bukit Baru, Melaka 75150, Malaysia;
- International Medical School, Management and Science University, Shah Alam 40100, Malaysia
| | - Yang Sing Leong
- Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environmental, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
| | - Hui Jing Lee
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mahammad A. Hannan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (M.H.H.H.); (V.A.T.); (M.A.H.)
| | - Md. Zaini Jamaludin
- Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; (H.J.L.); (M.Z.J.)
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| |
Collapse
|
27
|
Cavalli J, Freitas MA, Gonçalves ECD, Fadanni GP, Santos AA, Raposo NRB, Dutra RC. Chia oil prevents chemical and immune-mediated inflammatory responses in mice: Evidence for the underlying mechanisms. Food Res Int 2021; 149:110703. [PMID: 34600695 DOI: 10.1016/j.foodres.2021.110703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Chia (Salvia hispanica L.) is an herbaceous plant used as omega-3 polyunsaturated fatty acid (ω-3 PUFA) source that presents a range of beneficial effects on human health. Herein, it was used a chia oil containing over than 62% of α-linolenic acid (ALA), a compound widely related to anti-inflammatory actions. Chia oil effect was tested using paw edema and mechanical hyperalgesia induced by carrageenan, and ear edema induced by croton oil, histamine, and capsaicin. Croton oil was used in both preventive and therapeutic treatment schedules of chia oil while histamine and capsaicin were used only in preventive treatment schedule. Chia oil mechanism of action was investigated using nociception and paw edema response induced by intraplantar injection of acidified saline (ASIC activator), PGE2 (prostaglandin pathway), cinnamaldehyde (TRPA1 activator), bradykinin (BK pathway), menthol (TRPM8 activator), and capsaicin (TRPV1 activator). Further, RT-PCR for inflammatory mediators (TRPA1, NF-κB, PPAR-γ, COX-2, IL-6, TNF, FPR2, FAAH, MAGL, and IL-12A) induced by carrageenan, NLRP3 inflammasome activation, and the cell viability were then accessed. Later, chia oil actions were evaluated in the experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS) model. Chia oil showed anti-edematogenic and anti-hyperalgesic effects when administered 1 h before pro-inflammatory stimulus - particularly carrageenan and croton oil. Moreover, chia oil upregulated the mRNA levels of COX-2 and formyl peptide receptor 2 (FPR2) while reduced IL-6 expression in the spinal cord of mice submitted to i.pl. injection of carrageenan. Interestingly, chia oil mediates antinociceptive effects in mice decreasing the nociceptive response induced by acidified saline, PGE2, and cinnamaldehyde, but not by bradykinin, menthol, and capsaicin. On the EAE model, chia oil preventively administered attenuated EAE-induced motor deficits and mechanical hyperalgesia in mice, suggesting a valuable effect of chia oil supplementation in regulating inflammatory responses and some immune functions during immune-mediated inflammatory disorders (IMID). Nonetheless, additional reports will need to assess the effect of chia oil in well-controlled clinical trials performed in MS patients.
Collapse
Affiliation(s)
- Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Mariana A Freitas
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Guilherme P Fadanni
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Adara A Santos
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Nádia R B Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
28
|
Rashid N, Ashraf I, Kumar R, Richa R. Enrichment via chia seeds to tackle hidden hunger: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Ifra Ashraf
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rohitashw Kumar
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| | - Rishi Richa
- College of Agricultural Engineering and Technology Sher‐e‐Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar Campus Srinagar India
| |
Collapse
|
29
|
Contribution to a Circular Economy Model: From Lignocellulosic Wastes from the Extraction of Vegetable Oils to the Development of a New Composite. Polymers (Basel) 2021; 13:polym13142269. [PMID: 34301027 PMCID: PMC8309261 DOI: 10.3390/polym13142269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
The present works focuses on the development of a novel fully bio-based composite using a bio-based high-density polyethylene (Bio-HDPE) obtained from sugar cane as matrix and a by-product of extraction of chia seed oil (CO) as filler, with the objective of achieving a circular economy model. The research aims to revalorize an ever-increasing waste stream produced by the growing interest in vegetable oils. From the technical point of view, the chia seed flour (CSF) was chemically modified using a silane treatment. This treatment provides a better interfacial adhesion as was evidenced by the mechanical and thermal properties as well as field emission scanning electron microscopy (FESEM). The effect of silane treatment on water uptake and disintegration rate was also studied. On the other hand, in a second stage, an optimization of the percentage of treated CSF used as filler was carried out by a complete series of mechanical, thermal, morphological, colour, water absorption and disintegration tests with the aim to evaluate the new composite developed using chia by-products. It is noteworthy as the disintegration rate increased with the addition of CSF filler, which leads to obtain a partially biodegradable wood plastic composite (WPC) and therefore, becoming more environmentally friendly.
Collapse
|
30
|
Liu Y, Bian Y, Luo X, Wang C, Mu D, Pan G, Wu J, Shi H. Synergistic effect of docosahexaenoic acid or conjugated linoleic acid with caffeic acid on ameliorating oxidative stress of HepG2 cells. J Food Sci 2021; 86:3240-3251. [PMID: 34118075 DOI: 10.1111/1750-3841.15775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Exploring the synergistic effect of docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) with caffeic acid (CA) on ameliorating oxidative stress, thereby introducing CA to DHA or CLA will contribute significantly to enhance the bioactivity. We observed that DHA or CLA with CA promoted the recovery of intact individual morphology and the decline of cavities inside the nucleus and apoptosis under the observation of confocal laser scanning microscopy and fluorescent inverted microscope. The activity of intracellular antioxidant enzymes catalase (CAT) and glutathione peroxidase (GSH-Px), lactate dehydrogenase (LDH) leakage, pyruvate and malondialdehyde and reactive oxygen species (ROS), cellular morphology, and cell cycle were analyzed. Our results showed that DHA or CLA with CA enhanced the activity of CAT and GSH-Px, decreased LDH leakage and the number of apoptotic, significantly inhibited (ROS-induced cellular injury. Cell arrest in G1 and G2 phase during cell mitosis was reduced by the measurement of flow cytometry. DHA or CLA combined with CA could markedly strengthen the free radical scavenging and endogenous antioxidant defense capacity on HepG2 cells. This study provides a new direction in the application of synergies to antioxidant compounds. PRACTICAL APPLICATION: Caffeic acid (CA) can synergize with docosahexaenoic acid (DHA) or conjugated linoleic acid (CLA) to enhance antioxidant capacity. This study highlighted an effect of ameliorating oxidative stress injury DHA or CLA with CA on HepG2 cells. The data indicated that DHA or CLA with CA might be used to relieve oxidative stress damage.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
31
|
Gopalam R, Tumaney AW. Functional characterization of acyltransferases from Salvia hispanica that can selectively catalyze the formation of trilinolenin. PHYTOCHEMISTRY 2021; 186:112712. [PMID: 33706110 DOI: 10.1016/j.phytochem.2021.112712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Salvia hispanica (chia) is an important oilseed crop cultivated commercially in South America, Australia, and India. It is the richest terrestrial natural source of α-linolenic acid (ALA), an ω-3 polyunsaturated fatty acid with varied health benefits. In this study, we have measured the total lipid content, fatty acid composition in four phases of seed development and analyzed the major triacylglycerol (TAG) molecular species present in Indian chia seed oil. We found that the mature seeds produced 28% oil, 65% of ALA, and trilinolenin as the major TAG species. To make TAG rich in ALA, there should be specialized enzymes that can efficiently transfer ALA to TAG. To study this hypothesis, we performed a characterization of TAG synthesizing enzymes present in chia. We have identified two acyl CoA:diacylglycerol acyltransferases (ShDGAT1 and ShDGAT2) and one phospholipid:diacylglycerol acyltransferase (ShPDAT1) from the chia transcriptome data. Functional characterization of these enzymes was conducted by heterologous expression in a TAG deficient mutant of Saccharomyces cerevisiae. Substrate specificity studies showed that ShDGAT2-1 and ShPDAT1 exhibited a strong preference towards substrates containing ALA and could incorporate 45% and 80% ALA into TAG, respectively. Both enzymes incorporated ALA in a concentration-dependent manner into TAG and were able to form trilinolenin in yeast. Our results provide a first insight into the high ALA accumulation in chia and the first demonstration of trilinolenin formation by DGAT2. The two identified enzymes (ShDGAT2-1 and ShPDAT1) can be used to metabolically engineer other oilseed crops to produce high levels of ALA.
Collapse
Affiliation(s)
- Rahul Gopalam
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajay W Tumaney
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
32
|
Xie L, Zhang T, Zheng L, Xie D, Jin J, Wang X, Jin Q. Chemical Compositions and Oxidative Stabilities of
Ginkgo biloba
Kernel Oils from Four Cultivated Regions in China. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Liyou Zheng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Dan Xie
- College of Biological and Chemical Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
33
|
Choudhary P, Dutta S, Moses JA, Anandharamakrishnan C. Nanoliposomal encapsulation of chia oil for sustained delivery of α‐linolenic acid. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pintu Choudhary
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Ministry of Food Processing Industries Government of India Thanjavur 613005 India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Ministry of Food Processing Industries Government of India Thanjavur 613005 India
| | - Jeyan A. Moses
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Ministry of Food Processing Industries Government of India Thanjavur 613005 India
| | - Chinnaswamy Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology Ministry of Food Processing Industries Government of India Thanjavur 613005 India
| |
Collapse
|
34
|
Ishak I, Hussain N, Coorey R, Ghani MA. Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Singh Y, Datey A, Chakravortty D, Tumaney AW. Novel Cell-Based Assay to Investigate Monoacylglycerol Acyltransferase 2 Inhibitory Activity Using HIEC-6 Cell Line. ACS OMEGA 2021; 6:1732-1740. [PMID: 33490832 PMCID: PMC7818593 DOI: 10.1021/acsomega.0c05950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The dietary triacylglycerol (TAG) gets absorbed and accumulated in the body through the monoacylglycerol (MAG) pathway, which plays a major role in obesity and related disorders. The main enzyme of this pathway, monoacylglycerol acyltransferase 2 (MGAT2), is considered as a potential target for developing antiobesity compounds. Hence, there is a need for in vitro cell-based assays for screening the potential leads for MGAT2 inhibitors. Because of synthetic inhibitor's side effects, there is an increased interest in natural extracts as potential leads. Hence, we have optimized a 2-MAG-induced TAG accumulation inhibitory cell-based assay to screen natural extracts using the HIEC-6 cell line. A concentration-dependent TAG accumulation was observed when the HIEC-6 cells were fed with exogenous 2-MAG. The TAG accumulation was confirmed by in situ BODIPY staining and was quantified. However, no TAG accumulation was seen when the cells were fed with exogenous DAG or TAG, suggesting MGAT2-mediated MAG uptake and its conversion to TAG. We demonstrated the utility of this assay by screening five different plant-based aqueous extracts. These extracts showed various inhibition levels (25% to 30%) of 2-MAG-induced TAG accumulation in the HIEC-6. The MGAT2 inhibitory potential of these extracts was confirmed by an in vitro MGAT2 assay. This cell-based assay adds a new methodology for screening, developing, and evaluating MGAT2 inhibitors for addressing obesity and related disorders.
Collapse
Affiliation(s)
- Yeshvanthi Singh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department
of Lipid Science, Council of Scientific
and Industrial Research−Central Food Technological Research
Institute, Mysuru 570 020, India
| | - Akshay Datey
- Department
of Microbiology and Cell Biology, Indian
Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department
of Microbiology and Cell Biology, Indian
Institute of Science, Bangalore 560012, India
| | - Ajay W. Tumaney
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department
of Lipid Science, Council of Scientific
and Industrial Research−Central Food Technological Research
Institute, Mysuru 570 020, India
| |
Collapse
|
36
|
Shiu ST, Lew WZ, Lee SY, Feng SW, Huang HM. Effects of Sapindus mukorossi Seed Oil on Proliferation, Osteogenetic/Odontogenetic Differentiation and Matrix Vesicle Secretion of Human Dental Pulp Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4063. [PMID: 32933188 PMCID: PMC7560370 DOI: 10.3390/ma13184063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Stem cells have attracted great interest in the development of tissue engineering. However, the self-regeneration and multi-differentiation capabilities of stem cells are easily impaired during cell transplantation. Recent studies have demonstrated that Sapindus mukorossi (S. mukorossi) seed oil has various positive biological effects. However, it is not yet clear whether S. mukorossi seed oil can increase the growth and differentiation of dental pulp mesenchymal stem cells (DPSCs). The aim of this study is to investigate the effects of S. mukorossi seed oil on the proliferation and differentiation of DPSCs. DPSCs with and without S. mukorossi seed oil, respectively, were evaluated and compared. The viabilities of the cells were assessed by MTT tests. The osteogenetic and odontogenetic capacities of the DPSCs were tested using Alizarin red S staining and alkaline phosphatase (ALP) activity assays. In addition, real-time PCR was performed to examine the gene expression of ALP, BMP-2 and DMP-1. Finally, extracellular matrix vesicle secretion was detected via scanning electron microscopy. No significant difference was observed in the viabilities of the DPSCs with and without S. mukorossi seed oil, respectively. However, under osteogenic and odontogenic induction, S. mukorossi seed oil increased the secretion of mineralized nodules and the ALP activity of the DPSCs (p < 0.05). The ALP gene expression of the differentiation-induced DPSCs was also enhanced. Finally, a greater secretion of extracellular matrix vesicles was detected in the DPSCs following odontogenic induction complemented with S. mukorossi seed oil. Overall, the present results show that S. mukorossi seed oil promotes the osteogenic/odontogenic differentiation and matrix vesicle secretion of DPSCs.
Collapse
Affiliation(s)
- Shiau-Ting Shiu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (W.-Z.L.); (S.-Y.L.)
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wei-Zhen Lew
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (W.-Z.L.); (S.-Y.L.)
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (W.-Z.L.); (S.-Y.L.)
- Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (W.-Z.L.); (S.-Y.L.)
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (W.-Z.L.); (S.-Y.L.)
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
37
|
Characterization and Biological Activities of Seed Oil Extracted from Berberis dasystachya Maxim. by the Supercritical Carbon Dioxide Extraction Method. Molecules 2020; 25:molecules25081836. [PMID: 32316267 PMCID: PMC7221573 DOI: 10.3390/molecules25081836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
Characterization of the structure and pharmacological activity of Berberis dasystachya Maxim., a traditional Tibetan medicinal and edible fruit, has not yet been reported. In this study, central composite design (CCD) combined with response surface methodology (RSM) was applied to optimize the extraction conditions of B. dasystachya oil (BDSO) using the supercritical carbon dioxide (SC-CO2) extraction method, and the results were compared with those obtained by the petroleum ether extraction (PEE) method. The chemical characteristics of BDSO were analyzed, and its antioxidant activity and in vitro cellular viability were studied by DPPH, ABTS, reducing power assay, and MTT assay. The results showed that the maximum yield of 12.54 ± 0.56 g/100 g was obtained at the optimal extraction conditions, which were: pressure, 25.00 MPa; temperature 59.03 °C; and CO2 flow rate, 2.25 SL/min. The Gas chromatography (GC) analysis results showed that BDSO extracted by the SC-CO2 method had higher contents of unsaturated fatty acids (85.62%) and polyunsaturated fatty acids (57.90%) than that extracted by the PEE method. The gas chromatography used in conjunction with ion mobility spectrometry (GC-IMS) results showed that the main volatile compounds in BDSO were aldehydes and esters. BDSO also exhibited antioxidant ability in a dose-dependent manner. Moreover, normal and cancer cells incubated with BDSO had survival rates of more than 85%, which indicates that BDSO is not cytotoxic. Based on these results, the BDSO extracted by the SC-CO2 method could potentially be used in other applications, e.g., those that involve using berries of B. dasystachya.
Collapse
|
38
|
Mohamed DA, Mohamed RS, Fouda K. Anti-inflammatory potential of chia seeds oil and mucilage against adjuvant-induced arthritis in obese and non-obese rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0236/jbcpp-2019-0236.xml. [PMID: 32134733 DOI: 10.1515/jbcpp-2019-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023]
Abstract
Background Natural anti-inflammatory nutraceuticals may be useful in suppressing the incessant aggravation of rheumatoid arthritis. Chia seeds as a natural source of antioxidants help prevent several oxidative stress-mediated diseases. The current study was focused on arthritis combined with obesity and evaluated the validation of oil and mucilage extracted from chia seeds as anti-inflammatory nutraceuticals in obese and non-obese adjuvant arthritic rat model. Methods Chia seeds oil was extracted by pressing method, whereas the mucilage was extracted using water (50 °C for 30 min). Oil and freeze-dried mucilage were tested for their anti-inflammatory effects using 48 male Sprague-Dawley rats. Obesity was developed in rats after 8 weeks of feeding on high-fat high-sucrose diet; on the first day of the ninth week, chia seeds oil and mucilage were administrated for 21 days, and arthritis was induced either in obese or non-obese rats via the injection with Freund's complete adjuvant. Swelling of the paw was then measured. Plasma tumor necrosis factor (TNF-α), lipid profile, liver and kidney functions, serum lipid peroxidation, and erythrocyte catalase activity were determined. Results Results emphasized that arthritis with obesity resulted in the elevation of the swelling of the paw, TNF-α, dyslipidemia, and oxidative stress. Chia seeds oil and mucilage, more promisingly the oil, attenuated TNF-α and the swelling of the paw, improved lipid profile, and diminished the oxidative stress both in obese and non-obese arthritic rats. Conclusions Results showed that chia seeds oil and mucilage exhibited anti-inflammatory effects against adjuvant-induced arthritis in obese and non-obese rats.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, 33 Tahrir St., Dokki, Cairo, Egypt, Phone: +201014196767
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
39
|
|
40
|
First Study on the Oxidative Stability and Elemental Analysis of Babassu ( Attalea speciosa) Edible Oil Produced in Brazil Using a Domestic Extraction Machine. Molecules 2019; 24:molecules24234235. [PMID: 31766411 PMCID: PMC6930611 DOI: 10.3390/molecules24234235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Interest in edible oil extraction processes is growing interest because the final nutritional quality of the extracted oil depends on the procedure used to obtain ir. In this context, a domestic cold oil press machine is a valuable tool that avoids the use of chemicals during oil extraction, in an environmentally friendly way. Although babassu (Attalea speciosa) oil is economically important in several Brazilian regions due to its nutritional and healthy features, few studies have been conducted on the chemical composition and stability of babassu oils extracted by cold pressing. Babassu oil's major constituents are saturated fatty acids (~86.42%), with the most prevalent fatty acids being lauric (~47.40%), myristic (15.64%), and oleic (~11.28%) acids, respectively, within the recommended range by Codex Alimentarius, presenting atherogenicity and thrombogenicity indexes favorable for human consumption. Peroxide value, Rancimat, and TGA/DSC results indicated that babassu oil is stable to oxidation. Also, macro- (Na, K, Ca, Mg, P) and micro-elements (Fe, Mn, Cr, Se, Al, and Zn) of babassu oil were determined, revealing levels below the tolerable upper intake level (ULs) for adults. These findings demonstrated that cold-press extraction using a domestic machine yielded a high-quality oil that kept oil chemical composition stable to oxidation with natural antioxidants.
Collapse
|