1
|
Serra D, Garroni G, Cruciani S, Coradduzza D, Pashchenko A, Amler E, Pintore G, Parisse P, Satta R, Martini F, Tognon M, Brunetti A, Ventura C, Maioli M. PVA and PVP nanofibers combined with Helichrysum italicum oil preserve skin cell interactions, elasticity and proliferation. Sci Rep 2025; 15:10864. [PMID: 40158043 PMCID: PMC11954863 DOI: 10.1038/s41598-025-95788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Development of electrospun nanofibers with suitable properties to promote wound healing is an advantage in developing non-invasive skin treatments. We showed the potential application of Polyvinyl acetate (PVA) and Polyvinylpyrrolidone (PVP) combined with Helichrysum italicum oil (HO) in wound healing. During this process, Tight junctions (TJs) play a crucial role in maintaining skin integrity. TJs are intercellular junctions composed of a variety of transmembrane proteins, including Occludin (OCLN), observed also in migrating epithelial cells. Changes in OCLN expression affect epidermal permeability, indicating an active role in the healing process. Within this context, we studied the OCLN expression during healing after scratch assay on Keratinocytes (HaCaT), by a confocal microscopic analysis. In addition, we evaluated the effect of treatment after scratch on cell elasticity by Atomic Force Microscopy (AFM) analysis. All results show a positive trend in cell proliferation and viability on HaCaT treated with functionalized nanofibers. These results were confirmed by the expression of genes involved in the early stages of the regenerative process. Understanding the cell mechanisms involved in skin changes during repair process would allow future application of nanomaterials combined with HO in vivo.
Collapse
Affiliation(s)
- Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
- R&D Laboratory Center, InoCure s.r.o., Politických Veziu 935/13, 110 00, Prague, Czech Republic
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Aleksei Pashchenko
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
- Department of Biophysics, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43, Bustehrad, Czech Republic
| | - Evzen Amler
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43, Bustehrad, Czech Republic
- Student Science, Národních hrdinů 279, 190 12, Praha 9, Czech Republic
| | - Giorgio Pintore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Pietro Parisse
- Institute of Materials (IOM-CNR), Area Science Park, 34149, Basovizza, Trieste, Italy
| | - Rosanna Satta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100, Sassari, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Brunetti
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering - Eldor Lab Istituto Nazionale Biostrutture e Biosistemi, Via Di Corticella 183, 40128, Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
- Department of Biomedical Sciences, Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Dessì D, Fais G, Follesa P, Sarais G. Neuroprotective Effects of Myrtle Berry By-Product Extracts on 6-OHDA-Induced Cytotoxicity in PC12 Cells. Antioxidants (Basel) 2025; 14:88. [PMID: 39857422 PMCID: PMC11759165 DOI: 10.3390/antiox14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions. Myrtus communis L., a Mediterranean plant primarily used in liquor production, generates significant waste rich in antioxidant and anti-inflammatory properties. This study explores the neuroprotective potential of Myrtus berry by-products in a cellular model of neurodegeneration. Using PC12 cells exposed to 6-hydroxydopamine (6-OHDA), we assessed cell viability via MTT assay and measured reactive oxygen species (ROS) production using DCFDA fluorescence. Additionally, we analyzed the expression of genes linked to oxidative stress and neuronal function, including AChE, PON2, Grin1, Gabrd, and c-fos, by RT-PCR. Our findings reveal that Myrtus extract significantly protects against 6-OHDA-induced cytotoxicity, reduces ROS levels, and modulates the expression of key stress-related genes, underscoring its potential as a neuroprotective agent. These results highlight the therapeutic promise of Myrtus extracts in mitigating neurodegenerative processes, paving the way for future interventions.
Collapse
Affiliation(s)
- Debora Dessì
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy;
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Al-Snafi AE, Teibo JO, Shaheen HM, Akinfe OA, Teibo TKA, Emieseimokumo N, Elfiky MM, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M, Mahana HAM, Younes AM, Elbanna OA, Qasem AEAR, Shahin IYI, Batiha GES. The therapeutic value of Myrtus communis L.: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4579-4600. [PMID: 38319389 PMCID: PMC11166855 DOI: 10.1007/s00210-024-02958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Myrtus communis L. (Family: Myrtaceae) is naturally found in the western part of Asia, Southern Europe, and North Africa. It has been reportedly applied in pharmaceutical industry, traditional medicine, cosmetics, spices, and food. Pubmed, Google scholar, Web of Science, and Scopus were utilized to seek out relevant content concerning the therapeutic potential of M. communis. Subsequently, we conducted a review to identity noteworthy updates pertaining to M. communis. Myrtle berries, leaves, seeds, and essential oils are natural sources of several nutrients and bioactive compounds with marked health effects. The chemical analysis showed that M. communis contained oils, alkaloids, flavonoids, phenolics, coumarins, saponosides, tannins, quinines, and anthraquinones. A pharmacological investigation revealed that M. communis possessed anti-inflammatory, analgesic, antimicrobial, antiparasitic, antioxidant, antidiabetic, anticancer, antimutagenic, immunomodulatory, dermatological, cardiovascular, central nervous system, and gastrointestinal protective effects, among numerous other biological effects. This current review focused on the biochemical, pharmacological, therapeutic effects, and various biological activities of different parts of M. communis. It signifies that M. communis is a therapeutic plant with numerous applications in medicine and could be used as a drug isolate based on its safety and effectiveness.
Collapse
Affiliation(s)
- Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Numonde Emieseimokumo
- Department of Medical Biochemistry, Rivers State University, Rivers State, Port Harcourt, Nigeria
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hitham Alaa Mohammed Mahana
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ahmed Maher Younes
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Osama Ashraf Elbanna
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Abd-Elrahman Ali Radwan Qasem
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Ibrahim Yasser Ibrahim Shahin
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
Gammoh O, Akasheh RT, Qnais E, Al-Taber S, Athamneh RY, Hafiz AA, Alqudah A, Aljabali AAA, Tambuwala MM. Unraveling the potential of vitamins C and D as adjuvants in depression treatment with escitalopram in an LPS animal model. Inflammopharmacology 2024; 32:1147-1157. [PMID: 38180676 PMCID: PMC11006785 DOI: 10.1007/s10787-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024]
Abstract
Depression is linked with oxidative stress and inflammation, where key players include nitric oxide (NO), nuclear factor erythroid 2-related factor 2 (Nrf2), Brain-Derived Neurotrophic Factor (BDNF), and Heme Oxidase-1 (HO-1). Augmenting the efficacy of antidepressants represents a compelling avenue of exploration. We explored the potential of vitamins C and D as adjuncts to escitalopram (Esc) in a lipopolysaccharide (LPS)-induced depression model focusing on the aforementioned biomarkers. Male Swiss albino mice were stratified into distinct groups: control, LPS, LPS + Esc, LPS + Esc + Vit C, LPS + Esc + Vit D, and LPS + Esc + Vit C + Vit D. After a 7-day treatment period, a single LPS dose (2 mg/kg), was administered, followed by comprehensive assessments of behavior and biochemical parameters. Notably, a statistically significant (p < 0.05) alleviation of depressive symptoms was discerned in the Esc + Vit C + Vit D group versus the LPS group, albeit with concomitant pronounced sedation evident in all LPS-treated groups (p < 0.05). Within the cortex, LPS reduced (p < 0.05) the expression levels of NOx, Nrf2, BDNF, and HO-1, with only HO-1 being reinstated to baseline in the LPS + Esc + Vit D and the LPS + Esc + Vit C + Vit D groups. Conversely, the hippocampal NOx, Nrf2, and HO-1 levels remained unaltered following LPS administration. Notably, the combination of Esc, Vit C, and Vit D effectively restored hippocampal BDNF levels, which had been diminished by Esc alone. In conclusion, vitamins C and D enhance the therapeutic effects of escitalopram through a mechanism independent of Nrf2. These findings underscore the imperative need for in-depth investigations.
Collapse
Affiliation(s)
- Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Al Yarmouk University, Irbid, Jordan.
| | - Rand T Akasheh
- Department of Nutrition and Dietetics, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sara Al-Taber
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa, 13133, Jordan
| | - Amin A Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm AI-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
5
|
Fadda A, Montoro P, D’Urso G, Ravasio N, Zaccheria F, Sanna D. Sustainable Extraction Methods Affect Metabolomics and Oxidative Stability of Myrtle Seed Oils Obtained from Myrtle Liqueur By-Products: An Electron Paramagnetic Resonance and Mass Spectrometry Approach. Antioxidants (Basel) 2023; 12:antiox12010154. [PMID: 36671016 PMCID: PMC9854790 DOI: 10.3390/antiox12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Myrtle liqueur production generates high amounts of by-products that can be employed for the extraction of bioactive compounds. Bio-based, non-toxic and biodegradable solvents (ethyl acetate and 2-methyltetrahydrofuran), and a mechanical extraction were applied to myrtle seeds, by-products of the liqueur production, to extract oils rich in phenolic compounds. The oils obtained were characterized for yield, peroxide value (PV), lipid composition, and total phenolic concentration (TPC). The phenolic profile of the oils, determined by LC-MS, the antioxidant activity, and the oxidative stability were also analyzed. A validated UHPLC-ESI-QTRAP-MS/MS analytical method in multiple reaction monitoring (MRM) mode was applied to quantify myricetin and its main derivatives in myrtle oils. The results pointed out clear differences among extraction methods on myricetin concentration. The oxidative stability of myrtle oils was studied with electron paramagnetic resonance (EPR) spectroscopy highlighting the effect of the extraction method on the oxidation status of the oils and the role of phenolic compounds in the evolution of radical species over time. A principal component analysis applied to LC-MS data highlighted strong differences among phenolic profiles of the oils and highlighted the role of myricetin in the oxidative stability of myrtle oils. Myrtle oil, obtained from the by-products of myrtle liqueur processing industry, extracted with sustainable and green methods might have potential application in food or cosmetic industries.
Collapse
Affiliation(s)
- Angela Fadda
- Institute of the Sciences of Food Productions, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-284-1714
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Nicoletta Ravasio
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council, Via Golgi 19, 20133 Milano, Italy
| | - Federica Zaccheria
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Sanna
- Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca, 3, 07100 Sassari, Italy
| |
Collapse
|
6
|
Cruciani S, Garroni G, Pala R, Barcessat ARP, Facchin F, Ventura C, Fozza C, Maioli M. Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. Eur J Cell Biol 2022; 101:151251. [PMID: 35772322 DOI: 10.1016/j.ejcb.2022.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system. Melatonin plays an important role as immunomodulatory and oncostatic hormone. In the present manuscript, we aimed at evaluating the activity of melatonin in modulating HSPC senescence, in the attempt to improve their hemopoietic regenerative potential. We exposed HSPCs to melatonin, in different conditions, and then analyzed the expression of genes regulating cell cycle and cell senescence. Moreover, we assessed cell senescence by β-galactosidase and telomerase activity. Our results showed the ability of melatonin to counteract HSPC senescence, thus paving the way for enhanced efficiency in their clinical application.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM).
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Ana Rita Pinheiro Barcessat
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Health and Biological Sciences Department, Federal University of Amapá, Macapá, Brazil.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), Innovation Accelerators, CNR, Bologna 40129, Italy.
| | - Claudio Fozza
- Blood Diseases Department of Clinical and Experimental Medicine University of Sassari, 07100 Sassari, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
7
|
The effects of vitamin D on learning and memory of hypothyroid juvenile rats and brain tissue acetylcholinesterase activity and oxidative stress indicators. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:337-351. [PMID: 34982186 DOI: 10.1007/s00210-021-02195-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023]
Abstract
Apart from a role as a key regulator of calcium/phosphate homeostasis, vitamin D (Vit D) is suggested to be a potential player in nervous system growth and function. This study aimed to assess the impacts of Vit D administration on memory impairment, oxidative damage, and acetylcholinesterase (AchE) overactivity in hypothyroid juvenile rats. The animals were randomly grouped as (1) Control; (2) Hypothyroid; (3) Hypothyroid-Vit D100, and (4) Hypothyroid-Vit D 500. Propylthiouracil (PTU) was added to their drinking water (0.05%) for 6 weeks, and Vit D (100 or 500 IU/kg) treatment was performed daily by gavage. Morris water maze (MWM) and passive avoidance (PA) tests were performed. The brains were removed under deep anesthesia, then the hippocampal and cortical tissues were separated to assess biochemical parameters. Hypothyroidism was significantly associated with learning and memory impairment in MWM and PA tests. Hypothyroidism was also accompanied by an elevation in AChE activity and malondialdehyde (MDA) content and a reduced level of thiol content and superoxide dismutase (SOD) activity in the brain. Treatment with Vit D recovered hypothyroidism-induced cognitive impairment and improved memory performance in MWM and PA tasks. On the other hand, Vit D alleviated AChE activity and MDA level, whereas increased SOD activity and thiol content in the hippocampal and cortical tissues. In conclusion, these outcomes suggest an association between the oral administrations of Vit D and learning and memory improvement of hypothyroid rats, which was accompanied by decreasing AChE activity and brain tissue oxidative damage.
Collapse
|
8
|
Bellu E, Medici S, Coradduzza D, Cruciani S, Amler E, Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:7095. [PMID: 34209468 PMCID: PMC8268279 DOI: 10.3390/ijms22137095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100 Sassari, Italy;
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
| | - Evzen Amler
- UCEEB, Czech Technical University, Trinecka 1024, 27343 Bustehrad, Czech Republic;
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (D.C.); (S.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Interuniversity Consortium I.N.B.B., Viale delle Medaglie d’Oro, 305, 00136 Roma, Italy
| |
Collapse
|
9
|
Bellu E, Cruciani S, Garroni G, Balzano F, Satta R, Montesu MA, Fadda A, Mulas M, Sarais G, Bandiera P, Ventura C, Kralovič M, Sabo J, Amler E, Maioli M. Natural Compounds and PCL Nanofibers: A Novel Tool to Counteract Stem Cell Senescence. Cells 2021; 10:cells10061415. [PMID: 34200247 PMCID: PMC8227046 DOI: 10.3390/cells10061415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonia Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Angela Fadda
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Maurizio Mulas
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy;
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Monserrato (Cagliari), Italy;
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering-Eldor Lab, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Martin Kralovič
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 04011 Košice, Slovakia;
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
- Correspondence: (E.A.); (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (S.C.); (G.G.); (F.B.); (P.B.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (E.A.); (M.M.)
| |
Collapse
|
10
|
Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis. Biomed Pharmacother 2021; 140:111679. [PMID: 34029952 DOI: 10.1016/j.biopha.2021.111679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
The use of doxorubicin (DOX) to treat various tumors is limited by its cardiotoxicity. This study aimed to investigate and compare the cardioprotective effects of nicotinamide (NAM) and alfacalcidol (1α(OH)D3), against DOX-induced cardiotoxicity. Sprague Dawley male rats received DOX (5 mg/kg, i.p.) once/week for four consecutive weeks. Treated groups received either NAM (600 mg/kg, p.o.) for 28 consecutive days or 1α(OH)D3 (0.5 ug/kg, i.p.) once/week for four consecutive weeks. DOX elicited marked cardiac tissue injury manifested by elevated serum cardiotoxicity indices, conduction and histopathological abnormalities. Both NAM and 1α(OH)D3 successfully reversed all these changes. From the mechanistic point of view, DOX provoked intense cytosolic and mitochondrial calcium (Ca2+) overload hence switching on calpain1 (CPN1) and mitochondrial-mediated apoptotic cascades as confirmed by upregulating Bax and caspase-3 while downregulating Bcl-2 expression. DOX also disrupted cardiac bioenergetics as evidenced by adenosine triphosphate (ATP) depletion and a declined ATP/ADP ratio. Moreover, DOX upregulated the Ca2+ sensor; calmodulin kinase II gamma (CaMKII-δ) which further contributed to cardiac damage. Interestingly, co-treatment with either NAM or 1α(OH)D3 reversed all DOX associated abnormalities by preserving Ca2+ homeostasis, replenishing ATP stores and obstructing apoptotic events. Additionally, DOX prompted nuclear factor kappa B (NF-κB) dependent inflammatory responses and subsequently upregulated interleukin-6 (IL-6) expression. Co-treatment with NAM or 1α(OH)D3 effectively obstructed these inflammatory signals. Remarkably, NAM showed superior beneficial cardioprotective properties over 1α(OH)D3. Both NAM and 1α(OH)D3 efficiently attenuated DOX-cardiomyopathy mainly via preserving Ca2+ homeostasis and diminishing apoptotic and inflammatory pathways. NAM definitely exhibited effective cardioprotective capabilities over 1α(OH)D3.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | - Amany I El-Brairy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Going "Green" in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols. J Clin Med 2021; 10:jcm10071490. [PMID: 33916712 PMCID: PMC8038361 DOI: 10.3390/jcm10071490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the 20th century processed and ready-to-eat foods became routinely consumed resulting in a sharp rise of fat, salt, and sugar intake in people's diets. Currently, the global incidence of obesity, raised blood lipids, hypertension, and diabetes in an increasingly aged population contributes to the rise of atherothrombotic events and cardiovascular diseases (CVD) mortality. Drug-based therapies are valuable strategies to tackle and help manage the socio-economic impact of atherothrombotic disorders though not without adverse side effects. The inclusion of fresh fruits and vegetables rich in flavonoids to human diets, as recommended by WHO offers a valuable nutritional strategy, alternative to drug-based therapies, to be explored in the prevention and management of atherothrombotic diseases at early stages. Though polyphenols are mostly associated to color and taste in foods, food flavonoids are emerging as modulators of cholesterol biosynthesis, appetite and food intake, blood pressure, platelet function, clot formation, and anti-inflammatory signaling, supporting the health-promoting effects of polyphenol-rich diets in mitigating the impact of risk factors in atherothrombotic disorders and CVD events. Here we overview the current knowledge on the effect of polyphenols particularly of flavonoid intake on the atherothrombotic risk factors and discuss the caveats and challenges involved with current experimental cell-based designs.
Collapse
|
12
|
Cruciani S, Trenta M, Rassu G, Garroni G, Petretto GL, Ventura C, Maioli M, Pintore G. Identifying a Role of Red and White Wine Extracts in Counteracting Skin Aging: Effects of Antioxidants on Fibroblast Behavior. Antioxidants (Basel) 2021; 10:227. [PMID: 33546215 PMCID: PMC7913355 DOI: 10.3390/antiox10020227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Dermal fibroblasts are the main actor in many proteins' secretion, including collagen, preserving skin function. Free radicals are involved in skin aging and damages involving different cellular components. The imbalance between reactive oxygen species (ROS) amount and natural antioxidant enzymes negatively affects skin homeostasis. Natural compounds have recently emerged as a potential anti-aging tool in tissue regeneration. In the present paper we evaluated the antioxidant activity of white and red wines, considering their probable use, as raw materials, for the formulation of cosmetic products with anti-aging properties. We studied a method that would allow the removal of the alcoholic fraction of wines and determined their composition by LC-MS analysis. We then tested the possible cytotoxic effects of red and white wines on fibroblasts by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, and their antioxidant activity by the catalase activity test in stressing conditions. Finally, we evaluated their anti-aging potential through the β-galactosidase colorimetric assay. Our results showed that wine extracts exhibit a remarkable antioxidant and anti-aging activity, especially on cells exposed to a marked stressful event. These properties could suggest their possible application as cosmetical products for skin regeneration.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Margherita Trenta
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100 Sassari, Italy; (M.T.); (G.R.); (G.L.P.); (G.P.)
| | - Giovanna Rassu
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100 Sassari, Italy; (M.T.); (G.R.); (G.L.P.); (G.P.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Giacomo Luigi Petretto
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100 Sassari, Italy; (M.T.); (G.R.); (G.L.P.); (G.P.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering-Eldor Lab, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100 Sassari, Italy; (M.T.); (G.R.); (G.L.P.); (G.P.)
| |
Collapse
|
13
|
Hydroxylumisterols, Photoproducts of Pre-Vitamin D3, Protect Human Keratinocytes against UVB-Induced Damage. Int J Mol Sci 2020; 21:ijms21249374. [PMID: 33317048 PMCID: PMC7763359 DOI: 10.3390/ijms21249374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Lumisterol (L3) is a stereoisomer of 7-dehydrocholesterol and is produced through the photochemical transformation of 7-dehydrocholesteol induced by high doses of UVB. L3 is enzymatically hydroxylated by CYP11A1, producing 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3. Hydroxylumisterols function as reverse agonists of the retinoic acid-related orphan receptors α and γ (RORα/γ) and can interact with the non-genomic binding site of the vitamin D receptor (VDR). These intracellular receptors are mediators of photoprotection and anti-inflammatory activity. In this study, we show that L3-hydroxyderivatives significantly increase the expression of VDR at the mRNA and protein levels in keratinocytes, both non-irradiated and after UVB irradiation. L3-hydroxyderivatives also altered mRNA and protein levels for RORα/γ in non-irradiated cells, while the expression was significantly decreased in UVB-irradiated cells. In UVB-irradiated keratinocytes, L3-hydroxyderivatives inhibited nuclear translocation of NFκB p65 by enhancing levels of IκBα in the cytosol. This anti-inflammatory activity mediated by L3-hydroxyderivatives through suppression of NFκB signaling resulted in the inhibition of the expression of UVB-induced inflammatory cytokines, including IL-17, IFN-γ, and TNF-α. The L3-hydroxyderivatives promoted differentiation of UVB-irradiated keratinocytes as determined from upregulation of the expression at the mRNA of involucrin (IVL), filaggrine (FLG), and keratin 14 (KRT14), downregulation of transglutaminase 1 (TGM1), keratins including KRT1, and KRT10, and stimulation of ILV expression at the protein level. We conclude that CYP11A1-derived hydroxylumisterols are promising photoprotective agents capable of suppressing UVB-induced inflammatory responses and restoring epidermal function through targeting the VDR and RORs.
Collapse
|
14
|
Bellu E, Garroni G, Cruciani S, Balzano F, Serra D, Satta R, Montesu MA, Fadda A, Mulas M, Sarais G, Bandiera P, Torreggiani E, Martini F, Tognon M, Ventura C, Beznoska J, Amler E, Maioli M. Smart Nanofibers with Natural Extracts Prevent Senescence Patterning in a Dynamic Cell Culture Model of Human Skin. Cells 2020; 9:E2530. [PMID: 33255167 PMCID: PMC7760051 DOI: 10.3390/cells9122530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.
Collapse
Affiliation(s)
- Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonia Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Angela Fadda
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Maurizio Mulas
- Department of Agriculture, University of Sassari, Via De Nicola 9, 07100 Sassari, Italy;
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy;
| | - Pasquale Bandiera
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
| | - Elena Torreggiani
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Fernanda Martini
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Mauro Tognon
- Department Medical Sciences, Section Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.T.); (F.M.); (M.T.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering-Eldor Lab, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Jiří Beznoska
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
| | - Evzen Amler
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic;
- UCEEB, Czech Technical University, Trinecka 1024, 273 43 Bustehrad, Czech Republic
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (E.B.); (G.G.); (S.C.); (F.B.); (D.S.); (P.B.)
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| |
Collapse
|
15
|
Nasir A, Khan M, Rehman Z, Khalil AAK, Farman S, Begum N, Irfan M, Sajjad W, Parveen Z. Evaluation of Alpha-Amylase Inhibitory, Antioxidant, and Antimicrobial Potential and Phytochemical Contents of Polygonum hydropiper L. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9070852. [PMID: 32640649 PMCID: PMC7412011 DOI: 10.3390/plants9070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Polygonum hydropiper L. is a traditionally used medicinal plant. The present study was designed to explore the α-amylase inhibitory, antioxidant, and antimicrobial activities of Polygonum hydropiper L. Polarity-based solvent extracts (n-hexane, acetone, chloroform, methanol, ethanol, and water) of Polygonum hydropiper leaves and stem were used. Antioxidant activity was assessed by free radical scavenging assay (FRAP) and 2,2-diphenylpicrylhydrazyl (DPPH) free radical scavenging activity methods. Quantitative phytochemical analyses suggested that the stem of Polygonum hydropiper L. contains higher levels of bioactive compounds than its leaves (p < 0.05). The results suggested that stem-derived extracts of Polygonum hydropiper L. are more active against bacterial species, including two Gram-positive and three Gram-negative strains. Moreover, our results showed that the bioactive compounds of Polygonum hydropiper L. significantly inhibit α-amylase activity. Finally, we reported the polarity-based solvent extracts of Polygonum hydropiper L. and revealed that the stem, rather than leaves, has a high antioxidant potential as measured by FRAP and DPPH assay with IC50 values of 1.38 and 1.59 mg/mL, respectively. It may also be deducted from the data that the Polygonum hydropiper L. could be a significant candidate, which should be subjected to further isolation and characterization, to be used as an antidiabetic, antimicrobial and antioxidant resource in many industries, like food, pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (A.N.); (M.K.); (S.F.); (N.B.)
- Department of Molecular Science and Technology, Ajou University, Suwan 16499, Korea
| | - Mushtaq Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (A.N.); (M.K.); (S.F.); (N.B.)
| | - Zainab Rehman
- Laboratory of Animal and Human Physiology, Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Saira Farman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (A.N.); (M.K.); (S.F.); (N.B.)
| | - Naeema Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (A.N.); (M.K.); (S.F.); (N.B.)
| | - Muhammad Irfan
- College of Dentistry, Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA;
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (A.N.); (M.K.); (S.F.); (N.B.)
| |
Collapse
|
16
|
Addis R, Cruciani S, Santaniello S, Bellu E, Sarais G, Ventura C, Maioli M, Pintore G. Fibroblast Proliferation and Migration in Wound Healing by Phytochemicals: Evidence for a Novel Synergic Outcome. Int J Med Sci 2020; 17:1030-1042. [PMID: 32410832 PMCID: PMC7211158 DOI: 10.7150/ijms.43986] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin.
Collapse
Affiliation(s)
- Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Emanuela Bellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy
| | - Giorgio Pintore
- Department of Chemistry and Pharmacy, University of Sassari, Via F. Muroni 23/b, 07100, Sassari, Italy
| |
Collapse
|
17
|
Cruciani S, Garroni G, Ginesu GC, Fadda A, Ventura C, Maioli M. Unravelling Cellular Mechanisms of Stem Cell Senescence: An Aid from Natural Bioactive Molecules. BIOLOGY 2020; 9:biology9030057. [PMID: 32244882 PMCID: PMC7150900 DOI: 10.3390/biology9030057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Cellular senescence plays a role in the onset of age-related pathologies and in the loss of tissue homeostasis. Natural compounds of food or plants exert an important antioxidant activity, counteracting the formation of harmful free radicals. In the presence of an intense stressing event, cells activate specific responses to counteract senescence or cell death. In the present paper, we aimed at evaluating the levels of expression of specific markers of senescence, in order to demonstrate that extracts from Myrtus Communis L. can prevent premature senescence in ADSCs exposed to oxidative stress. Cells were cultured in the presence of Myrtus extracts for 12-24 and 48 h and then incubated with H2O2 to induce senescence. We then evaluated the expression of senescence-related markers p16, p19, p21, p53, TERT, c-Myc, and the senescence-associated β-Galactoidase activity. Our results showed that pre-treatment with Myrtus extracts protects cells from premature senescence, by regulating the cell cycle, and inducing the expression of TERT and c-Myc. These findings suggest a potential application of these natural compounds in the prevention and treatment of various diseases, counteracting premature senescence and preserving tissue functions.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
| | - Giorgio Carlo Ginesu
- General Surgery Unit 2 “Clinica Chirurgica”, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy;
| | - Angela Fadda
- Instituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Traversa la Crucca 3, 07100 Sassari, Italy;
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (S.C.); (G.G.)
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy;
- Department of Biomedical Sciences, Center for Developmental Biology and Reprogramming (CEDEBIOR), University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy
- Correspondence: ; Tel.: +39-079-228-277
| |
Collapse
|
18
|
Mazzarello V, Gavini E, Rassu G, Donadu MG, Usai D, Piu G, Pomponi V, Sucato F, Zanetti S, Montesu MA. Clinical Assessment of New Topical Cream Containing Two Essential Oils Combined with Tretinoin in the Treatment of Acne. Clin Cosmet Investig Dermatol 2020; 13:233-239. [PMID: 32210603 PMCID: PMC7073433 DOI: 10.2147/ccid.s236956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Background Acne is a frequent adolescent disease characterized by inflammatory and non-inflammatory lesions whose topical treatment very often presents adverse phenomena such as irritation or resistance to antibiotics that reduce the patient’s compliance. The purpose of this study is to compare a commercial product (Acnatac gel) based on clindamycin-tretinoin (CTG) with a galenic compound containing 2 essential oils (Myrtus communisL. and Origanum vulgare) and tretinoin (MOTC) to evaluate its anti-acne effectiveness and action on the microclimate of the skin. Methods Sixty volunteers were randomly divided into an A group using MOTC and a B group, as a positive control, using CTG. The effectiveness was assessed with non-invasive skin analysis (Sebumeter, pH meter, Tewameter and Mexameter) and the counts of the number of lesions, after 15 and 30 days. Results In both groups, there is a worsening of transepidermal water loss (TEWL) due to tretinoin. MOTC has improved, starting from 15 days of treatment, the papular erythema (p = 0.0329 vs CTG) and has reduced at all times even the rashes of retinoids present in the healthy perilesional skin (p = 0.0329 and p = 0.0017, respectively, at 15 and 30 days). Conclusion MOTC has shown, compared to Acnatac, to have anti-acne efficacy and to possess an anti-inflammatory activity, due to essential oils, able to reduce in vivo erythematous lesions and those induced by retinoids.
Collapse
Affiliation(s)
- Vittorio Mazzarello
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Gavini
- Departmentof Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanna Rassu
- Departmentof Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Matthew Gavino Donadu
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Departmentof Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Donatella Usai
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Gabriella Piu
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valeria Pomponi
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Federica Sucato
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Stefania Zanetti
- Skinlab, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Antonia Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Leonti M, Bellot S, Zucca P, Rescigno A. Astringent drugs for bleedings and diarrhoea: The history of Cynomorium coccineum (Maltese Mushroom). JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112368. [PMID: 31678417 DOI: 10.1016/j.jep.2019.112368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical identity of the ancient vernacular cynomorium does not correspond to the modern scientific genus while it is not clear how many species of hipocistis (Cytinus sp.) were differentiated by the ancient physicians and whether Cynomorium coccineum was subsumed. The early history of therapeutic uses related to the herbal drugs derived from these parasitic taxa is therefore not easily accessible. Cynomorium coccineum became an important pharmaceutical commodity after the Siege of Malta but its importance decreased in the 18th century and now is considered obsolete. MATERIAL AND METHODS We compare the morphological, ecological and therapeutic information of Cynomorium and other parasitizing plant taxa across the past 2000 years and contextualize their uses with the pharmacological properties of their principal metabolites focusing on the raise and fall of C. coccineum as a medicine. RESULTS The therapeutic uses of C. coccineum, the Maltese mushroom, seem to become clearly traceable since the Canon of Medicine by Avicenna. Styptic and astringent drugs such as Cynomorium, Cytinus but also gall apples and many others have been selected for their protein-linking capacity leading to the formation of a protective layer on the mucous membranes, which can be used to reduce the secretion of water and electrolytes in case of diarrhoea, dysentery and external bleedings. Whether C. coccineum is effective as a systemically applied anti-haemorrhagic drug is questionable. CONCLUSION It appears that the vernacular cynomorium of the ancients corresponds to an edible Orobanche sp. while it remains doubtful whether the vernacular hipocistis was next to Cytinus sp. also applied to C. coccineum as evidence of C. coccineum parasitizing Cistus sp. is scarce. The isolation of gallic acid used as a styptic and the increasing availability of chemical styptics in the 18th century together with the availability of effective alternative anti-diarrhoeic drugs with a more reliable supply very probably led to the decline of the importance of the Maltese mushroom in pharmacy during the 18th century. The effectiveness of gallic acid as a systemic anti-haemorrhagic remains uncertain.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Sidonie Bellot
- Jodrell Laboratory, Royal Botanic Gardens Kew, TW9 3DS, Richmond, UK
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, CA, Italy.
| |
Collapse
|
20
|
Floris M, Cano A, Porru L, Addis R, Cambedda A, Idda ML, Steri M, Ventura C, Maioli M. Direct-to-Consumer Nutrigenetics Testing: An Overview. Nutrients 2020; 12:nu12020566. [PMID: 32098227 PMCID: PMC7071525 DOI: 10.3390/nu12020566] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/22/2023] Open
Abstract
At present, specialized companies offering genetic testing services without the involvement of clinicians are growing; this development is a direct consequence of the significant decrease in genotyping and sequencing costs. Online companies offer predictions about the risk of developing complex diseases during one's life course, and they offer suggestions for personal lifestyle. Several companies have been created that provide nutrigenetics services; these companies suggest dietary indications-a central issue in the prevention and etiopathogenesis of specific diseases-based on one's personal genetic background. Dietary patterns are defined on the basis of a limited set of genetic markers. In this article, we analyze the online nutrigenetics services offered by 45 companies worldwide, to obtain an overall picture of the costs, the types of nutritional traits considered and the level of scientific precision of the services proposed. Our analysis clearly highlights the need for specific guidelines, in order to ensure a set of minimum quality standards for the nutrigenetics services offered to the customer.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (A.C.); (L.P.); (A.C.)
- Institute for Genetic and Biomedical Research, National Research Council, traversa La Crucca 3, 07100 Sassari, Italy;
- Correspondence: (M.F.); (M.M.)
| | - Antonella Cano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (A.C.); (L.P.); (A.C.)
| | - Laura Porru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (A.C.); (L.P.); (A.C.)
| | - Roberta Addis
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy;
| | - Antonio Cambedda
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (A.C.); (L.P.); (A.C.)
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research, National Research Council, traversa La Crucca 3, 07100 Sassari, Italy;
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, SS 554 Km 4,500, Monserrato, 09042 Cagliari, Italy;
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (A.C.); (L.P.); (A.C.)
- Institute for Genetic and Biomedical Research, National Research Council, SS 554 Km 4,500, Monserrato, 09042 Cagliari, Italy;
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems–Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Correspondence: (M.F.); (M.M.)
| |
Collapse
|
21
|
Evaluation of anticancer effects of a pharmaceutically viable extract of a traditional polyherbal mixture against non-small-cell lung cancer cells. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:242-252. [PMID: 32139200 DOI: 10.1016/j.joim.2020.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present work tested organic solvents to prepare an extract with anticancer properties from a polyherbal mixture containing Nigella sativa (seeds), Hemidesmus indicus (roots) and Smilax glabra (rhizomes). We evaluate anticancer effects in non-small-cell lung cancer cells (NCI-H292), and discuss optimization for pharmaceutical use in the context of efficacy, yield and toxicity. METHODS Using different organic solvents, six extracts were prepared from the polyherbal mixture. Based on the cytotoxic effects of these extracts on NCI-H292 cells and normal lung cells (MRC-5), as evaluated by the sulphorhodamine B assay, the total ethyl acetate (T-EA) extract was selected for further analysis. The possible anticancer mechanisms were assessed by evaluating the extract's effects on apoptosis (through fluorescent microscopic analysis, DNA fragmentation analysis, caspase 3/7 assay and analysis of expression levels of apoptosis-related genes p53, Bax, survivin, Hsp70 and Hsp90), colony formation and antioxidant activity. RESULTS The extract had cytotoxic effects against NCI-H292 cells in a time- and dose-dependent manner. Significant antioxidant activity and inhibition of colony formation were also observed. The expression level of caspase 3/7 significantly (P < 0.001) increased in NCI-H292 cells treated with 50 μg/mL of the extract. The same dosage led to a significant increase in expression levels of Bax and p53 (P < 0.05 and P < 0.01 respectively), accompanied by a significant decrease (P < 0.0001) in survivin, Hsp70 and Hsp90. CONCLUSION T-EA extract of the above polyherbal mixture has cytotoxicity against NCI-H292 cells via induction of apoptosis, antioxidant effects and inhibition of colony formation.
Collapse
|
22
|
New Frontiers in Stem Cell Research and Translational Approaches. BIOLOGY 2020; 9:biology9010011. [PMID: 31947909 PMCID: PMC7168217 DOI: 10.3390/biology9010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
Stem cell biology represents a challenging research area with a huge potential translational approach. This review focuses on the most recent findings on stem cell basics and clinics in several fields of research, as final outcome of the 10th conference held by Stem Cell Research Italy (SCR Italy) in Naples, Italy in June 2019. Current state-of-the-art and novel findings on stem cell research are discussed, bringing together basic and applied research with the newest insights in stem cell therapy.
Collapse
|
23
|
Aleksandrova A, Nesterkina M, Gvozdii S, Kravchenko I. Phytochemical analysis and anti-inflammatory activity of Cladophora aegagropila extract. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: The aim of this research is centered on phytochemical analysis and anti-inflammatory activity of Cladophora aegagropila extract. Methods: Total flavonoid content in the appropriate ethanol extract of C. aegagropila was determined using the spectrometric method. Anti-inflammatory activity was evaluated by the models of carrageenan-induced and allyl isothiocyanate-induced (AITC-induced) inflammation of hind limb in rats. Experimental animals were divided into 3 groups, 5 animals each: 1st group – control; the animals without therapy of induced inflammation, 2nd group – animals were treated with application of 5% ointment containing C. aegagropila; 3rd group – animals were treated with application of 5% ibuprofen. Evaluation of anti-inflammatory activity was performed by determination of dynamic change of thickness and volume of affected animal limb for carrageenan-induced inflammation for 8 days (with daily registration of records), and for AITC induced inflammation for 24 h (with registration of records after 30 min, 1 h, 2 h, 3 h, 6 h and 24 h since phlogogen was introduced). Results: Flavonoids content in C. aegagropila extract varied depending on ethanol concentration: usage of 40% ethanol led to 18.2 mg of flavonoid recovery on 1.0 g of dry raw material; 70% ethanol – 39.5 mg and 96% ethanol – 35.5 mg. Therapy of 5% ointment based on C. aegagropila extract decreased inflammatory response caused by the subplantar introduction of the corresponding phlogogen. Conclusion: The ointment from C. aegagropila extract shows anti-inflammatory activity by inhibiting inflammation caused by AITC and carrageenan.
Collapse
Affiliation(s)
- Aleksandra Aleksandrova
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| | - Mariia Nesterkina
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| | - Svitlana Gvozdii
- Department of Human Health and Civil Safety, I.I. Mechnikov Odessa National University, Odessa, Ukraine
| | - Iryna Kravchenko
- Department of Organic and Pharmaceutical Technologies of Odessa National Polytechnic University, Odessa, Ukraine
| |
Collapse
|
24
|
Cruciani S, Santaniello S, Montella A, Ventura C, Maioli M. Orchestrating stem cell fate: Novel tools for regenerative medicine. World J Stem Cells 2019; 11:464-475. [PMID: 31523367 PMCID: PMC6716083 DOI: 10.4252/wjsc.v11.i8.464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells are undifferentiated cells able to acquire different phenotypes under specific stimuli. In vitro manipulation of these cells is focused on understanding stem cell behavior, proliferation and pluripotency. Latest advances in the field of stem cells concern epigenetics and its role in maintaining self-renewal and differentiation capabilities. Chemical and physical stimuli can modulate cell commitment, acting on gene expression of Oct-4, Sox-2 and Nanog, the main stemness markers, and tissue-lineage specific genes. This activation or repression is related to the activity of chromatin-remodeling factors and epigenetic regulators, new targets of many cell therapies. The aim of this review is to afford a view of the current state of in vitro and in vivo stem cell applications, highlighting the strategies used to influence stem cell commitment for current and future cell therapies. Identifying the molecular mechanisms controlling stem cell fate could open up novel strategies for tissue repairing processes and other clinical applications.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Operative Unit of Clinical Genetics and Developmental Biology, Sassari 07100, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna 40129, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari 09042, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
25
|
Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019; 11:pharmaceutics11050234. [PMID: 31091818 PMCID: PMC6572595 DOI: 10.3390/pharmaceutics11050234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
In view of the increasing interest in natural antimicrobial molecules, this study screened the ability of Thymus capitatus (TC) essential oil and Citrus limon var. pompia (CLP) extract as raw extracts or incorporated in vesicular nanocarriers against Streptococcus mutans and Candida albicans. After fingerprint, TC or CLP were mixed with lecithin and water to produce liposomes, or different ratios of water/glycerol or water/propylene glycol (PG) to produce glycerosomes and penetration enhancer vesicles (PEVs), respectively. Neither the raw extracts nor the nanovesicles showed cytotoxicity against human gingival fibroblasts at all the concentrations tested (1, 10, 100 μg/mL). The disc diffusion method, MIC-MBC/MFC, time-kill assay, and transmission electron microscopy (TEM) demonstrated the highest antimicrobial potential of TC against S. mutans and C. albicans. The very high presence of the phenol, carvacrol, in TC (90.1%) could explain the lethal effect against the yeast, killing up to 70% of Candida and not just arresting its growth. CLP, rich in polyphenols, acted in a similar way to TC in reducing S. mutans, while the data showed a fungistatic rather than a fungicidal activity. The phospholipid vesicles behaved similarly, suggesting that the transported extract was not the only factor to be considered in the outcomes, but also their components had an important role. Even if other investigations are necessary, TC and CLP incorporated in nanocarriers could be a promising and safe antimicrobial in caries prevention.
Collapse
|