1
|
Kong T, Li G, Zhao X, Shi E, Wang Y, Wu M, Zhao Y, Ma Y, Chu L. Polysaccharide edible film-the new star in food preservation: A review. Int J Biol Macromol 2025; 308:142716. [PMID: 40180108 DOI: 10.1016/j.ijbiomac.2025.142716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Polysaccharide edible film (PEF) plays an important role in protecting food from physical extrusion, chemical hazards and microbial invasion. In recent years, on the basis of ensuring food safety, consumers have put forward higher requirements for maintaining sensory characteristics and nutritional value of food in the process of storage and circulation. As a natural component with convenient preparation and rich sources, polysaccharides have antibacterial, anti-inflammatory, antioxidant and other biological activities. The edible preservative film based on polysaccharide has the advantages of environmental protection, safety and no residue. Considering the health of consumers and the sustainable development of the environment, the environment-friendly, safe and effective PEF has become an important material in the field of food preservation and a creative solution to the problem of food preservation. Based on this, review focuses on the application of PEF in the preservation of different kinds of food, and briefly expounds the mechanism of PEF in the preservation of food, the production methods and different types of PEF. At the same time, it summarizes the existing problems and future development prospects and directions of PEF. After years of in-depth research and application, PEF technology has shown an important role and application potential in the field of food preservation. This paper hopes to provide reference value for the further application of PEF in the field of food preservation.
Collapse
Affiliation(s)
- Tianyu Kong
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Gen Li
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Xiaodan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Enjuan Shi
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yixi Wang
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yan Zhao
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China
| | - Yinfei Ma
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| | - Le Chu
- Jinan Fruit Research Institute, China Supply and Marketing Cooperatives, Jinan 250014, China.
| |
Collapse
|
2
|
Chen X, Ding X, Huang Y, Zhao Y, Chen G, Xu X, Xu D, Jiao B, Zhao X, Liu G. Recent Advances in Polysaccharide-Based Nanocomposite Films for Fruit Preservation: Construction, Applications, and Challenges. Foods 2025; 14:1012. [PMID: 40232022 PMCID: PMC11941983 DOI: 10.3390/foods14061012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
With the constantly escalating demand for safe food packaging, the utilization of biodegradable polysaccharide-based nanocomposite films is being explored as an alternative to traditional petrochemical polymer films (polyvinyl alcohol, polybutylene succinate, etc.). Polysaccharide-based films have excellent mechanical properties, water vapor transmission rates, and other physical characteristics. Films can fulfill numerous demands for fruit packaging in daily life. Additionally, they can be loaded with various types of non-toxic and non-biocidal materials such as bioactive substances and metal nanomaterials. These materials enhance bacterial inhibition and reduce oxidation in fruits while maintaining fundamental packaging functionality. The article discusses the design and preparation strategies of polysaccharide-based nanocomposite films and their application in fruit preservation. The types of films, the addition of materials, and their mechanisms of action are further discussed. In addition, this research is crucial for fruit preservation efforts and for the preparation of polysaccharide-based films in both scientific research and industrial applications.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xin Ding
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yanyan Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Yiming Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Xiaomin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China (X.Z.)
| | - Xijuan Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China (X.Z.)
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| |
Collapse
|
3
|
Sharma A, Thakur A, Sharma A, Thakur M, Sharma S, Sharma H, Thakur R, Thakur D, Suhag R. Nano-edible coatings for quality enhancement and shelf-life extension of fruits and vegetables. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:397-412. [PMID: 39917353 PMCID: PMC11794942 DOI: 10.1007/s13197-024-06146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
In developing countries, significant fruit and vegetable losses stem from inadequate storage and mishandling during harvest. Employing edible coatings on agricultural products offers an alternative method to reduce these losses as it aids in controlling the flow of moisture and gases between the product and its immediate environment. A significant benefit of applying edible films and coatings to agricultural produce is the incorporation of active components to the biopolymer matrix, which can be consumed together with the food, improving its nutritional and sensory appeal as well as its safety. Producing edible coatings at the nanoscale level has become more prevalent since the introduction of nanotechnology. By decreasing the coating particles to a nanometric scale of 1 to 100 nanometers, nanotechnology offers an innovative approach for producing new edible coatings. Such nanomaterials exhibit unique and improved characteristics of slowing ripening and decay of fruit and have additional advantages like affordability, convenience of application, and use of natural ingredients. The primary objective of incorporating edible coatings with nanoparticles is to improve the mechanical and barrier qualities of the biopolymer. Despite the tremendous advancements in nutritional nanotechnology, little is known about the toxicity of nanomaterials and due to their potential for toxicity, nanomaterials require more characterization and strict regulations to be incorporating them along with food. This review provides a comprehensive understanding of nanocoatings, including its synthesis and application for fruits and vegetables quality enhancement and shelf-life extension.
Collapse
Affiliation(s)
- Arushi Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Abhishek Thakur
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Ananya Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Meenakshi Thakur
- Department of Basic Science, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Sakshi Sharma
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Himani Sharma
- Department of Biotechnology, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Rimpika Thakur
- Department of Fruit Science, College of Horticulture and Forestry, Dr. YS Parmar, University of Horticulture and Forestry, Thunag, Himachal Pradesh India
| | - Dhruv Thakur
- Department of Food Science and Technology, College of Horticulture and Forestry, Dr. YS Parmar University of Horticulture and Forestry, Hamirpur, Himachal Pradesh India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
4
|
Doan NT, Quan NV, Anh LH, Duc ND, Xuan TD. Exploring the Potential of Chitosan-Phytochemical Composites in Preventing the Contamination of Antibiotic-Resistant Bacteria on Food Surfaces: A Review. Molecules 2025; 30:455. [PMID: 39942558 PMCID: PMC11820375 DOI: 10.3390/molecules30030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/16/2025] Open
Abstract
The escalating presence of antibiotic-resistant bacteria (ARB) in food systems presents a pressing challenge, particularly in preventing contamination and ensuring food safety. Traditional sanitation methods, such as cooking and chemical disinfectants, provide effective means to reduce ARB, yet there is a growing need for additional preventive measures directly on food surfaces. This review explores the potential of chitosan-phytochemical composites (CPCs) as surface coatings to prevent the initial contamination of food by ARB, thereby offering a novel complementary approach to conventional food safety practices. Chitosan, combined with active plant-derived metabolites (phytochemicals), forms composites with notable antibacterial and antioxidant properties that enhance its protective effects. We examine CPC synthesis methodologies, including chemical modifications, free radical-induced grafting, and enzyme-mediated techniques, which enhance the stability and activity of CPCs against ARB. Highlighting recent findings on CPCs' antibacterial efficacy through minimum inhibitory concentrations (MIC) and zones of inhibition, this review underscores its potential to reduce ARB contamination risks on food surfaces, particularly in seafood, meat, and postharvest products. The insights provided here aim to encourage future strategies leveraging CPCs as a preventative surface treatment to mitigate ARB in food production and processing environments.
Collapse
Affiliation(s)
- Nguyen Thi Doan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Van Quan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - La Hoang Anh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| | - Nguyen Dang Duc
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Bach Mai Hospital, Hanoi 122000, Vietnam
| | - Tran Dang Xuan
- Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8529, Japan
| |
Collapse
|
5
|
Hejabi N, Fakhari A, Haeili M, Ghasempour Z. Pectin/gelatin-based bionanocomposite containing modified graphene quantum dots and carnauba wax as functional fillers for food packaging applications. J Food Sci 2025; 90:e17466. [PMID: 39832235 DOI: 10.1111/1750-3841.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025]
Abstract
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.635 nm and +0.647 mV, respectively. NG (0%-10%) and CW (0%-10%) were investigated for nanocomposite film preparation using central composite design. The lowest water vapor permeability of film samples was 1.74 × 10-10 g mm/h m2 kPa, which was obtained at 8.5% CW and 6% NG. The highest solubility rate (57%) was observed in the PG film with 10% NG. The incorporation of NG significantly amplified light absorbance at 280 nm. The antioxidant properties improved as NG content increased from 1.5% to 10%. Optimum condition for the fabrication of film sample was obtained at 8.5% NG and 8.5% CW. Adding NG led to a substantial enhancement in the tensile strength (up to 68.97%) and elongation at break (up to 40.20%). PG film with CW and NG reduced the viable cell count of Staphylococcus aureus and Klebsiella pneumoniae by 4- and 1.75-fold, respectively. The produced composite film combined with NG and CW can serve as suitable novel active packaging components for items prone to oxidation and bacterial spoilage to enhance their quality and longevity.
Collapse
Affiliation(s)
- Negin Hejabi
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashraf Fakhari
- Department of Radiology, Medical School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Mohamed SAA, Mekkey SD, Othman AM, El-Sakhawy M. Novel antimicrobial biodegradable composite films as packaging materials based on shellac/chitosan, and ZnAl 2O 4 or CuAl 2O 4 spinel nanoparticles. Sci Rep 2024; 14:27824. [PMID: 39537760 PMCID: PMC11561353 DOI: 10.1038/s41598-024-78261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
ZnAl2O4 and CuAl2O4 spinel nanoparticles were prepared by a modified Pechini method and used with the natural chitosan (CS) and shellac (SH) polymers to form novel composite membranes as promising food packaging materials. The selection of ZnAl2O4 and CuAl2O4 spinel nanoparticles was based on their antibacterial characteristics, availability, and economy. Using a straightforward and adaptable solution mixing and casting method, the bio-composites were created. The mechanical, physical, antibacterial, homogeneity and air permeability properties of composite films were investigated. The film structure was evaluated in terms of component interactions using FTIR spectra. The addition of 10% SH increased the tensile strength, percentage strain at maximum load, Young's modulus, and burst strength by 114-101%, 3.6-8.4, 103-119, and 179-153% for low and middle M.wt./CS respectively. Chitosan/shellac-CuAl2O4 composite has superior properties compared to ZnAl2O4 composite. In general, 0.05% spinel provides a composite having better qualities than that of 0.1 additions. Middle M.wt. chitosan provides a composite with superior properties compared to that of low M.wt. The incorporation of ZnAl2O4 or CuAl2O4 enhanced the thermal stability of the SH/CS composite. ZnAl2O4 provides superior thermal stability than CuAl2O4. When shellac/CS film structure is treated with the previously indicated ZnAl2O4 or CuAl2O4 formulation, the % swelling decreases along with an increasing in the gel fraction. The antimicrobial assessment using inhibition zone diameter and shake flask methods showed that a composite of 1:9 shellac/chitosan/0.05% of CuAl2O4 exerted the highest Gram-positive antibacterial activity against B. mycoides (21 mm), and C. albicans (22 mm). So, these enhancements make chitosan/shellac/ZnAl2O4 or CuAl2O4 composite films a good alternative to producing food packaging materials.
Collapse
Affiliation(s)
- Salah A A Mohamed
- Packaging Materials Department, National Research Centre, 33 El-Bohouth Str., Dokki, P.O. 12622, Giza, Egypt
| | - Saleh D Mekkey
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Abdelmageed M Othman
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
- Faculty of Biotechnology, German International University, New Administrative Capital, Cairo, Egypt
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth Str., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
7
|
Olawade DB, Wada OZ, Ige AO. Advances and recent trends in plant-based materials and edible films: a mini-review. Front Chem 2024; 12:1441650. [PMID: 39233921 PMCID: PMC11371721 DOI: 10.3389/fchem.2024.1441650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Plant-based materials and edible films have emerged as promising alternatives to conventional packaging materials, offering sustainable and environmentally friendly solutions. This mini-review highlights the significance of plant-based materials derived from polysaccharides, proteins, and lipids, showcasing their renewable and biodegradable nature. The properties of edible films, including mechanical strength, barrier properties, optical characteristics, thermal stability, and shelf-life extension, are explored, showcasing their suitability for food packaging and other applications. Moreover, the application of 3D printing technology allows for customized designs and complex geometries, paving the way for personalized nutrition. Functionalization strategies, such as active and intelligent packaging, incorporation of bioactive compounds, and antimicrobial properties, are also discussed, offering additional functionalities and benefits. Challenges and future directions are identified, emphasizing the importance of sustainability, scalability, regulation, and performance optimization. The potential impact of plant-based materials and edible films is highlighted, ranging from reducing reliance on fossil fuels to mitigating plastic waste and promoting a circular economy. In conclusion, plant-based materials and edible films hold great potential in revolutionizing the packaging industry, offering sustainable alternatives to conventional materials. Embracing these innovations will contribute to reducing plastic waste, promoting a circular economy, and creating a sustainable and resilient planet.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom
- Department of Public Health, York St John University, London, United Kingdom
| | - Ojima Z Wada
- Division of Sustainable Development, College of Science and Engineering, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Hakami AA, Alorfi HS, Farghaly TA, Hussein MA. A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications. Des Monomers Polym 2024; 27:1-20. [PMID: 38756722 PMCID: PMC11097710 DOI: 10.1080/15685551.2024.2352897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
A new class of biologically active polyazomethine/pyrazole and their related nanocomposites, polyazomethine/pyrazole/zinc oxide nanoparticles, have been successfully synthesized through the polycondensation technique in the form of polyazomethine pyrazole (PAZm/Py4-6) and polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c). The polymeric nanocomposites were prepared with a 5% loading of zinc oxide nanofiller using the same preparation technique, in addition to the help of ultrasonic radiation. The characteristics of the new polymers, such as solubility, viscometry, and molecular weight, were examined. All the polymers were completely soluble in the following solvents: concentrated sulfuric acid, formic acid, dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran. Furthermore, the weight loss of the polyazomethine pyrazole (4, 5, and 6) at 800 °C was 67%, 95%, and 86%, respectively, which indicates the thermal stability of these polymers. At 800 °C, the polyazomethine/pyrazole/zinc oxide nanoparticles (a, b, and c) lost 74%, 68%, and 75% of their weight, respectively. This shows that adding zinc oxide nanoparticles made these compounds more stable at high temperatures. The X-Ray diffraction pattern of the polyazomethine pyrazole (PAZm/Py4-6) shows a number of sharp peaks with varying intensities. The polymers that were studied had straight crystal structures. Furthermore, the measurements of polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c) indicate a good merging of zinc oxide nanoparticles into the matrix of polymers. The antimicrobial activity of polymers and polymer nanocomposites was tested against some selected bacteria and fungi. The synthesized polymer (c) shows the highest activity against the two types of gram-negative bacteria selected. Most tested compounds were found to be effective against gram-positive bacteria except polyazomethine pyrazole (PAZm/Py5) and polyazomethine pyrazole (PAZm/Py6), which do not exhibit any activity. The synthesized polymers and their related nanocomposites were tested for their ability to kill the chosen fungi. All of them were effective against Aspergillus flavus, but only polyazomethine pyrazole (PAZm/Py4) and polyazomethine/pyrazole/zinc oxide (PAZm/Py/ZnOc) were effective against Candida albicans.
Collapse
Affiliation(s)
- Aqilah A. Hakami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hajar S. Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Bahmani R, Razavi F, Mortazavi SN, Gohari G, Juárez-Maldonado A. Enhancing Postharvest Quality and Shelf Life of Strawberries through Advanced Coating Technologies: A Comprehensive Investigation of Chitosan and Glycine Betaine Nanoparticle Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1136. [PMID: 38674545 PMCID: PMC11054076 DOI: 10.3390/plants13081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The application of natural polymer-based coatings presents a viable approach to prolong the longevity of fruits and tissue damage. This study investigates the impact of treatments involving glycine betaine (GB), chitosan (CTS), and chitosan-coated glycine betaine nanoparticles (CTS-GB NPs) on preserving the quality and reducing decay in strawberry fruits. The fruits were subjected to treatments with GB (1 mM), CTS (0.1%), CTS-GB NPs (0.1%), or distilled water at 20 °C for 5 min, followed by storage at 4 °C for 12 days. The results indicate that CTS and CTS-GB NPs treatments resulted in the highest tissue firmness, total anthocyanin content, and ascorbate peroxidase activity, while exhibiting the lowest decay percentage and weight loss, as well as reduced malondialdehyde levels at the end of storage. GB, CTS, and CTS-GB NPs treatments demonstrated elevated catalase activity and antioxidant capacity, coupled with lower electrolyte leakage and hydrogen peroxide levels. These treatments did not significantly differ from each other but were markedly different from the control. The results substantiate that CTS and CTS-GB NPs treatments effectively preserve strawberry quality and extend storage life by bolstering antioxidant capacity and mitigating free radical damage.
Collapse
Affiliation(s)
- Reza Bahmani
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Seyed Najmmaddin Mortazavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran; (R.B.); (F.R.); (S.N.M.)
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran;
| | | |
Collapse
|
10
|
Zhang L, Sathiyaseelan A, Zhang X, Lu Y, Wang MH. Development and Analysis of Silver Nitroprusside Nanoparticle-Incorporated Sodium Alginate Films for Banana Browning Prevention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:292. [PMID: 38334563 PMCID: PMC10856574 DOI: 10.3390/nano14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Banana (Musa acuminate) has been popular among consumers worldwide due to its rich nutrients and minerals. However, bananas are highly susceptible to the physical and biological factors that lead to postharvest loss during transportation and storage. In this work, novel sodium alginate (SA) films incorporated with silver nitroprusside nanoparticles (AgNNPs) were prepared to extend the shelf life of bananas through antibacterial and antioxidant coating. The results exhibited that AgNNPs were cubical and that their size was <500 nm, with metal composition being Ag and Fe. Additionally, the incorporation of AgNNPs in the SA film was seen in FE-SEM and zeta analysis, with an average size of about 365.6 nm. Furthermore, the functional and crystalline properties of AgNNPs were assessed through FTIR and XRD. Transmittance testing of the SA-AgNNPs films confirmed they have good UV barrier properties. SA-AgNNPs films exhibited excellent high antibacterial activity against foodborne pathogens including L. monocytogenes, S. enterica, and E. coli at the concentration of 500 µg/mL. Moreover, during the storage of bananas, SA-AgNNPs nanocomposite coatings act as a barrier to microbial contamination and slow down the ripening of bananas. As a result, compared with SA-coated and uncoated bananas, SA-AgNNPs-coated bananas exhibited the lowest weight loss and lowest total bacterial colonies, thus greatly extending their shelf life. Particularly when coated with SA-AgNNPs films, total bacterial colonies (TBC) in the banana peel and pulp were as low as 1.13 × 103 and 51 CUF/g on the ninth day of storage, respectively. Our work offers an efficient strategy to improve the quality of bananas during the postharvest period, with extensive applications in fruit preservation and food packing.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
- KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Mohammad ZH, Ahmad F. Nanocoating and its application as antimicrobials in the food industry: A review. Int J Biol Macromol 2024; 254:127906. [PMID: 37935295 DOI: 10.1016/j.ijbiomac.2023.127906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Nanocoatings are ultra-thin layers on the nanoscale (<100 nm) that are deposited on the substrate to improve their properties and functionality. These nanocoatings provide significant advantages compared to traditional coating, including stain resistance, antimicrobial and antioxidant activities, odor control and delivery of active agents, and liquid repellence properties. In the food industry, nanocoating is widely used in the food packaging sector. In this regard, nanocoating offers antimicrobials and antioxidant properties to active food packaging by incorporating active bioactive compounds into materials used in already existing packaging. The application of nanocoating is applied to these kinds of food packaging with nano coating to improve shelf life, safety, and quality of food packaging. In smart/intelligent packaging, the active packaging coating is promising food packaging, which is designed by releasing preservatives and nanocoating as an antimicrobial, antifungal, antioxidant, barrier coating, and self-cleaning food contact surfaces. In addition, nanocoating can be used for food contact surfaces, kitchen utensils, and food processing equipment to create antimicrobial, antireflective, and dirt-repellent properties. These are critical properties for food processing, especially for meat and dairy processing facilities, which can reduce biofilm formation and prevent cross-contamination. Recently, appreciable growth in the development of the application of nanocoating as edible films for coating food products has emerged to improve food safety issues. In this regard, much scientific research in the area of nanocoating fruits and vegetables, and other food products was performed to address food safety issues. Hence, this promising technology can be a great addition to the agricultural and food industries. Thus, this review addresses the most relevant information about this technology and the applications of nanocoating in the food industry.
Collapse
Affiliation(s)
- Zahra H Mohammad
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, TX 77204-3028, USA
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
12
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
13
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
14
|
Bizymis AP, Kalantzi S, Mamma D, Tzia C. Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation. Foods 2023; 12:4295. [PMID: 38231729 DOI: 10.3390/foods12234295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
The aim of this study was to examine the potential enhancement of the antimicrobial activity of edible films, composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%) and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5%), with silver nanoparticle (AgNP) incorporationat levels 5, 10 and 15% v/v. According to the results, the AgNP addition led to very high antimicrobial activity of both films, reducing by more than 96% the microbial growth of the Gram-negative bacterium Escherichia coli (E. coli) in all cases. On the other hand, by adding AgNPs to films, their thickness as well as oxygen and water vapor permeability decreased, while their transparency increased. Furthermore, the contribution of these specific edible films to preserve cherries under cold storage was investigated. All edible coatings resulted in an improvement of the fruit properties under consideration, and especially the color difference, hardness and total microbial load.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Zografou, Athens, Greece
| |
Collapse
|
15
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
16
|
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, Rangasamy G. Recent advances in edible coatings and their application in food packaging. Food Res Int 2023; 173:113366. [PMID: 37803705 DOI: 10.1016/j.foodres.2023.113366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
17
|
Abu Salha B, Perelshtein I, Gedanken A. Sonochemical treatment of packaging materials for prolonging fresh produce shelf life. Heliyon 2023; 9:e20834. [PMID: 37916128 PMCID: PMC10616144 DOI: 10.1016/j.heliyon.2023.e20834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques. The results showed that the coated bags had longer freshness than the uncoated ones. Furthermore, the characterization of cucumber, mushroom, and garlic placed into coated and uncoated PE bags was conducted by monitoring various parameters such as mass loss, total soluble solids, pH, and visual inspection. The study revealed that the PE bags coated with CS NPs showed a noticeable result in extending the shelf life of fresh produce. Finally, the antibacterial activity of PE bags was evaluated against various bacterial species. Hence, the PE bags coated with CS NPs could be a promising candidate for elongating the shelf life of packaged fresh produce.
Collapse
Affiliation(s)
- Belal Abu Salha
- Department of Chemistry, and the BINA center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ilana Perelshtein
- Department of Chemistry, and the BINA center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, and the BINA center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
18
|
Wypij M, Rai M, Zemljič LF, Bračič M, Hribernik S, Golińska P. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicine. Front Bioeng Biotechnol 2023; 11:1241739. [PMID: 37609118 PMCID: PMC10441246 DOI: 10.3389/fbioe.2023.1241739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, India
| | | | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Silvo Hribernik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
19
|
Kumar A, Yadav S, Pramanik J, Sivamaruthi BS, Jayeoye TJ, Prajapati BG, Chaiyasut C. Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications. Polymers (Basel) 2023; 15:3150. [PMID: 37571044 PMCID: PMC10421092 DOI: 10.3390/polym15153150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Chitin, which may be the second-most common polymer after cellulose, is the raw material of chitosan. Chitosan has been infused with various plant extracts and subsidiary polymers to improve its biological and physiological properties. Chitosan's physicochemical properties are enhanced by blending, making them potential candidates that can be utilized in multifunctional areas, including food processing, nutraceuticals, food quality monitoring, food packaging, and storage. Chitosan-based biomaterials are biocompatible, biodegradable, low toxic, mucoadhesive, and regulate chemical release. Therefore, they are used in the biomedical field. The present manuscript highlights the application of chitosan-based composites in the food and biomedical industries.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sangeeta Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong 793019, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Zheng B, Kou X, Liu C, Wang Y, Yu Y, Ma J, Liu Y, Xue Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem 2023; 407:135099. [PMID: 36508864 DOI: 10.1016/j.foodchem.2022.135099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
With higher demands for food packaging and the development of nanotechnology, nanopackaging is becoming a research hotspot in the field of food packaging because of its superb preservation effect, and it can effectively resist oxidation and regulates energy metabolism to maintain the quality and prolong the shelf life of mushrooms. Furthermore, under the background of SARS-CoV-2 pandemic, nanomaterials could be a potential tool to prevent virus transmission because of their excellent antiviral activities. However, the investigation and application of nanopackaging are facing many challenges including costs, environmental pollution, poor in-depth genetic research for mechanisms and so on. This article reviews the preservation effect and mechanisms of nanopackaging on the quality of mushrooms and discusses the trends and challenges of using these materials in food packaging technologies with the focus on nanotechnology and based on recent studies.
Collapse
Affiliation(s)
- Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Dynamiker Biotechnology(Tianjin) Co., Ltd., China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
21
|
Santos C, de Araújo Gonçalves M, de Macedo LF, Torres AHF, Marena GD, Chorilli M, Trovatti E. Green nanotechnology for the development of nanoparticles based on alginate associated with essential and vegetable oils for application in fruits and seeds protection. Int J Biol Macromol 2023; 232:123351. [PMID: 36702229 DOI: 10.1016/j.ijbiomac.2023.123351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Aiming to highlight the valorization of the natural products and the green synthesis processes, this work describes the development of a nanoscale system based on the use of alginate to encapsulate a blend of oils (vegetable and essential oils), not previously reported, with antibacterial and antioxidant actions. The study shows the influence of the polymer and surfactant concentrations on the physicochemical properties of the nanoparticles. The formulations were characterized by DLS, zeta potential, efficiency of encapsulation and stability. In addition, the antioxidant and antimicrobial properties of the systems were evaluated using the DPPH method and disk diffusion assays, respectively. The shelf life was studied by coating fruits and seeds. The results showed that the nanostructured system was stable, the efficiency of encapsulation was high and the nanoparticles size range was about 200-400 nm. The coating of fruits and seeds showed that the system was capable of inhibiting the growth of microorganisms and delaying the fruit maturation, indicating its potential for prolonging the shelf-life of fresh food.
Collapse
Affiliation(s)
- Carolina Santos
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - Manoela de Araújo Gonçalves
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - Larissa Ferreira de Macedo
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil
| | - André Henrique Furtado Torres
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil; Instituto de Química, Câmpus de Araraquara Rua Prof. Francisco Degni, 55 Quitandinha, Araraquara, SP 14800-060, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Eliane Trovatti
- Department of Health and Biological Sciences, University of Araraquara-UNIARA, Rua Carlos Gomes, 1217, Araraquara, São Paulo 14801-340, Brazil.
| |
Collapse
|
22
|
Impact of Longkong Pericarp Extract on the Physicochemical Properties of Alginate-Based Edible Nanoparticle Coatings and Quality Maintenance of Shrimp ( Penaeus monodon) during Refrigerated Storage. Foods 2023; 12:foods12051103. [PMID: 36900621 PMCID: PMC10000639 DOI: 10.3390/foods12051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to evaluate the impact of varying concentrations of longkong pericarp extract (LPE) on the physicochemical properties of alginate-based edible nanoparticle coatings (NP-ALG) on shrimp. For developing the nanoparticles, the alginate coating emulsion with different LPE concentrations (0.5, 1.0, and 1.5%) was ultrasonicated at 210 W with a frequency of 20 kHz for 10 min and a pulse duration of 1s on and 4 off. After that, the coating emulsion was separated into four treatments (T): T1: Coating solution containing basic ALG composition and without the addition of LPE or ultrasonication treatment; T2: ALG coating solution converted into nano-sized particles with ultrasonication and containing 0.5% LPE; T3: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.0% LPE; T4: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.5% LPE. A control (C) was also used, where distilled water was used instead of ALG coating. Before coating the shrimp, all the coating materials were tested for pH, viscosity, turbidity, whiteness index, particle size, and polydispersity index. The control samples had the highest pH and whiteness index and was followed by the lowest viscosity and turbidity (p < 0.05). Among the T1-T4 coating materials, T4 coating had higher turbidity, particle size, polydispersity index, but lower pH, viscosity, and whiteness index (p < 0.05). To study the quality and shelf-life of the shrimp, all coated shrimp samples were refrigerated at 4 °C for a period of 14 days. At 2-day intervals, physiochemical and microbial analyses were performed. The coated shrimp also had a lower increase in pH and weight loss over the storage period (p < 0.05). Coatings containing 1.5% LPE significantly reduced the polyphenol oxidase activity in the shrimp (p > 0.05). The addition of LPE to NP-ALG coatings demonstrated dose-dependent antioxidant activity against protein and lipid oxidation. The highest LPE concentration (1.5%) led to increased total and reactive sulfhydryl content, along with a significant decrease in carbonyl content, peroxide value, thiobarbituric acid reactive substances, p-anisidine, and totox values at the end of the storage period (p < 0.05). Additionally, NP-ALG-LPE coated shrimp samples exhibited an excellent antimicrobial property and significantly inhibited the growth of total viable count, lactic acid bacteria, Enterobacteriaceae, and psychotropic bacteria during storage. These results suggested that NP-ALG-LPE 1.5% coatings effectively maintained the quality as well as extended the shelf-life of shrimp during 14 days of refrigerated storage. Therefore, the use of nanoparticle-based LPE edible coating could be a new and effective way to maintain the quality of shrimp during prolonged storage.
Collapse
|
23
|
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. EXPLORATION (BEIJING, CHINA) 2023; 3:20210117. [PMID: 37323620 PMCID: PMC10191045 DOI: 10.1002/exp.20210117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infection has become one of the leading causes of death worldwide, particularly in low-income countries. Despite the fact that antibiotics have provided successful management in bacterial infections, the long-term overconsumption and abuse of antibiotics has contributed to the emergence of multidrug resistant bacteria. To address this challenge, nanomaterials with intrinsic antibacterial properties or that serve as drug carriers have been substantially developed as an alternative to fight against bacterial infection. Systematically and deeply understanding the antibacterial mechanisms of nanomaterials is extremely important for designing new therapeutics. Recently, nanomaterials-mediated targeted bacteria depletion in either a passive or active manner is one of the most promising approaches for antibacterial treatment by increasing local concentration around bacterial cells to enhance inhibitory activity and reduce side effects. Passive targeting approach is widely explored by searching nanomaterial-based alternatives to antibiotics, while active targeting strategy relies on biomimetic or biomolecular surface feature that can selectively recognize targeted bacteria. In this review article, we summarize the recent developments in the field of targeted antibacterial therapy based on nanomaterials, which will promote more innovative thinking focusing on the treatment of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- The Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
- Qingdao Cancer InstituteQingdao UniversityQingdaoChina
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
24
|
Xing Y, Fan X, Li X, Xu Q, Tang J, Wu L, Wang Q, Bi X, Liu X. Green synthesized TiO 2 nanoparticles: Structural characterization and photoinduced antifungal activity against P. steckii. J Food Sci 2023; 88:328-340. [PMID: 36510379 DOI: 10.1111/1750-3841.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
This study synthesized titanium dioxide (TiO2 ) nanoparticles (NPs) from mango leaf extract and investigated the features and antibacterial capabilities of three different. The microscopic morphological observation, scanning electron microscopy, and transmission electron microscopy results showed that all three NPs showed agglomeration phenomenon, and the TN-1 sample existed as large agglomerates, whereas the agglomeration phenomenon of TN-3 sample was improved by the modified, without large agglomerates. The biosynthetic TN-2 and TN-3 NPs were spherical and uniform in size, whereas those of the TN-3 sample was the smallest, ranging from 10 to 30 nm. X-ray diffraction and Raman spectroscopy results exhibited that these were highly pure anatase NPs. The result of ultraviolet (UV)-visible-near-infrared spectral analysis showed that the TN-2 and TN-3 samples displayed higher UV absorption properties than the TN-1 samples and were highest in the modified NPs, which was more suitable for preparing chitosan-based nanocomposite material in future experiments and studies. The colony diameters of the TN-1, TN-2, and TN-3 treatment groups were 7.99, 7.80, and 6.86 mm, respectively, after 120 min of UV light induction at a wavelength of 365 nm. Significant differences were evident between the TN-3 and the other two groups (p < 0.05), indicating that the TN-3 sample more effectively inhibited Penicillium steckii than the other TiO2 NPs. PRACTICAL APPLICATION: Nanomaterials coated film preservation is widely used in fruit and vegetable preservation. In this paper, TiO2 nanomaterials will be green synthesized using mango leaf and structurally characterized, whereas antibacterial tests will be conducted against the mango fruit-specific bacterium Penicillium steckii, which will provide a theoretical basis for the storage and preservation of mango.
Collapse
Affiliation(s)
- Yage Xing
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiangfeng Fan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xuanlin Li
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Qinglian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Jing Tang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Lin Wu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Qi Wang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiufang Bi
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| | - Xiaocui Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu, China.,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute, Yibin, China
| |
Collapse
|
25
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Addition of montmorillonite to improve the barrier and wetting properties of chitosan-based coatings and the application on the preservation of Shatang mandarin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Duarte LG, Picone CS. Antimicrobial activity of lactoferrin-chitosan-gellan nanoparticles and their influence on strawberry preservation. Food Res Int 2022; 159:111586. [DOI: 10.1016/j.foodres.2022.111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
|
28
|
Nanobiotechnology-mediated sustainable agriculture and post-harvest management. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
30
|
Taha IM, Zaghlool A, Nasr A, Nagib A, El Azab IH, Mersal GAM, Ibrahim MM, Fahmy A. Impact of Starch Coating Embedded with Silver Nanoparticles on Strawberry Storage Time. Polymers (Basel) 2022; 14:1439. [PMID: 35406312 PMCID: PMC9002491 DOI: 10.3390/polym14071439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
The strawberry has a very short postharvest life due to its fast softening and decomposition. The goal of this research is to see how well a starch-silver nanoparticle (St-AgNPs) coating affects the physical, chemical, and microbiological qualities of strawberries during postharvest life. Additionally, the effect of washing with running water on silver concentration in coated strawberry fruit was studied by an inductively coupled plasma-optical emission spectrometer (ICP-OES). Furthermore, the shelf-life period was calculated in relation to the temperature of storage. Fourier transform infrared-attenuated total reflectance (FTIR-ATR), UV-Visible, and Transmission Electron Microscopic (TEM) were used to investigate the structure of starch-silver materials, the size and shape of AgNPs, respectively. The AgNPs were spherical, with an average size range of 12.7 nm. The coated samples had the lowest weight loss, decay, and microbial counts as compared to the uncoated sample. They had higher total acidity and anthocyanin contents as well. The washing process led to the almost complete removal of silver particles by rates ranging from 98.86 to 99.10%. Finally, the coating maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage.
Collapse
Affiliation(s)
- Ibrahim M Taha
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman Zaghlool
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ali Nasr
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ashraf Nagib
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Fahmy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
31
|
|
32
|
Haddar A, Ben Ayed E, Sila A, Putaux JL, Bougatef A, Boufi S. Hybrid levan-Ag/AgCl nanoparticles produced by UV-irradiation: properties, antibacterial efficiency and application in bioactive poly(vinyl alcohol) films. RSC Adv 2021; 11:38990-39003. [PMID: 35492492 PMCID: PMC9044478 DOI: 10.1039/d1ra07852f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Abstract
Foodborne diseases caused by resistance of microorganisms to multiple antimicrobial agents have emerged as a major public health concern around the world. The search for potential antimicrobials has resulted in the emergence of metal nanoparticles for protection against these infections. In this study an eco-friendly and green approach was used to biosynthesize hybrid Ag/AgCl nanoparticles (NPs), using levan from Bacillus mojavensis as a stabilizing/reducing agent, with a high efficiency against a broad spectrum of foodborne bacteria as well as biofilm formations. The morphology and physicochemical characteristics of levan-Ag/AgCl NPs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis spectroscopy (UV), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The hybrid levan-Ag/AgCl was evaluated for antibacterial activity against foodborne pathogenic bacteria (Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes, Enterococcus faecalis, Bacillus subtilis and Bacillus thuringiensis). The study demonstrated the strong efficiency of hybrid levan-Ag/AgCl NPs as a potent inhibitor against all tested strains, with much higher activity against Gram-negative than Gram-positive bacteria. Furthermore, bacterial strains were found to be highly sensitive to hybrid levan-Ag/AgCl NPs in comparison to the tested antibiotics. As a possible application of levan-Ag/AgCl NPs as an additive in packaging, PVA films with different amounts of hybrid levan-Ag/AgCl NPs were prepared by casting and their antibacterial, mechanical, and optical properties and ability to expand the shelf life of beef meat were explored. Interestingly, the amount of Ag leached out from films was below the permissible limit. This work demonstrates the strong antibacterial action of hybrid levan-Ag/AgCl NPs and their potential use in bioactive packaging material.
Collapse
Affiliation(s)
- Anissa Haddar
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- University of Sfax, High Institute of Biotechnology Sfax Tunisia
| | - Emna Ben Ayed
- University of Sfax, Faculty of Science, LMSE BP 802 3018 Sfax Tunisia
| | - Assaad Sila
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa University 2112 Gafsa Tunisia
| | | | - Ali Bougatef
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- University of Sfax, High Institute of Biotechnology Sfax Tunisia
| | - Sami Boufi
- University of Sfax, Faculty of Science, LMSE BP 802 3018 Sfax Tunisia
| |
Collapse
|
33
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
34
|
Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, Xu Q, Li X, Yu J. Characterization and Antimicrobial Activity of Silver Nanoparticles Synthesized with the Peel Extract of Mango. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5878. [PMID: 34640275 PMCID: PMC8510210 DOI: 10.3390/ma14195878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/05/2023]
Abstract
The green synthesis of silver nanoparticles (AgNPs) from biological waste, as well as their excellent antibacterial properties, is currently attracting significant research attention. This study synthesized AgNPs from different mango peel extract concentrations while investigating their characteristics and antibacterial properties. The results showed that the AgNPs were irregular with rod-like, spherical shapes and were detected in a range of 25 nm to 75 nm. The AgNPs displayed antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), showing a more significant impact when synthesized with 0.20 g/mL of mango peel extract. Therefore, the antibacterial effect of different diluted AgNP concentrations on the growth kinetic curves of E. coli and S. aureus after synthesis with 0.20 g/mL mango peel extract was analyzed. The results indicated that the AgNP antibacterial activity was higher against S. aureus than against E. coli, while the AgNP IC50 in these two strains was approximately 1.557 mg/mL and 2.335 mg/L, respectively. This research provides new insights regarding the use of postharvest mango byproducts and the potential for developing additional AgNP composite antibacterial materials for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xingmei Liao
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xiaocui Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Wenxiu Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Department of Agricultural Technology, Neijiang Vocational and Technical College, Neijiang 641000, China
| | - Ruihan Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jing Tang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Xuanlin Li
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bio-Engineering, Xihua University, Chengdu 610039, China; (Y.X.); (X.L.); (W.L.); (R.H.); (J.T.); (Q.X.); (X.L.)
- Key Laboratory of Food Non Thermal Technology, Engineering Technology Research Center of Food Non Thermal, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Jinze Yu
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China;
| |
Collapse
|
35
|
Zhang L, Zhang M, Mujumdar AS. New technology to overcome defects in production of fermented plant products- a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
M. Rangaraj V, Rambabu K, Banat F, Mittal V. Natural antioxidants-based edible active food packaging: An overview of current advancements. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Rodrigues JP, de Souza Coelho CC, Soares AG, Freitas-Silva O. Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnology 2021; 19:256. [PMID: 34446005 PMCID: PMC8393480 DOI: 10.1186/s12951-021-00996-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023] Open
Abstract
Due to the global rise of the human population, one of the top-most challenges for poor and developing nations is to use the food produces safely and sustainably. In this regard, the storage of surplus food (and derived products) without loss of freshness, nutrient stability, shelf life, and their parallel efficient utilization will surely boost the food production sector. One of the best technologies that have emerged within the last twenty years with applications in the packaging of food and industrial materials is the use of green mode-based synthesized nanoparticles (NPs). These NPs are stable, advantageous as well as eco-friendly. Over the several years, numerous publications have confirmed that these NPs exert antibacterial, antioxidant, and antifungal activity against a plethora of pathogens. The storage in metal-based NPs (M-NPs) does not hamper the food properties and packaging efficiency. Additionally, these M-NPs help in the improvement of properties including freshness indicators, mechanical properties, antibacterial and water vapor permeability during food packaging. As a result, the nano-technological application facilitates a simple, alternate, interactive as well as reliable technology. It even provides positive feedback to food industries and packaging markets. Taken together, the current review paper is an attempt to highlight the M-NPs for prominent applications of antimicrobial properties, nanosensors, and food packaging of food items. Additionally, some comparative reports associated with M-NPs mechanism of action, risks, toxicity, and overall future perspectives have also been made.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
40
|
Dong J, He Y, Zhang J, Wu Z. Tuning alginate-bentonite microcapsule size and structure for the regulated release of P. putida Rs-198. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Koko MY, Hassanin HA, Qi B, Han L, Lu K, Rokayya S, Harimana Y, Zhang S, Li Y. Hydrocolloids as Promising Additives for Food Formulation Consolidation: A Short Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marwa Y.F. Koko
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hinawi A.M. Hassanin
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lu Han
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Keyang Lu
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Sami Rokayya
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yves Harimana
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Zhang
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Food, Grease, and Vegetable Protein Engineering, School of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, shirani N, Musavi SH. Edible coating and films as promising packaging: a mini review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00979-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02666-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Stylianakis MM. Distinguished Contributions in the Fields of Biomedical and Environmental Applications Incorporating Nanostructured Materials and Composites in Journal Molecules. Molecules 2021; 26:2112. [PMID: 33917012 PMCID: PMC8067710 DOI: 10.3390/molecules26082112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
During the last two years, over 10,000 papers (articles, reviews, communications etc.) were published in Molecules [...].
Collapse
Affiliation(s)
- Minas M Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Crete, Greece
| |
Collapse
|
46
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
47
|
Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
49
|
Synthesis, Characterization of Ag-SiO2 Nanocomposite and Its Application in Food Packaging. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01853-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int J Biol Macromol 2020; 164:304-320. [DOI: 10.1016/j.ijbiomac.2020.07.083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
|