1
|
Eisa NM, Elshaer SS, Bakry S, Abdelzaher OF, Eldesoky NAR. Placental extract augments mesenchymal stem cells in pancreatic tissue regeneration: A new insight into diabetes treatment. Tissue Cell 2025; 95:102883. [PMID: 40157219 DOI: 10.1016/j.tice.2025.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Although a wide variety of medicinal interventions and lifestyles have been endeavored so far for the treatment of diabetes mellitus, it is still intractable. The current study aimed to examine the effect of mesenchymal stem cells (MSCs) and/or placental extract (PE) on streptozotocin (STZ) induced diabetic rats. METHODS Fifty male albino rats were used. Ten of them as negative control (group I) and the remaining forty rats were subjected to diabetes induction using 50 mg/kg STZ then divided into; group II (positive controls), group III (MSCs treated), group IV (PE treated), and group V (MSCs/PE combination treated). After 4 weeks of treatment, animals were sacrificed; blood samples were collected for determination of glycated hemoglobin by HPLC, and serum was separated for determination of glucose spectrophotometrically and insulin by ELISA. Pancreatic tissues were harvested for histopathological examination and pancreatic duodenal homeobox 1 (Pdx1) gene expression by PCR. RESULTS The three treated groups showed significant enhancement in glycemic parameters and Pdx1 gene expression compared with positive control group (P < 0.05). Histopathological examination revealed great improvement in the three treated groups where group V showed the best picture and the best glycemic control. CONCLUSIONS This study points to the possible role of PE in DM treatment. The MSCs/PE combination had the ability to return all parameters and Pdx1 gene expression to their normal levels. This action could be attributed to MSCs homing into the pancreas and the pancreatic rejuvenation provided by PE contents of growth factors; EGF, HGF, IGF-1 and IGF-II.
Collapse
Affiliation(s)
- Nehal Mohamed Eisa
- Clinical Research Department at Giza health affairs Directorate, MOHP, Giza, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Sayed Bakry
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Noha Abdel-Rahman Eldesoky
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| |
Collapse
|
2
|
Liu Z, Gao M, Yan F, Zhang H, Wang L, Zhao Y, Zhao H, Xie X, Li C, Dai J, Xiong H, Zhang J. Cucurbitacin IIb mitigates concanavalin A-induced acute liver injury by suppressing M1 macrophage polarization. Int Immunopharmacol 2025; 147:113964. [PMID: 39755110 DOI: 10.1016/j.intimp.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Cucurbitacins are a class of triterpenoid compounds extracted from plants and possess various pharmacological applications. Cucurbitacin IIb (CuIIb), extracted from the medicinal plant Hemsleya amabilis (Cucurbitaceae), has served as a traditional Chinese medicine for the treatment of bacterial dysentery and intestinal inflammation. CuIIb has been shown to exhibit anti-inflammatory activity; however, the protective effect of CuIIb against concanavalin A (Con A)-induced acute liver injury (ALI) and the fundamental mechanism remain unelucidated. In this study, we established an acute liver injury mouse model using Con A to investigate the effects of CuIIb on ALI. The results revealed that CuIIb significantly reduced serum aminotransferase levels and increased the survival rate of mice. Additionally, CuIIb effectively attenuated hepatocyte apoptosis, hepatic histopathological damage, and oxidative stress. Notably, CuIIb inhibited the polarization of M1 macrophages in vivo and in vitro. Moreover, the expression levels of pro-inflammatory cytokines related to M1 macrophages, such as interleukin (IL)-12, IL-1β, IL-6 and tumor necrosis factor-α (TNF-α), were reduced. CuIIb regulated M1 macrophage activation by modulating the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Conclusively, these results demonstrated that CuIIb significantly prevented Con A-induced ALI by suppressing M1 macrophage polarization via the MAPK and NF-κB signaling pathways, demonstrating the potential use of CuIIb for ALI treatment.
Collapse
Affiliation(s)
- Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; School of Basic Medicine, Shandong First Medical University, Jinan 271016, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining 272011, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Yuxuan Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Hongru Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Xinzhou Xie
- Department of Spine Surgery, Jining First People's Hospital, Jining 272011, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| |
Collapse
|
3
|
Liu Z, Yan F, Zhang H, Wang L, Zhao Y, Zhao H, Li C, Dai J, Yu B, Xiong H, Zhang J. Zingerone attenuates concanavalin A-induced acute liver injury by restricting inflammatory responses. Int Immunopharmacol 2024; 142:113198. [PMID: 39305891 DOI: 10.1016/j.intimp.2024.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Autoimmune hepatitis (AIH), an immune-mediated liver injury, plays an important role in the development and pathogenesis of several liver diseases. However, therapeutic alternatives for the treatment of AIH remain limited. Zingerone (ZIN) is a natural non-toxic phenolic compound extracted from ginger that possesses various pharmacological activities. Thus, this study aimed to investigate the effect of ZIN on AIH using a mouse model of acute liver injury induced by concanavalin A (Con A). To establish liver injury, C57BL/6J mice were intraperitoneally administered ZIN, followed by 20 mg/kg Con A after 3 h. Thereafter, the liver and serum were collected for analysis. The results revealed that ZIN pretreatment significantly suppressed the elevation of liver injury markers induced by Con A exposure and improved the survival of mice. Additionally, ZIN significantly ameliorated liver histopathological injury, hepatocyte apoptosis, and oxidative stress. Notably, ZIN inhibited hepatic M1 macrophage polarization and decreased the expression of M1 macrophage-associated pro-inflammatory genes and cytokines, including interleukin-1β (IL-1β), IL-12, IL-6, and tumor necrosis factor-α (TNF-α). Western blotting analysis indicated that ZIN inhibited the phosphorylation of extracellular receptor kin, c-Jun N-terminal kinase, and p65 in vitro. Taken together, these results suggest that ZIN exerts a protective effect in the Con A-induced acute liver injury model by inhibiting M1 macrophage polarization and suppressing NF-κB, mitogen-activated protein kinase, and interferon regulatory factor signaling pathways. This highlights the possibility of using ZIN as a safe drug for the treatment of liver injury and provides a novel therapeutic direction for clinical studies on liver diseases.
Collapse
Affiliation(s)
- Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan 271016, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan 250000, Shandong, China
| | - Yuxuan Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hongru Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Bin Yu
- College of Integrated Chinese and Western Medicine, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| |
Collapse
|
4
|
Zhang J, Cheng D, Zhang H, Liu Z, Gao M, Wei L, Yan F, Li C, Wang L, Dong G, Wang C, Zhao M, Zhu Y, Xiong H. Interleukin 28A aggravates Con A-induced acute liver injury by promoting the recruitment of M1 macrophages. FASEB J 2024; 38:e23443. [PMID: 38265281 DOI: 10.1096/fj.202301454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1β, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
6
|
Liu Z, Bao Z, Yu B, Chen L, Yang G. Pemetrexed ameliorates Con A-induced hepatic injury by restricting M1 macrophage activation. Int Immunopharmacol 2023; 125:111158. [PMID: 37925950 DOI: 10.1016/j.intimp.2023.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Autoimmune hepatitis (AIH), characterized by immune-driven liver destruction and cytokine production, is a progressive inflammatory liver condition that may progress to hepatic cirrhosis or tumors. However, the underlying mechanism is not well understood, and the treatment options for this disease are limited. Pemetrexed (PEM), a clinically used anti-folate drug for treating various tumors, was found to inhibit the nuclear factor (NF)-κB signaling pathways that exert an important role in the development of AIH. Here, we investigated the impact of PEM on immune-mediated hepatic injuries using a murine model of Concanavalin A (Con A)-induced hepatitis, a well-established model for AIH. Mice received intraperitoneal PEM injections 3 times at 12-hour intervals, and two hours later, they were challenged with Con A. Liver samples and serum were collected after 10 h. The results indicate that PEM significantly improved mouse survival rates and lowered serum transaminase levels. Moreover, PEM effectively alleviated oxidative stress, reduced histopathological liver damage, and mitigated hepatocyte apoptosis. Notably, it reduced the activation of M1-type macrophages in the liver. The expression of proinflammatory cytokines and genes associated with M1 macrophages, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-12, IL-1β, and inducible nitric oxide synthase (iNOS), was also decreased. Finally, the results indicated that PEM regulates M1 macrophage activation by modulating the NF-κB signaling pathways. Overall, these results demonstrate that PEM effectively guards against immune-mediated hepatic injuries induced by Con A by inhibiting M1 macrophage activation through the NF-κB signaling pathways and indicate the potential of PEM as a practical treatment option for AIH in clinical settings.
Collapse
Affiliation(s)
- Zhaiyi Liu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhiyue Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China; School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
7
|
Gan JW, Lv DX, Fu J, Shi LY, Yuan CY, Zeng XQ, Li J, Sun AJ. Effectiveness of Zhenqi Buxue Oral Liquid Combined with Progesterone for Treatment of Oligomenorrhea and Hypomenorrhea with Qi-Blood and Kidney (Shen) Essence Deficiency: A Randomized Controlled Trial. Chin J Integr Med 2023; 29:963-970. [PMID: 37594704 DOI: 10.1007/s11655-023-3740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of Zhenqi Buxue Oral Liquid (ZQ), progesterone capsules, and their combination in treating oligomenorrhea and hypomenorrhea with qi-blood and Kidney (Shen) essence deficiency. METHODS This was a prospective, randomized, multi-center controlled trial between June 2022 to December 2022. Ninety-six oligomenorrhea and hypomenorrhea patients with qi-blood and Shen essence deficiency were randomly assigned to receive ZQ (ZQ group, 29 cases), progesterone capsules (PG group, 32 cases), or the combined Chinese and Western medicine (COM group, 31 cases) at a ratio of 1:1:1. Patients in the ZQ or PG group took daily 10 mL twice a day of ZQ or 200 mg once a day of progesterone capsules for 10 consecutive days on day 15 of the menstrual cycle respectively, and patients in the COM group received the same ZQ combined with progesterone capsules. The treatment course lasted for 3 months and follow-up was performed at 1 and 3 months after the end of treatment. Primary endpoint was the menstrual Traditional Chinese Medicine Syndrome Scale (TCMSS) scores. Secondary endpoints included pictorial blood loss assessment chart (PBAC) scores, clinical efficacy rate, 36-item Short Form Health Survey (SF-36) scores, sex hormones and thickness of endometrium. Adverse events (AEs) were recorded. RESULTS TCMSS scores after 1- and 3-month treatment in all groups were significantly lower than those at baseline (P<0.05). Only TCMSS scores after 3-month treatment in the ZQ and COM groups continuously decreased compared with those after 1-month treatment in the same group (P<0.01). TCMSS scores after 3-month treatment in the ZQ and COM groups were significantly lower than those in the PG group (P<0.05, P<0.01). Compared with baseline, PBAC scores in the ZQ and COM groups after 3 months of treatment were also significantly higher (both P<0.01). The total effective rates of TCM syndrome of 3-month treatment were significantly improved in all groups compared with that after 1 month of treatment (P<0.05). The total effective rate of the COM group was the highest in the 3rd month of treatment and significantly higher than that of PG group alone (P<0.05). Compared with baseline, only the SF-36 scores of COM group were significantly improved after 3 months of treatment (P<0.05). No serious adverse reactions were observed after treatment. CONCLUSIONS The combination of ZQ and PG, or ZQ only had better effects on reducing TCMSS scores compared with PG, and COM showed the higher total effective rate compared with monotherapy. Besides, COM could effectively improve menstrual blood loss and quality of life. ZQ combined with PG may be an effective and safe option for oligomenorrhea and hypomenorrhea patients with qi-blood and Shen essence deficiency.
Collapse
Affiliation(s)
- Jing-Wen Gan
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Address: Peking Union Medical College Hospital (East), Beijing, 100730, China
| | - De-Xin Lv
- Department of Obstetrics and Gynecology, Liuzhou Maternal and Child Health Care Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, 545001, China
| | - Jin Fu
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chendu, 610066, China
| | - Liang-Yan Shi
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Chun-Yan Yuan
- Department of Obstetrics and Gynecology, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Xiao-Qin Zeng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Jun Li
- Department of Obstetrics and Gynecology, the First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ai-Jun Sun
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Address: Peking Union Medical College Hospital (East), Beijing, 100730, China.
| |
Collapse
|
8
|
Farhadi M, Gorji A, Mirsalehi M, Müller M, Poletaev AB, Mahboudi F, Asadpour A, Ebrahimi M, Beiranvand M, Khaftari MD, Akbarnejad Z, Mahmoudian S. The human neuroprotective placental protein composition suppressing tinnitus and restoring auditory brainstem response in a rodent model of sodium salicylate-induced ototoxicity. Heliyon 2023; 9:e19052. [PMID: 37636471 PMCID: PMC10457515 DOI: 10.1016/j.heliyon.2023.e19052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/22/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The effect of neuroprotective placental protein composition (NPPC) on the suppression of tinnitus and the restoration of the auditory brainstem response (ABR) characteristics was explored in tinnitus-induced rats. The animals were placed into two groups: (1) the study group, rats received sodium salicylate (SS) at the dose of 200 mg/kg twice a day for two weeks, and then 0.4 mg of the NPPC per day, between the 14th and 28th days, (2) the placebo group, rats received saline for two weeks, and then the NPPC alone between the 14th and 28th days. The gap pre-pulse inhibition of the acoustic startle (GPIAS), the pre-pulse inhibition (PPI), and the ABR assessments were performed on animals in both groups three times (baseline, day 14, and 28). The GPIAS value declined after 14 consecutive days of the SS injection, while NPPC treatment augmented the GPIAS score in the study group on the 28th day. The PPI outcomes revealed no significant changes, indicating hearing preservation after the SS and NPPC administrations. Moreover, some changes in ABR characteristics were observed following SS injection, including (1) higher ABR thresholds, (2) lowered waves I and II amplitudes at the frequencies of 6, 12, and 24 kHz and wave III at the 12 kHz, (3) elevated amplitude ratios, and (4) prolongation in brainstem transmission time (BTT). All the mentioned variables returned to their normal values after applying the NPPC. The NPPC use could exert positive therapeutic effects on the tinnitus-induced rats and improve their ABR parameters.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery Westfälische Wilhelms-Universitat Münster, Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center Khatam Alanbia Hospital, Tehran, Iran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head & Neck Surgery, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho-Neurology, Moscow, Russian Federation
- Medical Research Centre “Immunculus”, Moscow, Russian Federation
| | | | - Abdoreza Asadpour
- Intelligent Systems Research Center, Ulster University, Magee Campus, Derry∼Londonderry, Northern Ireland, UK
| | - Mohammad Ebrahimi
- The Research Center for New Technologies in Life Sciences Engineering, Tehran University, Tehran, Iran
| | - Mohaddeseh Beiranvand
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Dehghani Khaftari
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Shen LH, Fan L, Zhang Y, Zhu YK, Zong XL, Peng GN, Cao SZ. Protective Effect and Mechanism of Placenta Extract on Liver. Nutrients 2022; 14:nu14235071. [PMID: 36501102 PMCID: PMC9737791 DOI: 10.3390/nu14235071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The placenta contains multiple biologically active substances, which exert antioxidation, anti-inflammatory, immunomodulatory, and delayed aging effects. Its extract can improve hepatic morphology and function: on the one hand, it can reduce liver interstitial collagen deposition, lipogenesis, and inflammatory cell infiltration and improve fibrosis; on the other hand, it can prevent hepatocellular degeneration by scavenging reactive oxygen species (ROS) and inhibiting inflammatory cytokine production, further improve hepatocyte apoptosis and necrosis, and promote hepatocyte regeneration, making it a promising liver-protective agent. Current research on placenta extract (PE) mainly focuses on treating a specific type of liver injury, and there are no systematic reports. Therefore, this review comprehensively summarizes the treatment reports of PE on liver injury and analyzes its mechanism of action.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-181-0901-7590
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying-Kun Zhu
- School of Agriculture & Food Science, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Shen LH, Fan L, Zhang Y, Shen Y, Su ZT, Peng GN, Deng JL, Zhong ZJ, Wu XF, Yu SM, Cao SZ, Zong XL. Antioxidant Capacity and Protective Effect of Cow Placenta Extract on D-Galactose-Induced Skin Aging in Mice. Nutrients 2022; 14:4659. [PMID: 36364921 PMCID: PMC9654611 DOI: 10.3390/nu14214659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2023] Open
Abstract
Placental extract has been used for skin care and delaying skin aging. Cow placenta is an abundant resource with a large mass, which has not been harnessed effectively. Cow placenta extract (CPE) has the functions of antioxidation, anti-inflammatory, promoting growth and development, and promoting hair growth. However, little is known about the effect of oral administration of cow placenta extract on skin conditions. Therefore, the present study aimed to investigate the antioxidant capacity of CPE in vitro and in vivo and its protective effect on d-galactose (D-gal) induced skin aging in mice. The results showed that CPE had strong free radical scavenging, reducing and metal chelating activities. CPE can increase the activity of catalase (CAT), glutathione peroxidase (GSH-Px), peroxidase (POD), superoxide dismutase (SOD), and the content of glutathione (GSH), decrease the content of malondialdehyde (MDA). Moreover, CPE can decrease the gene and protein expression of matrix metalloproteinase 1a (MMP-1a) and matrix metalloproteinase 3 (MMP-3) and increase the expression of transforming growth factor-β (TGF-β) and tissue inhibitor of metalloproteinase 1 (TIMP-1) of mouse skin. Histopathological analysis showed CPE reduced the collagen damage caused by D-gal, increased collagen synthesis and reduced its degradation to delay skin aging.
Collapse
Affiliation(s)
- Liu-Hong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe-Tong Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guang-Neng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun-Liang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi-Jun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Feng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Min Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sui-Zhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Lan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
11
|
Evaluation of Antiaging Effect of Sheep Placenta Extract Using SAMP8 Mice. Processes (Basel) 2022. [DOI: 10.3390/pr10112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Widely used in traditional medicine, sheep placenta extract (SPE) is known for its physiological effects such as wound healing, antioxidant, and anti-inflammatory properties. However, the effect of SPE on antiaging is still unclear. In this study, we investigated the effect of SPE on aging through the senescence-accelerated mouse prone 8 (SAMP8) strain. We designed an experiment using both male and female mice randomly divided into 4 groups (n = 10) as follows: Group A—control group; Group B—low-dose SPE (61.5 mg/kg BW/day); Group C—medium-dose SPE (123 mg/kg BW/day); and Group D—high-dose SPE (184.5 mg/kg BW/day). As a result of measuring the aging index parameters such as skin glossiness, spine lordosis, and kyphosis, it was found that the treatment of SPE lowered the aging index. In addition, we found that biochemical parameters such as lactic acid, glucose, ketone bodies, free fatty acids, tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) were not changed in the experimental group treated with SPE for 13 weeks. Finally, we found that lipid peroxidation (LPO) was decreased, while the activities of catalase and superoxide dismutase (SOD) were significantly increased in the brain tissues of SPE-treated male and female mice. Supplementation of SPE lowered the oxidative stress caused by the aging process in mice without toxicity and decreased the aging index, suggesting the value of SPE as an effective antiaging treatment.
Collapse
|
12
|
Effect of Porcine Placental Extract Mixture on Alcohol-Induced Hepatotoxicity in Rats. Curr Issues Mol Biol 2022; 44:2029-2037. [PMID: 35678666 PMCID: PMC9164070 DOI: 10.3390/cimb44050137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to examine the effect of porcine placenta extract mixture (pPEM, enzymatic/acidic extract = 1/3) on alcoholic hepatotoxicity after pPEM dosing with alcohol in rats. The experimental groups were normal, control, silymarin, three pPEM (590, 1771, and 2511 mg/kg/day, po), and silymarin (100 mg/kg/day, po) groups (n = 10). Alcoholic hepatotoxicity was caused by a liquid ethanol diet for 4 weeks. The effect of pPEM and silymarin on alcoholic hepatotoxicity was evaluated by serology, hepatic ADH and ALDH activities, and histopathological findings. After oral dosing with alcohol for 4 weeks, ALT and AST were significantly increased to 33.7 → 115.6 and 81.37 → 235.0 in the alcohol group, respectively. These levels were decreased significantly to 83.9 and 126.7 in the silymarin group and dose-dependently to 73.6–56.9 and 139.2–122.8 in all pPEM groups. Hepatic ADH and ALDH might have been increased in the control and not in the silymarin and pPEM groups for hepatic ADH. All pPEM groups exhibited no effects on hepatic ALDH except for the high pPEM group. Mild inflammation and fatty lesions were observed in the alcohol group and were attenuated in the silymarin and pPEM groups. As a results, the pPEM showed protective activities against alcoholic hepatotoxicity on the serological markers, hepatic ADH and ALDH, and pathological findings.
Collapse
|
13
|
Yan F, Cheng D, Wang H, Gao M, Zhang J, Cheng H, Wang C, Zhang H, Xiong H. Corilagin Ameliorates Con A-Induced Hepatic Injury by Restricting M1 Macrophage Polarization. Front Immunol 2022; 12:807509. [PMID: 35095894 PMCID: PMC8792905 DOI: 10.3389/fimmu.2021.807509] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.
Collapse
Affiliation(s)
- Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hongyan Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
14
|
Laurent A, Abdel-Sayed P, Scaletta C, Laurent P, Laurent E, Michetti M, de Buys Roessingh A, Raffoul W, Hirt-Burri N, Applegate LA. Back to the Cradle of Cytotherapy: Integrating a Century of Clinical Research and Biotechnology-Based Manufacturing for Modern Tissue-Specific Cellular Treatments in Switzerland. Bioengineering (Basel) 2021; 8:bioengineering8120221. [PMID: 34940374 PMCID: PMC8698568 DOI: 10.3390/bioengineering8120221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Empirically studied by Dr. Brown-Séquard in the late 1800s, cytotherapies were later democratized by Dr. Niehans during the twentieth century in Western Switzerland. Many local cultural landmarks around the Léman Riviera are reminiscent of the inception of such cell-based treatments. Despite the discreet extravagance of the remaining heirs of "living cell therapy" and specific enforcements by Swiss health authorities, current interest in modern and scientifically sound cell-based regenerative medicine has never been stronger. Respective progress made in bioengineering and in biotechnology have enabled the clinical implementation of modern cell-based therapeutic treatments within updated medical and regulatory frameworks. Notably, the Swiss progenitor cell transplantation program has enabled the gathering of two decades of clinical experience in Lausanne for the therapeutic management of cutaneous and musculoskeletal affections, using homologous allogeneic cell-based approaches. While striking conceptual similarities exist between the respective works of the fathers of cytotherapy and of modern highly specialized clinicians, major and important iterative updates have been implemented, centered on product quality and risk-analysis-based patient safety insurance. This perspective article highlights some historical similarities and major evolutive differences, particularly regarding product safety and quality issues, characterizing the use of cell-based therapies in Switzerland over the past century. We outline the vast therapeutic potential to be harnessed for the benefit of overall patient health and the importance of specific scientific methodological aspects.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Applied Research Department, LAM Biotechnologies SA, 1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, 1038 Bercher, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- DLL Bioengineering, Discovery Learning Program, STI School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Philippe Laurent
- School of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Elénie Laurent
- Private Practice, Pharmacie du Gros-de-Vaud SA, 1038 Bercher, Switzerland;
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
| | - Anthony de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Wassim Raffoul
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066 Epalinges, Switzerland; (A.L.); (P.A.-S.); (C.S.); (M.M.); (N.H.-B.)
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland;
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
- Correspondence: ; Tel.: +41-21-314-35-10
| |
Collapse
|
15
|
Shen BD, Deng L, Liu Y, Li RS, Shen CY, Liu X, Li YC, Yuan HL. Effects of novel Fufang Biejia Ruangan Tablets with sheep placenta as substitute for hominis placenta on CCl4-induced liver fibrosis. CHINESE HERBAL MEDICINES 2021; 14:104-110. [PMID: 36120135 PMCID: PMC9476806 DOI: 10.1016/j.chmed.2021.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Objective Fufang Biejia Ruangan Tablet (FBRT) is widely used for the treatment of liver fibrosis. However, Hominis Placenta (HP), as an important adjuvant of FBRT, has been restricted for medicinal using due to the limited availability, ethical controversy and safety issues. The present study aimed to investigate the therapeutic effects of novel FBRT (N-FBRT) with sheep placenta (SP) as substitute for HP on liver fibrosis and explore its possible mechanisms. Different dosages of SP in N-FBRT were also evaluated. Methods Rats were subcutaneously injected with CCl4 to induce liver fibrosis and then treated with N-FBRT and FBRT. The anti-hepatic fibrosis effect was determined based on biomarkers analysis of liver function and hepatic fibrosis, and the liver pathology was visualized by H&E staining and Masson staining. The oxidative stress and inflammatory cytokines were also detected. Immunohistochemical staining of α-SMA, real time PCR and Western blotting were performed to evaluate hepatic stellate cells (HSCs) activation and TGF-β1/Smad signaling pathway. Results N-FBRT and FBRT could ameliorate CCl4-induced liver fibrosis and improve liver function, as evidenced by lowering serum biomarkers levels of liver function and hepatic fibrosis, and decreasing hepatic Hyp content and collagen deposition, and improving the hepatic morphology and architecture changes. Moreover, the anti-liver fibrosis effect was better when the dosage of SP used in N-FBRT was 1/2 of HP in FBRT. Administration of N-FBRT markedly alleviated oxidative stress and inflammatory cytokines, and inhibited α-SMA expression. Furthermore, the mRNA expression of Col I, Col III, α-SMA and TGF-β1, and proteins expression of α-SMA, TGF-β1, Smad2/3 and p-Smad2/3 were significantly down-regulated by N-FBRT treatment. Conclusion SP can be used as substitute for HP to prepare N-FBRT for the treatment of liver fibrosis and the anti-liver fibrosis effect of N-FBRT is achieved by eliminating oxidative stress and inflammation, and inhibiting HSCs activation and ECM production by blocking TGF-β1/Smad signaling pathway.
Collapse
|
16
|
Ghoneum M, El-Gerbed MSA. Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses. Cancer Chemother Pharmacol 2021; 88:961-971. [PMID: 34505929 PMCID: PMC8536621 DOI: 10.1007/s00280-021-04349-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE Methotrexate (MTX) induces hepatotoxicity, limiting its clinical efficacy as a widely known chemotherapy drug. In the current study, we examined the protective effect of human placenta extract (HPE) against MTX-induced liver damage in rats, as well as its ability to regulate antioxidative and anti-inflammatory liver responses. METHODS Male rats were orally administered MTX at a daily dose of 5 mg/kg-body-weight in the presence or absence of HPE (10.08 mg/kg) for 2 weeks. We measured the biological effects of MTX and HPE on the levels of liver enzymes, lipid profile, lipid peroxidation, oxidative stress biomarkers, and cytokines [tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10)]. In addition, histological examination and histopathological scoring of liver tissues were performed. RESULTS MTX-treated rats showed significantly increased (p < 0.001) liver enzyme levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total cholesterol, and triglyceride levels. However, HPE supplementation in MTX-treated rats significantly decreased (p < 0.001) these elevated levels. HPE supplementation also significantly reduced the oxidative stress biomarker malondialdehyde (MDA), reversed the reduction in glutathione (GSH), and markedly increased the antioxidant enzyme activities of catalase (CAT) and superoxide dismutase (SOD) in the livers of MTX-treated rats. Furthermore, HPE supplementation significantly decreased the MTX-elevated levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-10. Histopathological examinations showed that MTX produced severe cellular damage and inflammatory lesions in liver tissues, while treatment with HPE improved hepatic histologic architecture. CONCLUSION HPE has the ability to ameliorate methotrexate-induced liver injury in rats by mechanisms that include boosting antioxidative responses and down-regulating MDA and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, 1621 E. 120th Street, Los Angeles, CA, 90059, USA.
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
17
|
Choi HS, Ha KY, Xu XY, Kang HC, Kim H, Kim YJ. Off-Flavor Removal from Sheep Placenta via Fermentation with Novel Yeast Strain Brettanomyces deamine kh3 Isolated from Traditional Apple Vinegar. Molecules 2021; 26:molecules26195835. [PMID: 34641377 PMCID: PMC8510316 DOI: 10.3390/molecules26195835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Animal placentae can be used as health-promoting food ingredients with various therapeutic efficacies, but their use is limited by their unpleasant odor and taste. This study aimed to investigate the possibility of deodorization of sheep placenta via yeast fermentation. A yeast strain was successfully isolated and identified as a novel Brettanomyces strain (Brettanomyces deamine kh3). The deodorizing efficacy of fermentation of the sheep placenta with B. deamine kh3 was evaluated by 42 panels, based on evaluation of preference, ranking, and aroma profiles, and compared with normal placenta and placenta fermented with B. bruxellensis. The results of the sensory evaluation indicated that fermentation of the sheep placenta with B. deamine kh3 may improve its palatability by increasing flavors such as that of grass (tree), rubber, and burnt, and by decreasing the odor and soy sauce flavor. Solid-phase microextraction-gas chromatography (SPME-GC) showed that major off-flavors in sheep placenta, such as ammonia, dimethyl disulfide, and 1,3-dioxolane, were completely diminished in the sheep placenta fermented with B. deamine kh3. This study presents those major volatile compounds, including 2-isobutyl\-4,4-dimethyl-1,3-dioxane, and 3-methyl-1-butanol, could be crucial in improving the palatability of the sheep placentae fermented with B. deamine kh3. This study provides a good starting point for the industrial application of a new deodorization method.
Collapse
Affiliation(s)
- Han-Sol Choi
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (H.-S.C.); (K.-Y.H.); (X.-Y.X.)
| | - Keum-Yun Ha
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (H.-S.C.); (K.-Y.H.); (X.-Y.X.)
| | - Xing-Yue Xu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (H.-S.C.); (K.-Y.H.); (X.-Y.X.)
| | - Hee-Cheol Kang
- GFC Life Science Co. Ltd., F17, Apexcity, 823, Dongtansunhwan-daero, Hwasung 18471, Korea;
| | - Hoon Kim
- College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Korea
- Correspondence: or (H.K.); (Y.-J.K.); Tel.: +82-31-670-3188 (H.K.); +82-31-5634 (Y.-J.K.)
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea; (H.-S.C.); (K.-Y.H.); (X.-Y.X.)
- Correspondence: or (H.K.); (Y.-J.K.); Tel.: +82-31-670-3188 (H.K.); +82-31-5634 (Y.-J.K.)
| |
Collapse
|
18
|
Ding Y, Yu Z, Zhang C. Diallyl trisulfide protects against concanavalin A-induced acute liver injury in mice by inhibiting inflammation, oxidative stress and apoptosis. Life Sci 2021; 278:119631. [PMID: 34022202 DOI: 10.1016/j.lfs.2021.119631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
AIMS To investigate the protective effects and underlying mechanisms of diallyl trisulfide (DATS) against acute liver injury induced by concanavalin A (Con A). MATERIALS AND METHODS DATS (20, 40, 80 mg/kg) were gavaged to ICR mice 1 h before Con A (20 mg/kg) tail vein injection. The survival rate of mice, alterations of serum biochemical markers and liver histopathology were measured to evaluate the protective effects of DATS at 24 h after Con A exposure. The indexes of inflammation, oxidative stress and apoptosis were determined to explore the possible mechanisms. KEY FINDINGS DATS pretreatment increased survival rate of mice in a dose-dependent manner, inhibited the increase of liver-to-spleen ratio and serum liver injury markers, and attenuated liver pathological damage induced by Con A. Further study showed that DATS pretreatment inhibited the activation of Kupffer cells/macrophages, release of tumor necrosis factor-α (TNF-α) and Caspase-1-dependent inflammation induced by Con A. Moreover, DATS pretreatment alleviated the oxidative stress induced by Con A, which was evidenced by increased superoxide dismutase (SOD) and catalase (CAT) activities and decreased malondialdehyde (MDA) content in DATS and Con A co-treated mice compared with Con A alone group. Finally, DATS pretreatment reduced eosinophilic body formation, TUNEL positive staining and increased Bcl-2/Bax ratio in liver of Con A-injected mice, indicating attenuated apoptosis. SIGNIFICANCE Collectively, the results suggest that DATS displays potent protective effects against Con A-induced acute liver injury in mice possibly through inhibition of inflammation, oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yun Ding
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziqiang Yu
- Institute of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Cuili Zhang
- Institute of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
19
|
Wang L, Cui H, Li Y, Cao M, Man S, Guo L, Miao J, Jia J, Bian Y, Zhang Z. Kang-Xian Pills Inhibit Inflammatory Response and Decrease Gut Permeability to Treat Carbon Tetrachloride-Induced Chronic Hepatic Injury through Modulating Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8890182. [PMID: 33144872 PMCID: PMC7596455 DOI: 10.1155/2020/8890182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Kang-Xian (KX) pills have been clinically used for the treatment of chronic hepatic injury (CHI). However, the mechanisms of KX on CHI remain unknown. The aim of this study mainly focused on the anti-inflammatory effects of KX in a CHI mouse model based on modulating gut microbiota and gut permeability. We first established a CHI model using carbon tetrachloride (CCl4) and treated it with KX. The anti-inflammatory effects of KX on CHI model mice and the changes in gut permeability after KX treatment were also investigated. 16S rRNA analysis was used to study the changes of gut microbiota composition after KX treatment. In addition, gut microbiota was depleted using a combination of antibiotics in order to further confirm that KX could inhibit the inflammatory response and decrease gut permeability to treat CHI by modulating the gut microbiota. Results showed that KX treatment significantly improved liver function in CHI model mice. KX could also increase the levels of tight junction proteins in the colon and decrease the expression of proinflammatory cytokines in the liver. 16S rRNA analysis indicated that KX treatment affected the alpha and beta diversities in CHI model mice. Further analysis of 16S rRNA sequencing indicated that KX treatment increased the ratio of Firmicutes to Bacteroidetes at the phylum level. At the genus level, KX treatment increased the relative abundance of Lactobacillus, Bacteroides, and Akkermansia and decreased the relative abundance of Ralstonia, Alloprevotella, and Lachnoclostridium. However, KX could not alleviate CHI after depleting the gut microbiota. The effects of KX on gut permeability and inflammatory response in the liver were also decreased following the depletion of gut microbiota. In conclusion, our current study demonstrated that gut microbiota was significantly affected during CHI progression. KX could inhibit the inflammatory response and decrease the gut permeability in CHI model mice through modulating the gut microbiota.
Collapse
Affiliation(s)
- Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuting Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Man
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Mycophenolate mofetil attenuates concanavalin A-induced acute liver injury through modulation of TLR4/NF-κB and Nrf2/HO-1 pathways. Pharmacol Rep 2020; 72:945-955. [PMID: 32048261 DOI: 10.1007/s43440-019-00055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is a serious health condition associated with rising morbidity and sudden progression. This study was designed to investigate the possible hepatocurative potential of two dose levels (30 and 60 mg/kg) of Mycophenolate mofetil (MMF), an immune-suppressant agent, against Concanavalin A (Con A)-induced ALI in mice. METHOD A single dose of Con A (20 mg/kg, IV) was used to induce ALI in mice. MMF (30 mg/kg and 60 mg/kg) was administered orally for 4 days post Con A injection. RESULTS MMF (30 mg/kg) failed to cause significant amelioration in Con A-induced ALI while MMF (60 mg/kg) significantly alleviated Con A-induced ALI. Administration of MMF (60 mg/kg) significantly decreased Con A-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Additionally, MMF significantly restored the disrupted oxidant/antioxidants status induced by Con A. MMF caused marked increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels. Moreover, MMF significantly reduced Con A-induced increase in the expression of hepatic toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1β (Il-1β). Also, MMF administration significantly decreased Con A-induced increase in the immune-expression of pro-apoptotic Bcl-2-associated X protein (Bax) and markedly increased Con A-induced decrease in the anti-apoptotic B-cell lymphoma 2 protein (Bcl2). CONCLUSION The observed ameliorative effect of MMF against Con A-induce ALI may be contributed to its anti-inflammatory, anti-oxidant and anti-apoptotic potentials taking into consideration that TLR4/NF-κB and Nrf2/HO-1 are the main implicated pathways. Schematic diagram summarizing the possible mechanisms underlying the ameliorative potential of Mycophenolate Mofetil against Con A-induced acute liver injury. Bax Bcl-2-associated X protein, Bcl2 B-cell lymphoma 2, MMF Mycophenolate mofetil, Con A Concanavalin A, GSH reduced glutathione, HO-1 Heme oxygenase-1, IL-1β Interleukin-1β, IFN-γ Interferon-γ, MDA Malondialdehyde, NF-κB Nuclear Factor Kappa B, Nrf2 Nuclear factor erythroid 2-related factor 2, NO Nitric Oxide, SOD Superoxide Dismutase, TLR4 Toll-like receptor 4, TNF-α tumor necrosis factor-α.
Collapse
|
21
|
Yamauchi A, Tone T, Sugimoto K, Seok Lim H, Kaku T, Tohda C, Shindo T, Tamada K, Mizukami Y, Hirano E. Porcine placental extract facilitates memory and learning in aged mice. Food Sci Nutr 2019; 7:2995-3005. [PMID: 31572593 PMCID: PMC6766592 DOI: 10.1002/fsn3.1156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 01/07/2023] Open
Abstract
Aging induces a decline in both memory and learning ability without predisposing an individual to diseases of the central nervous system, such as dementia. This decline can have a variety of adverse effects on daily life, and it can also gradually affect the individual and the people they are surrounded by. Since recent evidence indicated that placental extract has effects on brain function such as memory, we hypothesized that placental extract could ameliorate the age-associated reduction in cognitive function in aging. Here, we investigated the effect of new modified porcine placental extract (SD-F) on memory ability in aged mice at both the behavioral and molecular levels. Our results revealed that SD-F significantly enhanced memory ability in the object recognition and object location tasks in a dose-dependent manner in aged mice relative to controls. The numbers of Nissl-positive cells in the hippocampal cornu ammonis 3 (CA3) and dentate gyrus (DG) regions were increased in SD-F-treated aged mice relative to controls. RNA-seq analysis of the hippocampus of aged mice identified 542 differentially expressed genes, of which 216 were up-regulated and 326 were down-regulated in SD-F-treated mice relative to controls. Of the 216 up-regulated genes, we identified four characteristic genes directly related to memory, including early growth response protein 1 (Egr1), growth arrest and DNA-damage-inducible, beta (Gadd45b), NGFI-A binding protein 2 (Nab2), and vascular endothelial growth factor a (Vegfa). These results suggest that the efficacy of SD-F involves upregulation of these genes.
Collapse
Affiliation(s)
| | - Takahiro Tone
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| | - Koji Sugimoto
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| | | | | | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Takayuki Shindo
- Department of Cardiovascular ResearchShinshu University Graduate School of MedicineNaganoJapan
| | - Koji Tamada
- Department of Immunology, Graduate School of MedicineYamaguchi UniversityYamaguchiJapan
| | - Yoichi Mizukami
- Institute of Gene ResearchYamaguchi University Science Research CenterYamaguchiJapan
| | - Eiichi Hirano
- Research InstituteJapan Bio Products Co., Ltd.KurumeJapan
| |
Collapse
|