1
|
Shi Z, Zhou M, Zhai J, Sun J, Wang X. Novel therapeutic strategies and drugs for idiopathic pulmonary fibrosis. Arch Pharm (Weinheim) 2024; 357:e2400192. [PMID: 38961537 DOI: 10.1002/ardp.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-β/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.
Collapse
Affiliation(s)
- Zezhou Shi
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| |
Collapse
|
2
|
Zhou YM, Dong XR, Xu D, Tang J, Cui YL. Therapeutic potential of traditional Chinese medicine for interstitial lung disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116952. [PMID: 37487964 DOI: 10.1016/j.jep.2023.116952] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interstitial lung disease (ILD) is a chronic lung dysfunction disease with a poor prognosis and poor recovery. The clinically used therapeutic drugs, such as glucocorticoids and immunosuppressants, have no significant therapeutic effect and are accompanied with severe side effects. In recent years, considerable progress has been made in exploring and applying natural herb components for treating ILD. Traditional Chinese Medicine (TCM) possesses innate, non-toxic characteristics and offers advantages in preventing and treating pulmonary ailments. However, a comprehensive study of TCM on ILD therapy has not yet been reviewed. AIM OF THE REVIEW This review aimed to provide a comprehensive summary of the monomer components, total extracts, and prescriptions of TCM for ILD therapy, elucidating their molecular mechanisms to serve as a reference in treating ILD. MATERIALS AND METHODS The literature information was searched in the PubMed, Web of Science databases. The search keywords included 'interstitial lung disease', 'lung fibrosis' or 'pulmonary fibrosis', and 'traditional Chinese medicine', 'traditional herbal medicine', or 'herb medicine'. RESULTS The active components of single herbs, such as alkaloids, flavonoids, terpenoids, phenols, and quinones, have potential therapeutic effects on ILD. The active extracts and prescriptions were also summarized and analyzed. The herbs, Glycyrrhiza uralensis Fisch. (Gancao), Astragalus membranaceus Fisch. Bunge. (Huangqi) and Angelicasinensis (Oliv.) Diels (Danggui), play significant roles in the treatment of ILD. The mechanisms involve the inhibition of inflammatory factor release, anti-oxidative injury, and interference with collagen production, etc. CONCLUSION: This review examines the therapeutic potential of TCM for ILD and elucidates its molecular mechanisms, demonstrating that mitigating inflammation and oxidative stress, modulating the immune system, and promoting tissue repair are efficacious strategies for ILD therapy. The depth research will yield both theoretical and practical implications.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Xin-Ran Dong
- The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| | - Jie Tang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
3
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
4
|
Cheng X, Dong F, Li J, Zou Q, Liu X, He H, Zhang H, Lv X, Wu Y, Jiang X, Qin X. Synthesis, and biological evaluation of pyrazole matrine derivatives as an insecticide against Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105489. [PMID: 37532351 DOI: 10.1016/j.pestbp.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023]
Abstract
As one of the major threats to global food security, Spodoptera frugiperda (S. frugiperda) is highly gaining consideration due to its severe damage. Matrine is a widely and effectively used botanical insecticide in controlling S.frugiperda but lacks a rapidly available effect. To further improved the insecticidal activity of matrine based on combination principles, this work synthesized five new pyrazole matrine derivatives (PMDs) using Michael addition and investigated insecticidal activity against 2nd instar larvae of S. frugiperda(in vivo) and its isolated cell(in vitro). Our result demonstrated that PMDs show higher pesticidal activity than that matrine in both in vitro and in vivo assays. The most toxic derivatives in vitro and in vivo are PMD-3 and PMD-1, with IC50 of 2.49 mM and LC50 of 22.76 mg/L respectively. This research also investigates the anti-proliferation mechanism of PMDs based on isolated cells. PMDs decrease mitochondria membrane potential, arrested cell cycle at the G2/M phase, and upregulated Caspase 3, Caspase 9, and Apaf-1 to induce Caspase-dependent apoptosis. For Caspase-independent apoptosis, AIF and Endo G were found to be upregulated. Besides, pro-apoptotic factors like p53, IBM-1, and anti-apoptotic factors like IAP were upregulated. Moreover, we supposed that there was a linkage between lysosomes and PMD-induced apoptosis according to increased apoptosis rate, activated lysosomes, and upregulated Cathepsin B. This research provides new ideas for the synthesis of matrine derivatives and further demonstrated the anti-proliferation mechanism of PMDs.
Collapse
Affiliation(s)
- Xingan Cheng
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Fangyun Dong
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Junjie Li
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiwen Zou
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xin Liu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Huiqing He
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hanhui Zhang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaojing Lv
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yuehua Wu
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xuhong Jiang
- Institute of Natural Product Chemistry, College of Chemistry and Chemical Engineering / Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs / Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou 510301, China.
| |
Collapse
|
5
|
Li J, Wei S, Marabada D, Wang Z, Huang Q. Research Progress of Natural Matrine Compounds and Synthetic Matrine Derivatives. Molecules 2023; 28:5780. [PMID: 37570750 PMCID: PMC10421345 DOI: 10.3390/molecules28155780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Matrine is a quinoline alkaloid extracted and separated from the dried root, fruit, and other parts of the plant Sophora flavescens using an organic solvent. Matrine exhibits a variety of biological activities and is widely used in pharmacy, agronomy, and other fields. Due to its low bioavailability, poor chemical stability, and toxicity to the central nervous system, a large number of researchers have searched for matrine derivatives with higher biological activity and safety by modifying its structure. In this review article, the research progress of matrine derivatives obtained using two methods (extraction from Sophora flavescens and structural modifications) from 2018 to 2022 in terms of pharmacological activity, mechanism of action, and structure-activity relationship are presented. The modification of matrine over the past five years has been mainly on the D-ring. Many new matrine alkaloids have been extracted from natural products, some of which have good pharmacological activity, which broadens the strategy for matrine structural modification in the future.
Collapse
Affiliation(s)
- Jinlei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.L.); (D.M.)
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China;
| | - Davies Marabada
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.L.); (D.M.)
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.L.); (D.M.)
| | - Qing Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (J.L.); (D.M.)
| |
Collapse
|
6
|
Li L, Li J, Ma L, Shang H, Zou Z. SAR-guided development of indole-matrine hybrids as potential anticancer agents via mitochondrial stress/cytochrome c/caspase 3 signaling pathway. Bioorg Chem 2023; 134:106341. [PMID: 36842321 DOI: 10.1016/j.bioorg.2023.106341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Matrine is a clinically used adjuvant anticancer drug, yet its mild potency limited its application. To improve the anticancer activity of matrine, a total of 31 indole-matrine hybrids were constructed in four rounds of SAR-guided iterative structural optimization process. All of the synthesized compounds were evaluated for their antiproliferative activities against a panel of four human cancer cell lines (Hela, MCF-7, SGC-7901, HepG2) and two normal cell lines (GES-1, LO2). The most active hybrid 8g exhibited the anticancer IC50 values of 0.9 to 1.2 μM, which was 3-magnitude of orders more potent than matrine. 8g also showed better selectivity towards cancer cells with the selectivity index value raised from 1.5 to 6.2. Mechanistic studies demonstrated a mitochondrial distribution for 8g by intracellular click chemistry approaches, which led to the discovery that 8g strongly induced mitochondrial stress, as evidenced by impaired energy metabolism, depolarized mitochondrial membrane potential, overload of mitochondrial calcium and escalated ROS production. 8g-induced mitochondrial stress further led to the release of cytochrome c and subsequent activation of caspase 3, which significantly promoted cellular death and inhibited colony formation.
Collapse
Affiliation(s)
- Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Liyan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Synthesis of Halopyrazole Matrine Derivatives and Their Insecticidal and Fungicidal Activities. Molecules 2022; 27:molecules27154974. [PMID: 35956924 PMCID: PMC9370413 DOI: 10.3390/molecules27154974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Matrine is a traditional botanical pesticide with a broad-spectrum biological activity that is widely applied in agriculture. Halopyrazole groups are successfully introduced to the C13 of matrine to synthesize eight new derivatives with a yield of 78–87%. The insecticidal activity results show that the introduction of halopyrazole groups can significantly improve the insecticidal activity of matrine on Plutella xylostella, Mythimna separata and Spodoptera frugiperda with a corrected mortality rate of 100%, which is 25–65% higher than matrine. The fungicidal activity results indicate that derivatives have a high inhibitory effect on Ceratobasidium cornigerum, Cibberella sanbinetti, Gibberrlla zeae and Collectot tichum gloeosporioides. Thereinto, 4-Cl-Pyr-Mat has the best result, with an inhibition rate of 23–33% higher than that of matrine. Therefore, the introduction of halogenated pyrazole groups can improve the agricultural activity of matrine.
Collapse
|
8
|
Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2022; 16:533-569. [PMID: 35256842 PMCID: PMC8898013 DOI: 10.2147/dddt.s349678] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
As The main effective monomer of the traditional Chinese medicine Sophora flavescens Ait, matrine has a broad scope of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, anti-fibrotic, anti-viral, anti-arrhythmia, and improving immune function. These actions explain its therapeutic effects in various types of tumors, cardiopathy, encephalomyelitis, allergic asthma, rheumatoid arthritis (RA), osteoporosis, and central nervous system (CNS) inflammation. Evidence has shown that the mechanism responsible for the pharmacological actions of matrine may be via the activation or inhibition of certain key molecules in several cellular signaling pathways including the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad), nuclear factor kappa B (NF-κB), Wnt (wingless/ integration 1)/β-catenin, mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. This review comprehensively summarizes recent studies on the pharmacological mechanisms of matrine to provide a theoretical basis for molecular targeted therapies and further development and utilization of matrine.
Collapse
Affiliation(s)
- Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Fuming He
- Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| |
Collapse
|
9
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
10
|
Qin R, Zhao Q, Han B, Zhu HP, Peng C, Zhan G, Huang W. Indole-Based Small Molecules as Potential Therapeutic Agents for the Treatment of Fibrosis. Front Pharmacol 2022; 13:845892. [PMID: 35250597 PMCID: PMC8888875 DOI: 10.3389/fphar.2022.845892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Indole alkaloids are widely distributed in nature and have been particularly studied because of their diverse biological activities, such as anti-inflammatory, anti-tumor, anti-bacterial, and anti-oxidant activities. Many kinds of indole alkaloids have been applied to clinical practice, proving that indole alkaloids are beneficial scaffolds and occupy a crucial position in the development of novel agents. Fibrosis is an end-stage pathological condition of most chronic inflammatory diseases and is characterized by excessive deposition of fibrous connective tissue components, ultimately resulting in organ dysfunction and even failure with significant morbidity and mortality. Indole alkaloids and indole derivatives can alleviate pulmonary, myocardial, renal, liver, and islet fibrosis through the suppression of inflammatory response, oxidative stress, TGF-β/Smad pathway, and other signaling pathways. Natural indole alkaloids, such as isorhynchophylline, evodiamine, conophylline, indirubin, rutaecarpine, yohimbine, and vincristine, are reportedly effective in organ fibrosis treatment. In brief, indole alkaloids with a wide range of pharmacological bioactivities are important candidate drugs for organ fibrosis treatment. The present review discusses the potential of natural indole alkaloids, semi-synthetic indole alkaloids, synthetic indole derivatives, and indole-contained metabolites in organ fibrosis treatment.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Huang, ; Gu Zhan,
| |
Collapse
|
11
|
Xu J, Lv M, Xu H. The Advances on Bioactivities, Mechanisms of Action, and Structural Optimizations of Matrine and Its Derivatives. Mini Rev Med Chem 2022; 22:1716-1734. [PMID: 35049432 DOI: 10.2174/1389557522666220113124717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
Matrine, a tetracyclo-quinolizidine alkaloid, is isolated from the industrial crop plant Sophora flavescens. Due to a wide range of pharmacological and agricultural properties, the research on the phytochemistry, pharmacology, toxicology and mechanisms of action of matrine and its derivatives has received much attention. On the other hand, to improve their biological activities, the study on structural optimizations and structure-activity relationships of matrine and its derivatives has also attached more and more importance. In this review article, the update advances on bioactivities, mechanisms of action, structural modifications and structure-activity relationships of matrine and its derivatives from 2017 to 2020 are presented. We hope that this review will provide a reference for the development and application of matrine and its derivatives as drugs or pesticides in the future.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, P. R. China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, P. R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, P. R. China
| |
Collapse
|
12
|
Nwafor EO, Lu P, Liu Y, Peng H, Qin H, Zhang K, Ma Z, Xing B, Zhang Y, Li J, Liu Z. Active Components from Traditional Herbal Medicine for the Potential Therapeutics of Idiopathic Pulmonary Fibrosis: A Systemic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1093-1114. [PMID: 34107859 DOI: 10.1142/s0192415x2150052x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), a tumor-like disease, is a serious and fatal pulmonary inflammatory condition usually characterized by irreversible destruction of the lung parenchyma, excessive matrix accumulation, and decline in lung function. IPF still remains a great burden to the universe. At the moment, the available therapeutic regimens utilized for IPF such as non-pharmacological therapies (lung transplantation) and pharmacological therapies (drugs, nintedanib, pirfenidone, etc.) are normally accompanied by significant limitations, such as adverse reactions, low bioavailability, poor selectivity, low-tissue distribution, in vivo instability, systemic toxicity, inconveniency and unsafe usage. There is a need for the exploration and discovery of new novel remedies by researchers and scientists globally. Recent numerous preliminary studies have laid significant emphasis and demonstrated the antifibrotic importance, good curative actions (little or no adverse reactions), and multiple target sites of the active components from traditional herbal medicine (THM) against IPF, which could serve as a modern, alternative and potential therapeutics or drug candidates in treating IPF. This paper extensively summarizes the pharmacological actions and signaling pathways or mechanisms of active components obtained from THM for treating IPF. Moreover, the sources and modernization, markets, relevant FDA and CFDA studies (the USA and China), preclinical analysis, and various compositions of THM currently under clinical trials are also highlighted. Additionally, this present analytical data would be instrumental towards further drug progression or advancement of active components from THM for the potential therapeutics of IPF in the future.
Collapse
Affiliation(s)
- Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Huan Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Kuibin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Zhe Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Yukun Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| | - Jiawei Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin 301617, P. R. China.,Engineering Research Center of Modern Chinese Medicine, Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, P. R. China
| |
Collapse
|
13
|
Zhang X, Hu C, Zhang N, Wei WY, Li LL, Wu HM, Ma ZG, Tang QZ. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol Sin 2021; 42:573-584. [PMID: 32694761 PMCID: PMC8115053 DOI: 10.1038/s41401-020-0473-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/04/2020] [Indexed: 02/08/2023]
Abstract
Pathological cardiac fibrosis is a common feature in multiple cardiovascular diseases that contributes to the occurrence of heart failure and life-threatening arrhythmias. Our previous study demonstrated that matrine could attenuate doxorubicin-induced oxidative stress and cardiomyocyte apoptosis. In this study, we investigated the effect of matrine on cardiac fibrosis. Mice received aortic banding (AB) operation or continuous injection of isoprenaline (ISO) to generate pathological cardiac fibrosis and then were exposed to matrine lavage (200 mg·kg-1·d-1) or an equal volume of vehicle as the control. We found that matrine lavage significantly attenuated AB or ISO-induced fibrotic remodeling and cardiac dysfunction. We also showed that matrine (200 μmol/L) significantly inhibited the proliferation, migration, collagen production, and phenotypic transdifferentiation of cardiac fibroblasts. Mechanistically, matrine suppressed p38 activation in vivo and in vitro, and overexpression of constitutively active p38 completely abolished the protective effects of matrine. We also demonstrated that ribosomal protein S5 (RPS5) upregulation was responsible for matrine-mediated inhibition on p38 and fibrogenesis. More importantly, matrine was capable of ameliorating preexisting cardiac fibrosis in mice. In conclusion, matrine treatment attenuates cardiac fibrosis by regulating RPS5/p38 signaling in mice, and it might be a promising therapeutic agent for treating pathological cardiac fibrosis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
14
|
Traditional Chinese medicine combined with pulmonary drug delivery system and idiopathic pulmonary fibrosis: Rationale and therapeutic potential. Biomed Pharmacother 2021; 133:111072. [PMID: 33378971 PMCID: PMC7836923 DOI: 10.1016/j.biopha.2020.111072] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Pathogenesis and characteristics of idiopathic pulmonary fibrosis (IPF) are presented. The history and current situation of traditional Chinese medicine (TCM) in treating lung diseases are introduced. Therapeutic mechanisms of different TCM to treat IPF are summarized. Advantages and types of pulmonary drug delivery systems (PDDS) are emphasized. Combining TCM with PDDS is a potential strategy to treat IPF.
Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary interstitial inflammatory disease of unknown etiology, and is also a sequela in severe patients with the Coronavirus Disease 2019 (COVID-19). Nintedanib and pirfenidone are the only two known drugs which are conditionally recommended for the treatment of IPF by the FDA. However, these drugs pose some adverse side effects such as nausea and diarrhoea during clinical applications. Therefore, it is of great value and significance to identify effective and safe therapeutic drugs to solve the clinical problems associated with intake of western medicine. As a unique medical treatment, Traditional Chinese Medicine (TCM) has gradually exerted its advantages in the treatment of IPF worldwide through a multi-level and multi-target approach. Further, to overcome the current clinical problems of oral and injectable intakes of TCM, pulmonary drug delivery system (PDDS) could be designed to reduce the systemic metabolism and adverse reactions of the drug and to improve the bioavailability of drugs. Through PubMed, Google Scholar, Web of Science, and CNKI, we retrieved articles published in related fields in recent years, and this paper has summarized twenty-seven Chinese compound prescriptions, ten single TCM, and ten active ingredients for effective prevention and treatment of IPF. We also introduce three kinds of inhaling PDDS, which supports further research of TCM combined with PDDS to treat IPF.
Collapse
|
15
|
Mou X, Chenv JW, Zhou DY, Liu K, Chen LJ, Zhou D, Hu YB. A novel identified circular RNA, circ_0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR‑101b by targeting TGFβRI. Mol Med Rep 2020; 22:3785-3794. [PMID: 32901868 PMCID: PMC7533486 DOI: 10.3892/mmr.2020.11486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have crucial roles in various diseases; however, the mechanisms of action underlying circRNAs in the occurrence and development of diabetic nephropathy (DN) remains largely unknown. The present study investigated the differentially expressed circRNAs in the DN mice kidney cortex using circRNA sequencing and elucidated the role of circRNAs in mesangial cells. It was revealed that 40 circRNAs were unconventionally expressed, including 18 upregulated circRNAs and 22 downregulated circRNAs. Furthermore, circ_0000491 levels were significantly augmented in both DN mice and high glucose (HG, 30 mM)-induced mouse mesangial cells (MES13 cells). Knockdown of circ_0000491 significantly suppressed the increase of vimentin, fibronectin and α-smooth muscle actin, as well as collagen type I, III and IV, whilst reversing the decrease of E-cadherin in HG-induced MES13 cells. It was further revealed that circRNA_0000491 sponged miR-101b and that miR-101b directly targets TGFβRI. In addition, the expression levels of miR-101b were negatively associated with the transcriptional level of circRNA_0000491 and miR-101b inhibitors reversed the suppression of extracellular matrix (ECM)-associated protein synthesis mediated by knocking-down circRNA_0000491. In conclusion, the present study investigated the circRNA_0000491/miR-101b/TGFβRI axis in ECM accumulation and fibrosis-associated protein expression levels of mesangial cells, which suggested that circRNA_0000491 may be beneficial for the development of an effective therapeutic target for DN.
Collapse
Affiliation(s)
- Xin Mou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Jia Wei Chenv
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Di Yi Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Kaiyuan Liu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Li Jun Chen
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Danyang Zhou
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong Bin Hu
- Department of Endocrinology, Zhejiang Integrated and Western Medicine Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, Cai F, Tang Y. Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:810-820. [PMID: 32638014 DOI: 10.1093/abbs/gmaa067] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Isoliquiritigenin (ISL), a natural flavonoid derived from the root of liquorice, has been reported to possess anti-inflammatory and antioxidant activities. Previous studies have found that ISL plays a crucial role in anti-fibrosis of adipose tissue and renal tissue; however, its effect on pulmonary fibrogenesis has not been demonstrated. In this study, we aimed to explore the roles and the underlying mechanisms of ISL in TGF-β1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell proliferation and migration were determined by MTT and wound healing assay, respectively. The expression levels of alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 (COLIA1) and fibronectin (FN), microtubule-associated protein light chain 3 (LC3) and related signaling molecules were detected by quantitative real-time PCR, western blot and immunofluorescence assay, correspondingly. EGFP-LC3 transfection was used for autophagy analysis. The results showed that ISL inhibited the TGF-β1-induced proliferation and migration, and down-regulated the expressions of α-SMA, COLIA1 and FN. ISL treatment led to up-regulation of LC3 in TGF-β1-treated MRC-5 cells, accompanied by significant decrease in the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In addition, the inhibitory effects of ISL on TGF-β1-induced fibrogenic features in MRC-5 cells were enhanced by pretreatment with autophagy activator Rapmycin and PI3K/AKT inhibitor LY294002 and reversed by autophagy inhibitor 3-methyladenine and PI3K/AKT activator IGF-1. Taken together, our results demonstrated that ISL could attenuate the fibrogenesis of TGF-β1-treated MRC-5 cells by activating autophagy via suppressing the PI3K/AKT/mTOR pathway. Therefore, ISL holds a great potential to be developed as a novel therapeutic agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jinjuan He
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Bin Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xueqin Cheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Leyong Yuan
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Fenglin Cai
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
17
|
Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, Li Z, Pu L, Zhao X, Zhang T, Dong Z. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY) 2020; 12:9085-9102. [PMID: 32453709 PMCID: PMC7288977 DOI: 10.18632/aging.103176] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis (PF) is a lethal fibrotic lung disease. The role of lncRNAs in multiple diseases has been confirmed, but the role and mechanism of lncRNA zinc finger antisense 1 (ZFAS1) in the progression of PF need to be elucidated further. Here, we found that lncRNA ZFAS1 was upregulated in bleomycin (BLM)-induced PF rats lung tissues and transforming growth factor-β1 (TGF-β1)-treated HFL1 cells, and positively correlated with the expression of solute carrier family 38 member 1 (SLC38A1), which is an important regulator of lipid peroxidation. Moreover, knockdown of lncRNA ZFAS1 significantly alleviated TGF-β1-induced fibroblast activation, inflammation and lipid peroxidation. In vivo experiments showed that inhibition of lncRNA ZFAS1 abolished BLM-induced lipid peroxidation and PF development. Mechanistically, silencing of lncRNA ZFAS1 attenuated ferroptosis and PF progression by lncRNA ZFAS1 acting as a competing endogenous RNA (ceRNA) and sponging miR-150-5p to downregulate SLC38A1 expression. Collectively, our studies demonstrated the role of the lncRNA ZFAS1/miR-150-5p/SLC38A1 axis in the progression of PF, and may provide a new biomarker for the treatment of PF patients.
Collapse
Affiliation(s)
- Yanni Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Nihong Lu
- Department of Respiratory, The Third People's Hospital of Kunming, Kunming 650041, Yunnan, China
| | - Ting Li
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Yongjun Liu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Wenjuan Wu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zhengkun Li
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Lin Pu
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Xiaoyuan Zhao
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Tao Zhang
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| | - Zhaoxing Dong
- Department of Respiratory, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China
| |
Collapse
|
18
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
19
|
Mangoni AA, Eynde JJV, Jampilek J, Hadjipavlou-Litina D, Liu H, Reynisson J, Sousa ME, Gomes PAC, Prokai-Tatrai K, Tuccinardi T, Sabatier JM, Luque FJ, Rautio J, Karaman R, Vasconcelos MH, Gemma S, Galdiero S, Hulme C, Collina S, Gütschow M, Kokotos G, Siciliano C, Capasso R, Agrofoglio LA, Ragno R, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-5. Molecules 2019; 24:molecules24132415. [PMID: 31262039 PMCID: PMC6650823 DOI: 10.3390/molecules24132415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jean Jacques Vanden Eynde
- Formerly head of the Department of Organic Chemistry (FS), University of Mons-UMONS, 7000 Mons, Belgium
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jóhannes Reynisson
- School of Pharmacy, Keele University, Hornbeam building, Staffordshire ST5 5BG, UK
| | - Maria Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências, Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N 4450-208 Matosinhos, Portugal
| | - Paula A C Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard - CS80011, 13344 Marseille CEDEX 15, France
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Jarkko Rautio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Rafik Karaman
- Pharmaceutical & Medicinal Chemistry Department, Faculty of Pharmacy, Al-Quds University, POB 20002 Jerusalem, Palestine
- Department of Sciences, University of Basilicata, Viadell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - M Helena Vasconcelos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Drug Resistance Group-IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP-Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sandra Gemma
- Department of Biotechnology, chemistry and pharmacy, University of Siena via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Christopher Hulme
- Department of Pharmacology and Toxicology, and Department of Chemistry and Biochemistry, College of Pharmacy, The University of Arizona, Biological Sciences West Room 351, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Simona Collina
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53115 Bonn, Germany
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Arcavacata di Rende, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Luigi A Agrofoglio
- ICOA, CNRS UMR 7311, Universite d'Orleans, Rue de Chartres, 45067 Orleans CEDEX 2, France
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|