1
|
Bulgari D, Pisoni L, Renzetti S, Gobbi E, Bertoli N, Gargari G, Zengin G, Peron G. Valorization of Prunus cerasus var. Marasca Pomace Derived From Industrial Processing: Recovery, Characterization, and Bioactivity Assessment of Secondary Metabolites. Mol Nutr Food Res 2025:e70087. [PMID: 40270270 DOI: 10.1002/mnfr.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
The phytochemical composition of Prunus cerasus var. marasca pomace produced as industrial byproduct was investigated. Its antioxidant and anti-tyrosinase properties were also assessed to evaluate a possible reuse as a bioactive food ingredient. Secondary metabolites were extracted from pomace using an optimized ultrasound-assisted maceration in ethanol/water. Total phenols (26.2 mg GAE/g), flavonoids (2.5 mg RE/g), and anthocyanins (82.5 µg CE/g) in the extract were determined spectrophotometrically. Seventy metabolites were identified by UHPLC-QToF-MS, and several are here reported in marasca cherries for the first time. The extract exerts valuable free-radical scavenging, metal-reducing, and metal-chelating activities that underlie its antioxidant properties. Also, it inhibits tyrosinase with an effect equaling 39 mg kojic acid/g of extract. However, temperatures >4°C during 6-month storage significantly affected the phenolic content and bioactivity of extract. Pomace of P. cerasus var. marasca cherries can be reused as a source of bioactive secondary metabolites, which can be easily recovered by sustainable ultrasound-assisted maceration. The extract can potentially be used as an additive to increase the oxidative stability of food products and control enzymatic browning, and improve their nutraceutical properties. However, storage time and temperature should be carefully evaluated in order to preserve extract's properties. Alternatively, appropriate stabilization strategies need to be developed further.
Collapse
Affiliation(s)
- Daniela Bulgari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Luca Pisoni
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefano Renzetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Noemi Bertoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giorgio Gargari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Csernus B, Pesti‐Asbóth G, Remenyik J, Biró S, Babinszky L, Stündl L, Oláh J, Vass N, Czeglédi L. Impact of Selected Natural Bioactive Substances on Immune Response and Tight Junction Proteins in Broiler Chickens. Vet Med Sci 2025; 11:e70175. [PMID: 40019349 PMCID: PMC11869566 DOI: 10.1002/vms3.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 03/01/2025] Open
Abstract
This study was conducted to examine the effect of dietary natural compounds, such as β-glucan, carotenoids, oligosaccharides and anthocyanins, on immune response and tight junction proteins in broiler chickens. A total of 900 one-day-old chickens were allocated to five treatments in three floor pens (replicates) of 60 broilers per pen. Chickens were fed five diets: a control (basal) diet, a diet supplemented with β-glucan at 0.05%, or diets supplemented with carotenoids, oligosaccharides or anthocyanins at 0.5% of each compound. Male broilers were randomly selected for sample collections. On Day 25, plasma samples were collected from the brachial vein. On Day 26, six broilers were intraperitoneally injected with 2 mg of lipopolysaccharide per kg of body weight. Twelve hours later (Day 27), blood and ileum samples were collected to determine immune parameters and tight junction proteins using ELISA assays. The results showed that anthocyanin supplementation reduced the level of interleukin-1β compared to the lipopolysaccharide-injected control group (p = 0.047), which suggests that anthocyanin could partly alleviate the inflammation. Carotenoids reached a lower level of interleukin-6 compared to the β-glucan treatment (p = 0.0466). β-Glucan (p = 0.0382) and oligosaccharides (p = 0.0449) increased the level of plasma immunoglobulin G compared to the challenged control group, which may indicate an enhanced humoral immunity. Furthermore, β-glucan (except for occludin 2), carotenoids, oligosaccharides and anthocyanins increased (p < 0.05) the levels of ileal zonula occludens-1, occludin 1 and occludin 2 compared to the lipopolysaccharide-challenged control chickens. This may suggest that all the bioactive substances improved the gut barrier function. The plasma levels of tight junction proteins show higher concentrations in lipopolysaccharide-challenged groups compared to the non-challenged groups (p < 0.05). This may refer to the tight junction disruption and appearance in circulation as a reflection of lipopolysaccharide exposure.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Georgina Pesti‐Asbóth
- Doctoral School of Animal ScienceUniversity of DebrecenDebrecenHungary
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Judit Remenyik
- Center for Complex Systems and Microbiome Innovations, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - László Babinszky
- Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - János Oláh
- Farm and Regional Research Institute of DebrecenUniversity of DebrecenDebrecenHungary
| | - Nóra Vass
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental ManagementUniversity of DebrecenDebrecenHungary
| |
Collapse
|
3
|
Lu Q, Ye Z, Yang C. Optimization of Ultrasonic-Enzyme Synergistic Extraction of Proanthocyanidins from Jujube: Purification, Characterization, and Bioactivity Study. Molecules 2025; 30:619. [PMID: 39942723 PMCID: PMC11820555 DOI: 10.3390/molecules30030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Proanthocyanidins have received extensive attention due to their high functional value, but their sources are limited. Therefore, this experiment studied the preparation, biological activities, and characterization of proanthocyanidins from Chinese jujube (Ziziphus jujuba Mill. cv. Muzao) at different periods, aiming to explore a new source of proanthocyanidins and enhance their utilization value. Through ultrasonic-assisted enzymatic extraction, the optimal extraction conditions for PC from Muzao were determined, yielding a proanthocyanidin content of 2.01%. Purification using AB-8 macroporous resin increased the proanthocyanidin content by 11 times. The bioactivity results indicated that proanthocyanidins demonstrated significant in vitro antioxidant activity (scavenging rate ≥ 83.4%) and blood glucose-lowering activity (inhibition rate ≥ 84.7%). Both activities decreased with maturity, while the degree of polymerization also exhibited a positive effect. Mass spectrometry identified a total of 102 compounds, with cyanidin-based compounds being the most abundant, comprising 28 species. The comprehensive research results indicate that the oligomeric proanthocyanidins extracted, purified, and isolated from Muzao during the young fruit stage exhibit diverse biological activities and are abundant in content. They can be utilized for the extraction and purification of proanthocyanidins, offering a reference for the expansion of natural sources of proanthocyanidins and the development of functional foods.
Collapse
Affiliation(s)
- Qiaoshuang Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zheng Ye
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| | - Chun Yang
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan 030001, China
| |
Collapse
|
4
|
Nagy R, Kun-Nemes A, Szőllősi E, Bíróné Molnár P, Cziáky Z, Murányi E, Sipos P, Remenyik J. Physiological potential of different Sorghum bicolor varieties depending on their bioactive characteristics and antioxidant potential as well as different extraction methods. Heliyon 2024; 10:e35807. [PMID: 39220962 PMCID: PMC11365355 DOI: 10.1016/j.heliyon.2024.e35807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
A comprehensive study of sorghum bran and flour was performed to explore the secondary metabolite profiles of differently coloured genotypes and to evaluate the variability in the antioxidant properties based on differences in polarity and solubility. This research included one red variety and one white variety. Among the samples, the red variety contained significantly greater amounts of secondary metabolites than did the white variety, with total polyphenol contents of 808.04 ± 63.89 mg.100 g-1 and 81.56 ± 3.87 mg.100 g-1, respectively. High-molecular-weight condensed tannin-type flavonoid extracts with high antioxidant activity were obtained by using relatively low-polarity acetone-water solvents, which was reflected by the measured antioxidant values. Among the methods used, the electron-donating Trolox equivalent antioxidant assay provided the highest antioxidant capacity, with values ranging from 118.5 to 182.6 μmol g-1 in the case of the red variety, in accordance with the electron donor properties of condensed tannins. Key secondary metabolites were identified using MS techniques and quantified using HPLC. Catechin and procyanidin B1 were found in the red variety at concentrations of 3.20 and 96.11 mg.100 g-1, respectively, while the concentrations in the white variety were under the limit of detection. All four tocopherols were found in sorghum, with the red variety containing a higher amount than the white variety, but the vitamin B complex concentrations were higher in the white variety. Overall, the red sorghum variety proved to be a better source of secondary metabolites with potential health benefits and could be used as a nutrient-rich food source.
Collapse
Affiliation(s)
- Róbert Nagy
- University of Debrecen, Faculty of Agriculture, and Food Sciences, and Environmental Management, Institute of Nutrition Science, 138 Böszörményi Street, 4032, Debrecen, Hungary
| | - Andrea Kun-Nemes
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Erzsébet Szőllősi
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Piroska Bíróné Molnár
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Zoltán Cziáky
- University of Nyíregyháza, Institute of Technical and Agricultural Sciences, Agricultural and Molecular Research and Service Group, 31/b. Sóstói Street, 4400, Nyíregyháza, Hungary
| | - Eszter Murányi
- Hungarian University of Agriculture and Life Sciences, Research Institute of Karcag, 1 Páter Károly Str., 2100 Gödöllő, Hungary
| | - Péter Sipos
- University of Debrecen, Faculty of Agriculture, and Food Sciences, and Environmental Management, Institute of Nutrition Science, 138 Böszörményi Street, 4032, Debrecen, Hungary
| | - Judit Remenyik
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| |
Collapse
|
5
|
Klusóczki Á, Oláh B, Hosszú D, Fenyvesi F, Remenyik J, Homoki J, Gyöngyösi A, Bácskay I, Váradi J. Effectiveness of Anthocyanin-Rich Sour Cherry Extract on Gliadin-Induced Caco-2 Barrier Damage. Nutrients 2023; 15:4022. [PMID: 37764805 PMCID: PMC10535085 DOI: 10.3390/nu15184022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of gluten-related disorders are known, in which the common starting point is gluten-induced zonulin release. Zonulin results in varying degrees of increased permeability in certain gluten-related disorders but is largely responsible for the development of further pathogenic processes and symptoms. Therefore, it is important to know the barrier-modulating role of individual nutritional components and to what extent the antioxidant substance supports the protection of gliadin-induced membrane damage with its radical scavenging capacity. We investigated the pH dependence of the gliadin-anthocyanin interaction using UV photometry, during which a concentration-dependent interaction was observed at pH 6.8. The barrier modulatory effect of the anthocyanin-rich sour cherry extract (AC) was analyzed on Caco-2 cell culture with pepsin-trypsin-resistant gliadin (PT-gliadin) exposure by TEER measurement, zonula occludens-1 (ZO-1), and Occludin immunohistochemistry. In addition to the TEER-reducing and TJ-rearranging effects of PT-gliadin, NF-κB activation, an increase in cytokine (TNF-α, IFN-γ, and IL-8) release, and mitochondrial ROS levels were observed. We confirmed the anti-inflammatory, stabilizing, and restoring roles of AC extract during gliadin treatment on the Caco-2 monolayer. The extract was able to significantly reduce cytokine and ROS levels despite the known interaction of the main components of the extract with PT-gliadin.
Collapse
Affiliation(s)
- Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Boglárka Oláh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Dominik Hosszú
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (J.R.); (J.H.)
| | - Judit Homoki
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary; (J.R.); (J.H.)
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (B.O.); (D.H.); (F.F.); (I.B.)
| |
Collapse
|
6
|
Šumić Z, Tepić Horecki A, Kašiković V, Rajković A, Pezo L, Daničić T, Pavlić B, Milić A. Prototype of an Innovative Vacuum Dryer with an Ejector System: Comparative Drying Analysis with a Vacuum Dryer with a Vacuum Pump on Selected Fruits. Foods 2023; 12:3198. [PMID: 37685131 PMCID: PMC10487248 DOI: 10.3390/foods12173198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 09/10/2023] Open
Abstract
The following article describes new research about the design, construction and installation of the new prototype of a vacuum dryer with an ejector system. Moreover, the testing of this new prototype involved comparing the qualities of fruit dried in a vacuum drier with an ejector system to fruit dried in a convectional vacuum drier. The data obtained were then analyzed and presented. Due to their economic relevance and highly valuable nutritional value and sensory properties, sour cherries and apricots have been chosen to be the subjects for the testing. The most appropriate quality indicators for analyzing were moisture content, aw value, share and penetration force, total phenol, flavonoid and anthocyanin content and antioxidant activity (FRAP, DPPH and ABTS test). The main results of this study were achieved by designing, constructing, installing and testing the usage of the innovative prototype of a vacuum dryer with an ejector system in the laboratory of the Technology of fruit and vegetable products of the Faculty of Technology Novi Sad, University of Novi Sad. Based on our analyses of the obtained data, it was concluded that vacuum dryer with an ejector system are similar to vacuum dryer with a vacuum pump in terms of all tested physical, chemical and biological properties of dried samples. We observed similarities in some of the most important parameters, including product safety and quality, such as the aw value and the total phenol content, respectively. For example, in dried sour cherry, the aw values ranged from 0.250 to 0.521 with the vacuum pump and from 0.232 to 0.417 with the ejector system; the total phenol content ranged from 2322 to 2765 mg GAE/100 g DW with the vacuum pump and from 2327 to 2617 mg GAE/100 g DW with the ejector system. In dried apricot, the aw ranged from 0.176 to 0.405 with the vacuum pump and from 0.166 to 0.313 with the ejector system; total phenol content ranged from 392 to 439 mg GAE/100 g DW with the vacuum pump and from 378 to 428 mg GAE/100 g DW with the ejector system.
Collapse
Affiliation(s)
- Zdravko Šumić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Aleksandra Tepić Horecki
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | | | - Andreja Rajković
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty Bio-Science Engineering, Ghent University, 9000 Ghent, Belgium
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Daničić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Anita Milić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| |
Collapse
|
7
|
Effects of Processing on Chemical Composition of Extracts from Sour Cherry Fruits, a Neglected Functional Food. Antioxidants (Basel) 2023; 12:antiox12020445. [PMID: 36830004 PMCID: PMC9952311 DOI: 10.3390/antiox12020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Sour cherries fruits (Prunus cerasus L., syn P. cerasus var. austera) are locally known as "visciola di Sezze", due to the name of the city where they are traditionally cultivated in Lazio Region, Italy. Fruit samples from three harvesting years (June 2019, 2020 and 2021), were submitted to a protocol of analyses to detect the bioactive content based on year of harvest, freezing, homogenization and thermic treatments. Polyphenolic components, particularly anthocyanin compounds, were extracted, purified and analyzed by HPLC-DAD and DI-ESI-MS. An anthocyanin content between 0.24 and 21 mg/g fresh weight and a flavonols content between 0.04 and 0.2 mg/g fresh weight were found, depending on the harvest year and the applied procedures. Anthocyanins, besides being the principal components, were mainly represented by cyanidin-3-glucosyl-rutinoside (about 80%), a not particularly widespread molecule, mostly accounting for polyphenolic content. Color analysis and anti-radical activity of the different obtained extracts were performed with the aim to correlate organoleptic characters and health potential to the detected anthocyanins and flavanols content. Results show that immediate post-harvest freezing is the best way to preserve the bioactive content, the correlated color expression and anti-radical activity.
Collapse
|
8
|
Asnaashari M, Emami SA, Tayarani-Najaran Z. The effect of Hashemi brown and white rice extracts and γ-oryzanol on proliferation and estrogenic activity induced by zearalenone in MCF-7 cells. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Prunus lusitanica L. Fruits as a Novel Source of Bioactive Compounds with Antioxidant Potential: Exploring the Unknown. Antioxidants (Basel) 2022; 11:antiox11091738. [PMID: 36139810 PMCID: PMC9495831 DOI: 10.3390/antiox11091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prunus lusitanica L., also known as Portuguese laurel or locally known as ‘azereiro’, is a rare species with ornamental and ecological value. Only two studies regarding the bioactivity and chemical composition of its leaves were reported to date. Thus, the present study aims to qualitatively and quantitatively evaluate the phenolic profile, through HPLC-PAD-ESI-MS/MS (high-performance liquid chromatography–photodiode array detection–electrospray ionization tandem mass spectrometry), as well as the radical scavenging capacity, through ABTS (2,2’-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1 picrylhydrazyl), and the reducing power (FRAP, ferric reducing antioxidant power) assays, of P. lusitanica fruits during a 4-year study. In total, 28 compounds were identified and quantified in the fruits, including 21 hydroxycinnamic acids (60.3%); 2 flavan-3-ols (27.9%), 2 anthocyanins (10.5%), 2 flavonols (1.0%), and 1 secoiridoid (0.3%). High antioxidant capacity was observed, with ABTS values ranging from 7.88 to 10.69 mmol TE (Trolox equivalents)/100 g fw (fresh weight), DPPH values from 5.18 to 8.17 mmol TE/100 g fw, and FRAP values from 8.76 to 11.76 mmol TE/100 g fw. According to these results, it can be concluded that these are rich sources of phenolic compounds with very promising antioxidant capacity and, therefore, with potential applications in the food and/or phytopharmaceutical sectors.
Collapse
|
11
|
Remenyik J, Biró A, Klusóczki Á, Juhász KZ, Szendi-Szatmári T, Kenesei Á, Szőllősi E, Vasvári G, Stündl L, Fenyvesi F, Váradi J, Markovics A. Comparison of the Modulating Effect of Anthocyanin-Rich Sour Cherry Extract on Occludin and ZO-1 on Caco-2 and HUVEC Cultures. Int J Mol Sci 2022; 23:ijms23169036. [PMID: 36012299 PMCID: PMC9408816 DOI: 10.3390/ijms23169036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell–cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.
Collapse
Affiliation(s)
- Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Biró
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Klusóczki
- Institute of Healthcare Industry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztián Zoltán Juhász
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tímea Szendi-Szatmári
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Szőllősi
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (J.V.); (A.M.)
| |
Collapse
|
12
|
Domínguez-Rodríguez G, Ramón Vidal D, Martorell P, Plaza M, Marina ML. Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their In Vitro and In Vivo Potential Antioxidant, Antiaging, and Neuroprotective Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7993-8009. [PMID: 35729789 PMCID: PMC9264388 DOI: 10.1021/acs.jafc.2c03346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sweet cherry pomace is an important source of phenolic compounds with beneficial health properties. As after the extraction of phenolic compounds, a phenolic fraction called nonextractable polyphenols (NEPs) remains usually retained in the extraction residue, alkaline and acid hydrolyses and enzymatic-assisted extraction (EAE) were carried out in this work to recover NEPs from the residue of conventional extraction from sweet cherry pomace. In vitro and in vivo evaluation of the antioxidant, antihypertensive, antiaging, and neuroprotective capacities employing Caenorhabditis elegans was achieved for the first time. Extractable phenolic compounds and NEPs were separated and identified by families by high-performance thin-layer chromatography (HPTLC) with UV/Vis detection. A total of 39 phenolic compounds were tentatively identified in all extracts by direct analysis in real-time high-resolution mass spectrometry (DART-Orbitrap-HRMS). EAE extracts presented the highest in vitro and in vivo antioxidant capacity as well as the highest in vivo antiaging and neuroprotective capacities. These results showed that NEPs with interesting biological properties are retained in the extraction residue, being usually underestimated and discarded.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad
de Alcalá, Departamento de
Química Analítica, Química Física e Ingeniería
Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Mendel
University in Brno, Department of Chemistry
and Biochemistry, Zemedelska
1, CZ-613 00 Brno, Czech Republic
| | - Daniel Ramón Vidal
- Archer
Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Scientific Universitat de València, C/Catedrático Agustín
Escardino Benlloch, 9, Paterna, 46980 Valencia, Spain
| | - Patricia Martorell
- Archer
Daniels Midland, Nutrition, Health&Wellness, Biopolis S.L. Parc Scientific Universitat de València, C/Catedrático Agustín
Escardino Benlloch, 9, Paterna, 46980 Valencia, Spain
| | - Merichel Plaza
- Universidad
de Alcalá, Departamento de
Química Analítica, Química Física e Ingeniería
Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Universidad
de Alcalá, Instituto de Investigación
Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Universidad
de Alcalá, Departamento de
Química Analítica, Química Física e Ingeniería
Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
- Universidad
de Alcalá, Instituto de Investigación
Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Singh K, Tarapcsák S, Gyöngy Z, Ritter Z, Batta G, Bosire R, Remenyik J, Goda K. Effects of Polyphenols on P-Glycoprotein (ABCB1) Activity. Pharmaceutics 2021; 13:pharmaceutics13122062. [PMID: 34959345 PMCID: PMC8707248 DOI: 10.3390/pharmaceutics13122062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (Pgp, ABCB1) is a member of one of the largest families of active transporter proteins called ABC transporters. Thanks to its expression in tissues with barrier functions and its broad substrate spectrum, it is an important determinant of the absorption, metabolism and excretion of many drugs. Pgp and/or some other drug transporting ABC proteins (e.g., ABCG2, MRP1) are overexpressed in nearly all cancers and cancer stem cells by which cancer cells become resistant against many drugs. Thus, Pgp inhibition might be a strategy for fighting against drug-resistant cancer cells. Previous studies have shown that certain polyphenols interact with human Pgp. We tested the effect of 15 polyphenols of sour cherry origin on the basal and verapamil-stimulated ATPase activity of Pgp, calcein-AM and daunorubicin transport as well as on the conformation of Pgp using the conformation sensitive UIC2 mAb. We found that quercetin, quercetin-3-glucoside, narcissoside and ellagic acid inhibited the ATPase activity of Pgp and increased the accumulation of calcein and daunorubicin by Pgp-positive cells. Cyanidin-3O-sophoroside, catechin, naringenin, kuromanin and caffeic acid increased the ATPase activity of Pgp, while they had only a weaker effect on the intracellular accumulation of fluorescent Pgp substrates. Several tested polyphenols including epicatechin, trans-ferulic acid, oenin, malvin and chlorogenic acid were ineffective in all assays applied. Interestingly, catechin and epicatechin behave differently, although they are stereoisomers. We also investigated the effect of quercetin, naringenin and ellagic acid added in combination with verapamil on the transport activity of Pgp. In these experiments, we found that the transport inhibitory effect of the tested polyphenols and verapamil was additive or synergistic. Generally, our data demonstrate diverse interactions of the tested polyphenols with Pgp. Our results also call attention to the potential risks of drug–drug interactions (DDIs) associated with the consumption of dietary polyphenols concurrently with chemotherapy treatment involving Pgp substrate/inhibitor drugs.
Collapse
Affiliation(s)
- Kuljeet Singh
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Ritter
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Department of Genetics and Applied Microbiology, Faculty of Science of Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.S.); (S.T.); (Z.G.); (Z.R.); (G.B.); (R.B.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
14
|
Maximizing Contents of Phytochemicals Obtained from Dried Sour Cherries by Ultrasound-Assisted Extraction. SEPARATIONS 2021. [DOI: 10.3390/separations8090155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sour cherries were first dried by vacuum drying and then used as material for obtaining extracts rich in bioactive compounds by ultrasound-assisted extraction (UAE). The first step was to apply a factorial design for the preliminary experiments to determine the most influential UAE factors, and thus the three studied parameters were chosen as the most suitable for the design of the main experiment (temperature, liquid–solid ratio and ethanol concentration). In this part, the contents of total phenols and the total content of monomeric anthocyanins were taken for responses. For the further optimization of UAE, experimental design (face-centered) was applied, and the yield, total phenolics, flavonoid content and content of monomeric anthocyanins and antioxidant activity (DPPH, ABTS and FRAP assays) were analyzed. Temperature (40–80 °C), ethanol concentration (40–80%, w/w) and liquid–solid ratio (10–30 mL/g) were investigated as independent variables. The obtained experimental results were fitted to a second-order polynomial model and analysis of variance was used to determine the fit of the model and the optimal conditions for investigated responses. High quality extracts with high concentrations of polyphenols and anthocyanins were also obtained, which could be used as food additives.
Collapse
|
15
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
16
|
Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, Yu Y, Zou L, Xiao J, Deng J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol 2021; 111:114-127. [DOI: 10.1016/j.tifs.2021.02.063] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Berni R, Charton S, Planchon S, Legay S, Romi M, Cantini C, Cai G, Hausman JF, Renaut J, Guerriero G. Molecular investigation of Tuscan sweet cherries sampled over three years: gene expression analysis coupled to metabolomics and proteomics. HORTICULTURE RESEARCH 2021; 8:12. [PMID: 33384418 PMCID: PMC7775447 DOI: 10.1038/s41438-020-00445-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Sweet cherry (Prunus avium L.) is a stone fruit widely consumed and appreciated for its organoleptic properties, as well as its nutraceutical potential. We here investigated the characteristics of six non-commercial Tuscan varieties of sweet cherry maintained at the Regional Germplasm Bank of the CNR-IBE in Follonica (Italy) and sampled ca. 60 days post-anthesis over three consecutive years (2016-2017-2018). We adopted an approach merging genotyping and targeted gene expression profiling with metabolomics. To complement the data, a study of the soluble proteomes was also performed on two varieties showing the highest content of flavonoids. Metabolomics identified the presence of flavanols and proanthocyanidins in highest abundance in the varieties Morellona and Crognola, while gene expression revealed that some differences were present in genes involved in the phenylpropanoid pathway during the 3 years and among the varieties. Finally, proteomics on Morellona and Crognola showed variations in proteins involved in stress response, primary metabolism and cell wall expansion. To the best of our knowledge, this is the first multi-pronged study focused on Tuscan sweet cherry varieties providing insights into the differential abundance of genes, proteins and metabolites.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Sophie Charton
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| | - Marco Romi
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
| | - Claudio Cantini
- Istituto per la BioEconomia (IBE CNR), Dipartimento di Scienze BioAgroAlimentari, via Aurelia 49, 58022, Follonica, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 41, Rue du Brill, L-4422, Belvaux, Luxembourg.
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg.
| |
Collapse
|
18
|
Effect of Anthocyanin-Rich Extract of Sour Cherry for Hyperglycemia-Induced Inflammatory Response and Impaired Endothelium-Dependent Vasodilation. Nutrients 2020; 12:nu12113373. [PMID: 33147748 PMCID: PMC7692386 DOI: 10.3390/nu12113373] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/24/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
Diabetes mellitus (DM)-related morbidity and mortality are steadily rising worldwide, affecting about half a billion people worldwide. A significant proportion of diabetic cases are in the elderly, which is concerning given the increasing aging population. Proper nutrition is an important component in the effective management of diabetes in the elderly. A plethora of active substances of plant origin exhibit potency to target the pathogenesis of diabetes mellitus. The nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. In this study, the effect of Hungarian sour cherry, which is rich in anthocyanins, on hyperglycemia-induced endothelial dysfunction was tested using human umbilical cord vein endothelial cells (HUVECs). HUVECs were maintained under both normoglycemic (5 mM) and hyperglycemic (30 mM) conditions with or without two concentrations (1.50 ng/µL) of anthocyanin-rich sour cherry extract. Hyperglycemia-induced oxidative stress and inflammatory response and damaged vasorelaxation processes were investigated by evaluating the level of reactive oxygen species (ROS) and gene expression of four proinflammatory cytokines, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1α (IL-1α), as well as the gene expression of nitric oxide synthase (NOS) endothelin-1 (ET-1) and endothelin-converting enzyme-1 (ECE-1). It was found that hyperglycemia-induced oxidative stress was significantly suppressed by anthocyanin-rich sour cherry extract in a concentration-dependent manner. The gene expression of the tested proinflammatory cytokines increased under hyperglycemic conditions but was significantly reduced by both 1 and 50 ng/µL anthocyanin-rich sour cherry extract. Further, although increased ET-1 and ECE-1 expression due to hyperglycemia was reduced by anthocyanin-rich sour cherry extract, NOS expression was increased by the extract. Collectively, these data suggest that anthocyanin-rich sour cherry extract could alleviate hyperglycemia-induced endothelial dysfunction due to its antioxidant, anti-inflammatory, and vasorelaxant effects.
Collapse
|
19
|
Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem 2020; 339:128086. [PMID: 33152877 DOI: 10.1016/j.foodchem.2020.128086] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Sweet cherries processing produces big amounts of wastes mainly constituted by cherry pomace that can be a source of bioactive polyphenols. However, during the extraction process, an important fraction called non-extractable polyphenols (NEPs) remains retained in the extraction residue. This work describes the development of an enzyme-assisted extraction (EAE) method to obtain NEPs from sweet cherry pomace employing three different enzymes. Box-Behnken experimental designs were employed to select the optimal conditions of extraction time, temperature, enzyme concentration, and pH. The total phenolic and proanthocyanidin contents and the antioxidant and antihypertensive capacities were measured. Optimal EAE conditions extracted higher content of proanthocyanidins and with higher bioactivity from extraction residue than alkaline and acid hydrolysis. Moreover, there were higher amounts of bioactive phenolics in the extraction residue than in the sweet cherry pomace extract. The estimation of NEPs molecular weight distribution by HPLC-SEC demonstrated that EAE extracted NEPs with high molecular weight.
Collapse
|
20
|
Li Y, Jiang Y, Chu Q, Zheng X. Radix Tetrastigma
extract from different origins protect RAW264.7 macrophages against LPS‐induced inflammation. J Food Sci 2020; 85:1586-1595. [DOI: 10.1111/1750-3841.15113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/10/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yonglu Li
- Department of Food Science and NutritionZhejiang University Hangzhou 310058 People's Republic of China
- Zhejiang Key Laboratory for Agro‐food ProcessingZhejiang University Hangzhou 310058 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co., Ltd. 19th Floor, Block B, Xinchengkonggu Building, NO.388 Zhongjiang Road, Putuo District Shanghai 600062 People's Republic of China
| | - Qiang Chu
- Department of Food Science and NutritionZhejiang University Hangzhou 310058 People's Republic of China
- Zhejiang Key Laboratory for Agro‐food ProcessingZhejiang University Hangzhou 310058 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and NutritionZhejiang University Hangzhou 310058 People's Republic of China
- Zhejiang Key Laboratory for Agro‐food ProcessingZhejiang University Hangzhou 310058 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
21
|
Percival BC, Wann A, Zbasnik R, Schlegel V, Edgar M, Zhang J, Ampem G, Wilson P, Le Gresley A, Naughton D, Grootveld M. Evaluations of the Peroxidative Susceptibilities of Cod Liver Oils by a 1H NMR Analysis Strategy: Peroxidative Resistivity of a Natural Collagenous and Biogenic Amine-Rich Fermented Product. Nutrients 2020; 12:E753. [PMID: 32178350 PMCID: PMC7146420 DOI: 10.3390/nu12030753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/20/2022] Open
Abstract
High-resolution 1H nuclear magnetic resonance (NMR) analysis was employed to molecularly screen the lipid, lipid oxidation product (LOP), and antioxidant compositions of four natural (unrefined) cod liver oil (CLO) products. Products 1-3 were non-fermented CLOs, whilst Product 4 was isolated from pre-fermented cod livers. Supporting analytical data that were acquired included biogenic amine, flavanone, tannin, phenolic antioxidant, α-tocopherol, and oxygen radical absorbance capacity (ORAC) determinations by recommended HPLC, LC/MS/MS, or spectrophotometric methods. SDS-PAGE, HPLC, and 1H NMR analyses investigated and determined collagenous antioxidants and their molecular mass ranges. 1H NMR analysis of aldehydic LOPs was employed to explore the susceptibilities/resistivities of each CLO product to peroxidation that is induced by thermal stressing episodes (TSEs) at 180°C, or following prolonged (42 day) storage episodes at 4 and 23 °C. Product 4 displayed extremely high ORAC values, which were much greater than those of Products 1-3, and that were predominantly ascribable to significant levels of peroxidation-blocking and/or aldehyde-consuming collagenous polypeptides/peptides and ammoniacal agents therein. Significantly lower levels of toxic aldehydes were generated in the pre-fermented Product 4 during exposure to TSEs, or the above long-term storage episodes. These results confirmed the enhanced peroxidative resistivity of a fermented, antioxidant-fortified natural CLO product over those of non-fermented unrefined products. Product 4: Green Pasture Blue Ice™ Fermented Cod Liver Oil.
Collapse
Affiliation(s)
- Benita C. Percival
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (A.W.); (P.W.)
| | - Angela Wann
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (A.W.); (P.W.)
- Department of Applied and Human Sciences, Kingston University London, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK; (G.A.); (A.L.G.); (D.N.)
| | - Richard Zbasnik
- Natural Product Analysis Laboratory, Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 N 21st Street, Lincoln, NE 68588-6205, USA; (R.Z.); (V.S.)
| | - Vicki Schlegel
- Natural Product Analysis Laboratory, Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 N 21st Street, Lincoln, NE 68588-6205, USA; (R.Z.); (V.S.)
| | - Mark Edgar
- Department of Chemistry, University of Loughborough, Epinal Way, Loughborough, LE11 3TU, UK;
| | - Jie Zhang
- Green Pasture Products, 416 E. Fremont Street, O’Neill, NE 68763, USA;
| | - Gilbert Ampem
- Department of Applied and Human Sciences, Kingston University London, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK; (G.A.); (A.L.G.); (D.N.)
| | - Philippe Wilson
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (A.W.); (P.W.)
| | - Adam Le Gresley
- Department of Applied and Human Sciences, Kingston University London, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK; (G.A.); (A.L.G.); (D.N.)
| | - Declan Naughton
- Department of Applied and Human Sciences, Kingston University London, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK; (G.A.); (A.L.G.); (D.N.)
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (B.C.P.); (A.W.); (P.W.)
| |
Collapse
|
22
|
Han B, Srikanth Bhagavathula A, Rashid M, Chhabra M, Clark C, Abdulazeem HM, Abd-ElGawad M, Kord Varkaneh H, Rahmani J, Zhang Y. The effect of sour cherry consumption on blood pressure, IL-6, CRP, and TNF-α levels: A systematic review and meta-analysis of randomized controlled trials sour cherry consumption and blood pressure. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2020; 32:1687-1693. [DOI: 10.1016/j.jksus.2020.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
|
23
|
Csernus B, Biró S, Babinszky L, Komlósi I, Jávor A, Stündl L, Remenyik J, Bai P, Oláh J, Pesti-Asbóth G, Czeglédi L. Effect of Carotenoids, Oligosaccharides and Anthocyanins on Growth Performance, Immunological Parameters and Intestinal Morphology in Broiler Chickens Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2020; 10:E347. [PMID: 32098265 PMCID: PMC7070938 DOI: 10.3390/ani10020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effect of carotenoid, oligosaccharide and anthocyanin supplementation in broiler diets under Escherichia coli lipopolysaccharide (LPS) challenge. Ross 308 chickens were fed 5 diets: basal diet (control diet), diet supplemented with β-glucan in 0.05% (positive control) and diets with 0.5% carotenoid-, oligosaccharide- or anthocyanin contents. On the 26th days of age, chickens were challenged intraperitoneally 2 mg LPS per kg of body weight. 12 h after injection, birds were euthanized, then spleen and ileum samples were collected. LPS induced increased relative mRNA expression of splenic (p = 0.0445) and ileal (p = 0.0435) interleukin-1β (IL-1β), which was lower in the spleen in carotenoid (p = 0.0114), oligosaccharide (p = 0.0497) and anthocyanin (p = 0.0303)-treated chickens compared to LPS-injected control birds. Dietary supplementation of carotenoids also decreased relative gene expression of splenic interleukin-6 (IL-6) (p = 0.0325). In the ileum, β-glucan supplementation showed lower relative mRNA expression of toll-like receptor 5 (TLR-5) (p = 0.0387) compared to anthocyanin treatment. Gene expression of both splenic and ileal interferon-α (IFN-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4) and toll-like receptor 5 (TLR-5) were not influenced by dietary supplements. In conclusion, carotenoids, oligosaccharides and anthocyanins could partially mitigate the immune stress caused by LPS challenge. All of the compounds impacted longer villus height (p < 0.0001), villus height:crypt depth ratios were higher after β-glucan (p < 0.0001) and anthocyanin (p = 0.0063) supplementations and thickened mucosa was observed in β-glucan (p < 0.0001), oligosaccharide (p < 0.0001) and anthocyanin (p = 0.048) treatments. All of these findings could represent a more effective absorption of nutrients.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Institute of Microbiomics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Babinszky
- Department of Feed and Food Biotechnology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Komlósi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - András Jávor
- Department of Laboratory of Animal Genetics, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, 4032 Debrecen, Hungary;
| | - Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
24
|
Biro A, Markovich A, Homoki JR, Szőllősi E, Hegedűs C, Tarapcsák S, Lukács J, Stündl L, Remenyik J. Anthocyanin-Rich Sour Cherry Extract Attenuates the Lipopolysaccharide-Induced Endothelial Inflammatory Response. Molecules 2019; 24:molecules24193427. [PMID: 31546579 PMCID: PMC6804180 DOI: 10.3390/molecules24193427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 01/25/2023] Open
Abstract
The anthocyanin content of Hungarian sour cherry is remarkable based on our preliminary investigations. Nutraceutical and pharmaceutical effects of anthocyanins have been extensively studied. The objective of this work was to investigate the the effect of purified sour cherry extract using human umbilical cord vein endothelial cells (HUVECs) as the inflammatory model. HUVECs were isolated by enzymatic digestion and characterized by flow cytometry. The optimal concentration range of sour cherry extract was selected based on MTT, apoptosis, and necrosis assays. Cells were divided into three groups, incubating with M199 medium as control, or with lipopolysaccharide (LPS) or with LPS plus anthocyanin extract (ACE). The effect of sour cherry extract on oxidative stress, pro-inflammatory factors, and arachidonic pathway was investigated. An amount of 50 μg/mL ACE (ACE50) was able to increase the level of glutathione and decrease the ROS, thereby improving the unbalanced redox status in inflammation. ACE50 lowered pro-inflammatory cytokine levels including Interleukin-6 (IL-6), regulated on activation, normal T cell expressed and secreted (RANTES), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor alpha (TNF-α). ACE50 affected the arachidonic acid pathway by reducing the LPS-induced enzyme expression (cyclooxygenase-1, cyclooxygenase-2, and prostacyclin synthase). The extract under investigation seems to have a pleiotropic effect including anti-oxidative, anti-inflammatory, hemostatic, and vasoactive effects. Our results indicate that purified sour cherry extract could reduce the LPS-induced inflammatory response, thereby improving endothelial dysfunction.
Collapse
Affiliation(s)
- Attila Biro
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Arnold Markovich
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Rita Homoki
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Erzsébet Szőllősi
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - János Lukács
- Department of Obstetrics and Gynaecology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Stündl
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Judit Remenyik
- Institute of Animal Science, Biotechnology and Nature Conservation, Institute of Food Technology, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
25
|
Effect of Anthocyanin-Rich Tart Cherry Extract on Inflammatory Mediators and Adipokines Involved in Type 2 Diabetes in a High Fat Diet Induced Obesity Mouse Model. Nutrients 2019; 11:nu11091966. [PMID: 31438590 PMCID: PMC6769902 DOI: 10.3390/nu11091966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
Male C57BL/6J mice were used to determine the possible therapeutic effects of our previously described tart cherry extract in a chronic obesity mouse model on metabolic parameters, glucose tolerance, inflammatory mediators, and antioxidant capacity. The control group received standard mouse chow, and the high fat control group was switched to a high fat diet and tap water supplemented with 5% sucrose. The high fat + anthocyanin group received the high fat and sucrose diet, but received the anthocyanin-rich tart cherry extract dissolved in their drinking water. After six weeks, an oral glucose tolerance test was performed, and the water-soluble antioxidant capacity (ACW), superoxide dismutase (SOD) activity, and the plasma levels of insulin, C-peptide, leptin, IL-6, MCP-1, adiponectin and resistin were measured. The high fat diet increased body weight, reduced glucose tolerance, and caused an elevation in leptin, IL-6, MCP-1, and resistin levels. Furthermore, antioxidant capacity was decreased with a significant elevation of SOD activity. Anthocyanin treatment failed to reverse the effects of the high fat diet on body weight and glucose tolerance, but significantly reduced the leptin and IL-6 levels. The tart cherry extract also made a significant enhancement in antioxidant capacity and SOD activity. Our results show that chronic anthocyanin intake has a potential to enhance redox status and alleviate inflammation associated with obesity.
Collapse
|
26
|
Durazzo A, Lucarini M. Extractable and Non-Extractable Antioxidants. Molecules 2019; 24:molecules24101933. [PMID: 31137464 PMCID: PMC6572152 DOI: 10.3390/molecules24101933] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Alessandra Durazzo
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| |
Collapse
|