1
|
Kom BTD, Ngoupaye GT, Yassi FB, Foutsop AF, Adassi BM, Ngoufack BS, Ngo Bum E. Antidepressant-like effects of the aqueous lyophilizate of the stems and leaves of Momordica foetida (Cucurbitaceae) in rats. IBRO Neurosci Rep 2025; 18:464-475. [PMID: 40162364 PMCID: PMC11952853 DOI: 10.1016/j.ibneur.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
M. foetida (Cucurbitaceae) is a perennial climbing herb, known in traditional medicine for the treatment of certain diseases, such as malaria, headaches, skin-related problems and many others. The objective of this work was to evaluate the antidepressant effect of the aqueous lyophilisate of the mixture of leaves and stem of M. foetida. The antidepressant effect of the aqueous lyophilisate of M. foetida at different doses (25 mg/kg, 50 mg/kg and 75 mg/kg) was evaluated in Wistar rats of both sexes submitted to chronic restriction for 14 days, using the forced swimming test, open field test and sucrose preference test. One hour following the last behavioural test, animals were sacrificed and their hippocampi were collected for biochemical assessment of oxidative parameters, including malondialdehyde (MDA), reduced Glutathione (GSH), Catalase activity, superoxide dismutase (SOD) and nitric oxide (NO) as well as monoamines levels including serotonin, noradrenaline and dopamine. The aqueous lyophilisate of M. foetida significantly decreased the immobility time and significantly increased sucrose consumption (P < 0.001), with no alteration of locomotor activity. The aqueous lyophilisate of M. foetida significantly increased the concentrations of GSH, SOD, as well as catalase activity, while reducing the concentrations of MDA and NO at all doses (P < 0.001). M. foetida at the doses 25 mg/kg and 50 mg/kg significantly increased the concentration of serotonin and dopamine. Only the dose 75 mg/kg significantly increased the concentration of noradrenaline (p < 0.001). These results suggest that M. foetida exerts antidepressant-like effects through the modulation of oxidative stress and monoaminergic pathways.
Collapse
Affiliation(s)
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, Dschang, Cameroon
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Aurelien Fossueh Foutsop
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, Dschang, Cameroon
| | - Blesdel Maxwell Adassi
- Department of Biological sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Brunel Steve Ngoufack
- Department of Animal Biology, Animal Physiology and Phytopharmacology Research Unit, University of Dschang, Dschang, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| |
Collapse
|
2
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Li P, Wu D, Yu X. Targeting dePARylation in cancer therapy. DNA Repair (Amst) 2025; 148:103824. [PMID: 40056493 DOI: 10.1016/j.dnarep.2025.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Poly(ADP-ribosyl)ation (PARylation), a reversible post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs), plays crucial roles in DNA replication and DNA damage repair. Since interfering PARylation induces selective cytotoxicity in tumor cells with homologous recombination defects, PARP inhibitors (PARPi) have significant clinical impacts in treating BRCA-mutant cancer patients. Likewise, dePARylation is also essential for optimal DNA damage response and genomic stability. This process is mediated by a group of dePARylation enzymes, such as poly(ADP-ribose) glycohydrolase (PARG). Currently, several novel PARG inhibitors have been developed and examined in preclinical and clinical studies, demonstrating promising anti-cancer activity distinct from PARP inhibitors. This review discusses the role of dePARylation in genome stability and the potential of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Girgin M, Kantarci-Carsibasi N. Queuine as a potential multi-target drug for alzheimer's disease: insights from protein dynamics. J Biomol Struct Dyn 2025; 43:1847-1868. [PMID: 38095566 DOI: 10.1080/07391102.2023.2293262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with a complex pathogenesis. One promising approach to treating AD is simultaneously targeting multiple aspects of the disease using a multi-target drug (MTD). In this study, multi-target drug (MTD) potential of the nutraceutical molecule Queuine was explored using molecular docking and molecular dynamics (MD) simulations with five different protein targets engaged in AD: AChE, beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1), N-methyl-D-aspartate receptor (NMDAR), monoamine oxidase A (MAO-A), and Synapsin III. Queuine revealed significant binding affinities, the docking scores being -10.1, -5.97, -5.63, -8.40, and -10.56 kcal/mol for AChE, BACE-1, NMDAR, MAO-A, and Synapsin III, respectively. MD simulations showed that Queuine formed stable complexes and preserved its stability throughout the simulation, the backbone fluctuations remaining within 2.5 Å specifically in the case of the BACE-1. Elastic network model simulations and principal component analysis were carried out to illustrate the dynamics of the protein systems. Significant hinge-bending and twisting-type motions that may be relevant to function were observed around the dimerization interfaces or binding sites. Structural clustering based on PCA analysis and cross-correlation maps demonstrated that Queuine binding altered the protein dynamics more drastically in the case of highly mobile proteins NMDAR and MAO-A. We propose that the neuroprotective effect of Queuine may stem from its prominent inhibitory action on enzymes BACE-1 and AChE. Our results suggest that Queuine may serve as a promising MTD candidate for the treatment of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Münteha Girgin
- Department of Chemical Engineering, Uskudar University, Istanbul, Turkey
| | | |
Collapse
|
5
|
Roy S, Roy SC, Zehravi M, Sweilam SH, Das R, Palanisamy M, Dantinapalli VLS, Elumalai S, Gupta JK, Alshehri MA, Asiri M, Ahmad I, Nafady MH, Emran TB. Exploring the neuroprotective benefits of phytochemicals extracted from indigenous edible fruits in Bangladesh. Animal Model Exp Med 2025; 8:239-265. [PMID: 39808386 PMCID: PMC11871099 DOI: 10.1002/ame2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders. This study provides an in-depth overview of the different types of edible fruit trees in Bangladesh and their phytochemicals, including flavonoids, terpenoids, and phenolic acids. This work examines the scientific data supporting the neuroprotective properties of bioactive chemicals from plants. It further explores the mechanisms by which these compounds work to counteract oxidative stress, decrease inflammation, and stimulate neurogenesis. Moreover, the study investigates toxicological characteristics and bioactive components of some fruits, emphasizing the importance of further investigation to measure their safety profile comprehensively. This thorough study highlights the potential benefits of Bangladesh's edible fruit trees as a rich source of neuroprotective chemicals. It also shows that additional research might lead to novel approaches for improving brain functioning and preventing NDs.
Collapse
Affiliation(s)
- Sumon Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityBadr CityCairoEgypt
| | - Rajib Das
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | | | | | | | | | | | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Mohamed H. Nafady
- Department of Radiology and Medical Imaging Technology, Faculty of Applied Health Science TechnologyMisr University for Science and TechnologyGizaEgypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhaka 1207Bangladesh
| |
Collapse
|
6
|
Dessì D, Fais G, Follesa P, Sarais G. Neuroprotective Effects of Myrtle Berry By-Product Extracts on 6-OHDA-Induced Cytotoxicity in PC12 Cells. Antioxidants (Basel) 2025; 14:88. [PMID: 39857422 PMCID: PMC11759165 DOI: 10.3390/antiox14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions. Myrtus communis L., a Mediterranean plant primarily used in liquor production, generates significant waste rich in antioxidant and anti-inflammatory properties. This study explores the neuroprotective potential of Myrtus berry by-products in a cellular model of neurodegeneration. Using PC12 cells exposed to 6-hydroxydopamine (6-OHDA), we assessed cell viability via MTT assay and measured reactive oxygen species (ROS) production using DCFDA fluorescence. Additionally, we analyzed the expression of genes linked to oxidative stress and neuronal function, including AChE, PON2, Grin1, Gabrd, and c-fos, by RT-PCR. Our findings reveal that Myrtus extract significantly protects against 6-OHDA-induced cytotoxicity, reduces ROS levels, and modulates the expression of key stress-related genes, underscoring its potential as a neuroprotective agent. These results highlight the therapeutic promise of Myrtus extracts in mitigating neurodegenerative processes, paving the way for future interventions.
Collapse
Affiliation(s)
- Debora Dessì
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy;
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
7
|
Enogieru AB, Olisah EC. Upregulation of caspase-3, oxidative stress, neurobehavioural and histological alterations in mercury chloride-exposed rats: role of aqueous Allium sativum bulb extract. J Mol Histol 2024; 56:20. [PMID: 39627442 DOI: 10.1007/s10735-024-10318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Mercury is a highly toxic metal that causes a variety of neurological disorders through oxidative stress. Allium sativum, a cooking spice in diverse cultures around the world, has a long history of medicinal use due to its rich antioxidant constituents. This study was designed to evaluate the protective activity of aqueous Allium sativum bulb extract (ASBE) on mercuric chloride (HgCl2)-induced neurotoxicity. Forty Wistar rats were randomly divided into five groups namely I (control), II (HgCl2; 4 mg/kg), III (250 mg/kg of ASBE and 4 mg/kg of HgCl2), IV (500 mg/kg of ASBE and 4 mg/kg of HgCl2) and V (500 mg/kg of Vitamin E and 4 mg/kg of HgCl2). At the end of the administration, neurobehavioural, antioxidant enzymes, lipid peroxidation and apoptotic activities as well as the histology of the cerebrum, cerebellum and hippocampus were assessed. Body and brain weights, locomotion, exploration, cognition, memory and antioxidant enzymes were significantly impaired (p < 0.05) in HgCl2-exposed rats following comparison to control. Lipid peroxidation, mercury concentration and caspase-3 activity were significantly upregulated (p < 0.05) in HgCl2-exposed rats following comparison to control. In addition, significant alterations to the histology of the cerebrum, cerebellum and hippocampus were observed in the HgCl2-exposed rats. Conversely, the adverse effects induced by HgCl2 were significantly attenuated (p < 0.05) following ASBE and Vitamin E pretreatment. Taken together, these results suggest that ABSE exerts its neuroprotective activity through its potent antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Adaze Bijou Enogieru
- Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin, Edo State, Nigeria.
| | | |
Collapse
|
8
|
Yulak F, Ergul M. Tannic acid protects neuroblastoma cells against hydrogen peroxide - triggered oxidative stress by suppressing oxidative stress and apoptosis. Brain Res 2024; 1844:149175. [PMID: 39168266 DOI: 10.1016/j.brainres.2024.149175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Recent investigations indicate that tannic acid is associated with a decrease in oxidative damage. Growing evidence supports the protective effects of tannic acid on the central nervous system (CNS). However, uncertainties persist regarding its influence on hydrogen peroxide (H2O2)-triggered oxidative impairment in nerve cells and its interaction with apoptosis. Hence, the objective of this work was to examine the neuroprotective impact of tannic acid on SH-SY5Y cell impairment following H2O2-induced oxidative stress, particularly concerning apoptotic pathways. The control group received no treatment, while the H2O2 group underwent treatment with 0.5 mM H2O2 for a duration of 24 h. The tannic acid group received treatment with different concentrations of tannic acid for a duration of 24 h. Meanwhile, the tannic acid + H2O2 group underwent pre-treatment with tannic acid for one hour and was subsequently subjected to 0.5 mM H2O2 for one day. Within the tannic acid + H2O2 group, the cell viability in SH-SY5Y cells was notably enhanced by tannic acid at concentrations of 2.5, 5, and 10 μM. It also resulted in a considerable rise in TAS (Total Antioxidant Status) levels and a concurrent decline in TOS (Total Oxidant Status) levels, serving as indicators of reduced oxidative stress. Additionally, tannic acid treatment resulted in decreased levels of apoptotic markers (Bax, cleaved PARP, and cleaved caspase 3) and oxidative DNA damage marker (8-oxo-dG), while increasing the anti-apoptotic marker Bcl-2. The findings from flow cytometry also revealed a significant reduction in the apoptosis rate following pretreatment with tannic acid. In summary, tannic acid demonstrates protective effects on SH-SY5Y cells in the face of H2O2-triggered oxidative damage by suppressing both oxidative stress and apoptosis. Nevertheless, additional research is warranted to assess the neuroprotective potential of tannic acid.
Collapse
Affiliation(s)
- Fatih Yulak
- Departments of Physiology, School of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey.
| | - Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey.
| |
Collapse
|
9
|
Gǎlbǎu CŞ, Irimie M, Neculau AE, Dima L, Pogačnik da Silva L, Vârciu M, Badea M. The Potential of Plant Extracts Used in Cosmetic Product Applications-Antioxidants Delivery and Mechanism of Actions. Antioxidants (Basel) 2024; 13:1425. [PMID: 39594566 PMCID: PMC11591253 DOI: 10.3390/antiox13111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Natural ingredients have been used in skincare products for thousands of years. The current focus is on novel natural bioactivities that shield the skin from UV rays and free radicals, among other damaging elements, while enhancing skin health. Free radicals significantly contribute to skin damage and hasten ageing by interfering with defence and restorative processes. Plants contain natural chemicals that can scavenge free radicals and have antioxidant capabilities. Plant materials are becoming increasingly popular as natural antioxidants related to the expanding interest in plant chemistry. This review focuses on the significance of medicinal plants in skin health and ageing and their potential as a source of antioxidant substances such as vitamins, polyphenols, stilbenes, flavonoids, and methylxanthines.
Collapse
Affiliation(s)
- Cristina-Ştefania Gǎlbǎu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Andrea Elena Neculau
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lorena Dima
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Lea Pogačnik da Silva
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Mihai Vârciu
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| | - Mihaela Badea
- Faculty of Medicine, Transilvania University of Brasov, Romania, No. 56, Nicolae Bǎlcescu St., 500019 Braşov, Romania; (C.-Ş.G.); (M.I.); (A.E.N.); (L.D.); (M.V.)
| |
Collapse
|
10
|
Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MBPP, Fathi F, Souto EB. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol 2024; 55:2753-2766. [PMID: 38888693 PMCID: PMC11405619 DOI: 10.1007/s42770-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.
Collapse
Affiliation(s)
- Beatriz N Guedes
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, Guarda, 6300-035, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Napoli, 80131, Italy
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.
| |
Collapse
|
11
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
12
|
La Pietra A, Imperatore R, Coccia E, Mobilio T, Ferrandino I, Paolucci M. Comparative Study of Condensed and Hydrolysable Tannins during the Early Stages of Zebrafish Development. Int J Mol Sci 2024; 25:7063. [PMID: 39000172 PMCID: PMC11241311 DOI: 10.3390/ijms25137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
In this study, we present data on the effects of condensed tannins (CTs) and hydrolysable tannins (HTs), polyphenols extracted from plants, at different concentrations on zebrafish development to identify the range of concentrations with toxic effects. Zebrafish embryos were exposed to CTs and HTs at two different concentration ranges (5.0-20.0 μgL-1 and 5.0-20.0 mgL-1) for 72 h. The toxicity parameters were observed up to 72 h of treatment. The uptake of CTs and HTs by the zebrafish larvae was assessed via HPLC analysis. A qRT-PCR analysis was performed to evaluate the expressions of genes cd63, zhe1, and klf4, involved in the hatching process of zebrafish. CTs and HTs at 5.0, 10.0, and 20.0 μgL-1 were not toxic. On the contrary, at 5.0, 10.0, and 20.0 mgL-1, HTs induced a delay in hatching starting from 48 h of treatment, while CTs showed a delay in hatching mainly at 48 h. The analysis of gene expression showed a downregulation in the group exposed to HTs, confirming the hatching data. We believe that this study is important for defining the optimal doses of CTs and HTs to be employed in different application fields such as the chemical industry, the animal feed industry, and medical science.
Collapse
Affiliation(s)
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Elena Coccia
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Teresa Mobilio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
13
|
Ugwah-Oguejiofor CJ, Alkali YI, Inuwa AM, Pender GC, Chindo BA. Studies on neurobehavioural properties of Caralluma dalzielii N.E Br. aqueous aerial parts extract in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117774. [PMID: 38244951 DOI: 10.1016/j.jep.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma dalzielii (Asclepiadiaceae) is a shrub used in folkloric medicine to treat epilepsy, pain and infertility in sub-Saharan Africa. Previous studies demonstrated its analgesic, antiulcer, anticonvulsant, and anti-inflammatory activities. AIM This study aimed to determine the neurobehavioural properties of Caralluma dalzielii aqueous aerial parts extract (CDAE) in mice using standard experimental models. MATERIALS AND METHODS Neurobehavioural activities of CDAE were evaluated (100, 200, and 400 mg/kg) in Swiss Albino mice using the beam walk, staircase, hole board, object recognition, open field assay, Y-maze and forced swimming tests. Phytochemical constituents were analysed using GC-MS. RESULTS CDAE significantly increased the mean number of head dips, recognition index and spontaneous alternation in hole board (14.03 at 400 mg/kg and 6.01 in distilled water group; p < 0.05), object recognition (68.16% at 400 mg/kg compared with 51.66% of distilled water group) and Y maze (9.16 at 400 mg/kg as against 4.66 of distilled water group; p < 0.05) tests respectively. It decreased the rearing counts as well as the peripheral and central square crossing in the staircase (4.2 at 400 mg/kg as against 7.87 of the distilled water group; p < 0.05) and open field tests (central, 0.81; peripheral, 1.66 at 400 mg/kg as against central, 5.23; peripheral 11.83 of the distilled water control group; p < 0.05), respectively. There were no significant effects on beam walk assays and forced swim tests. The GC-MS analysis identified a hundred compounds in CDAE. Some compounds which have been reported to possess neurobehavioural activity that were identified include 3,5-Dimethylpyrazole, 2-Amino-5-methylbenzoic acid, Acetophenone, and Tetrahydropyran. CONCLUSION CDAE demonstrated anxiolytic, anti-hyperactivity, and memory-improving effects in mice. The extract may possess GABAergic and glutamatergic properties. More studies are needed to confirm this. Isolation of the bioactive compounds is currently ongoing to unravel the bioactive constituents present in C. dalzielii extract.
Collapse
Affiliation(s)
- Chinenye Jane Ugwah-Oguejiofor
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Yusuf Ibrahim Alkali
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Abdulbaqee Muhammad Inuwa
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Gift Crucifix Pender
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P. O. Box 4285, Kigali, Rwanda.
| | - Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria.
| |
Collapse
|
14
|
de Aguiar NS, Hansel FA, Reis CAF, Lazzarotto M, Wendling I. Optimizing the Vanillin-Acid Sulfuric Method to Total Saponin Content in Leaves of Yerba Mate Clones. Chem Biodivers 2024; 21:e202301883. [PMID: 38358959 DOI: 10.1002/cbdv.202301883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Yerba mate (Ilex paraguariensis) is a forest species consumed in the form of non-alcoholic beverages in South America, with applications in foods, cosmetics, and pharmaceutical industries. The species leaves are globally recognized for their important bioactive compounds, including, saponins. We adjusted the vanillin-acid sulfuric method for determining spectrophotometrically the total saponin in yerba mate leaves. Seeking to maximize the extraction of saponins from leaves, a Doehlert design combined with Response Surface Methodology (RSM) was used, considering ethanol:water ratios and ultrasound times. In addition, the same methodology was used for the analysis of times and temperatures in the vanillin-sulfuric acid reaction heating. The contents of total saponin in mature leaves were compared in four yerba mate clones. The extraction was maximized using 40 % ethanol:60 % water and 60 minutes of ultrasound assisted extraction (UAE) without heating. For the reaction conditions, 70 °C for 10 minutes heating is recommended, and UV/Vis reading from 460 to 680 nm. Using the optimized methodology, total saponin contents ranged from 28.43 to 53.09 mg g-1 in the four yerba mate clones. The significant difference in saponin contents between clones indicate great genetic diversity and potential for clones' selection and extraction of these compounds from yerba mate leaves.
Collapse
Affiliation(s)
- Natalia Saudade de Aguiar
- Federal University of Paraná (UFPR), Departament of Forest Science, Curitiba, Paraná, Brazil, 80210-170
| | - Fabricio Augusto Hansel
- Brazilian Agricultural Research Corporation, Embrapa Forestry, Colombo, Paraná, Brazil, 83411-000
| | | | - Marcelo Lazzarotto
- Brazilian Agricultural Research Corporation, Embrapa Grape and Wine, Bento Gonçalves, Rio Grande do Sul, Brazil, 95701-008
| | - Ivar Wendling
- Federal University of Paraná (UFPR), Departament of Forest Science, Curitiba, Paraná, Brazil, 80210-170
- Brazilian Agricultural Research Corporation, Embrapa Forestry, Colombo, Paraná, Brazil, 83411-000
| |
Collapse
|
15
|
Akhbari M, Firooz A, Rahimi R, Shirzad M, Esmaealzadeh N, Shirbeigi L. The effect of an oral product containing Amla fruit (Phyllanthus emblica L.) on female androgenetic alopecia: A randomized controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116958. [PMID: 37487962 DOI: 10.1016/j.jep.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Amla (Phyllanthus emblica) fruit has been emphasized as a hair tonic in Traditional Persian Medicine (TPM) and recommended for hair loss orally and topically. AIM OF THE STUDY This study aimed to investigate the effect of an oral product containing Amla fruit on Female Androgenetic Alopecia (FAGA). MATERIALS AND METHODS This study was a triple-blind, randomized, controlled clinical trial. Sixty women with FAGA were randomly assigned into two groups of thirty. The intervention group received ten cc Amla syrup thrice a day for 12 weeks. The second group received a placebo with the same dose and duration. Hair growth parameters were analyzed using TrichoScan before and after 12 weeks of intervention. Physician and patient satisfaction were assessed using the CGI-I and PGI-I questionnaires, respectively. RESULTS Twenty-seven participants in the intervention group and 25 in the placebo group completed the trial. Based on our findings, the anagen-to-telogen ratio increased significantly in the intervention group compared with the group who received placebo (F = 10.4, P = 0.002). Physician and patient satisfaction increased in the amla group compared with placebo at 12th weeks of intervention (P<0.001), (P<0.001). The formula had no remarkable side effects. Only one case of mild constipation was reported in one of the participants after one month of consuming Amla syrup. CONCLUSION The results of this study demonstrated that Amla syrup could help treat androgenic hair loss in women and increase the anagen phase. Further studies are needed to evaluate this potential treatment for FAGA.
Collapse
Affiliation(s)
- Marzieh Akhbari
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Meysam Shirzad
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Laila Shirbeigi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Du Y, Zhu H, Qiao J, Zhang Y, Guo S, Chen W, Xu H, Dong J, Zhang G, Zhang H. Characteristic Components and Authenticity Evaluation of Chinese Honeys from Three Different Botanical Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921636 DOI: 10.1021/acs.jafc.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We aimed to identify the characteristic phytochemicals of safflower, Chinese sumac, and bauhinia honeys to assess their authenticity. We discovered syringaldehyde, riboflavin, lumiflavin, lumichrome, rhusin [(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one-O-cinnamoyl oxime], bitterin {4-hydroxy-4-[3-(1-hydroxyethyl) oxiran-2-yl]-3,5,5-trimethylcyclohex-2-en-1-one}, and unedone as characteristic phytochemicals of these three types of honeys. The average contents of syringaldehyde, riboflavin, lumiflavin, or lumichrome in safflower honey were 41.20, 5.24, 24.72, and 36.72 mg/kg; lumiflavin, lumichrome, and rhusin in Chinese sumac honey were 39.66, 40.55, and 2.65 mg/kg; bitterin, unedone, and lumichrome in bauhinia honey were 8.42, 26.33, and 8.68 mg/kg, respectively. To our knowledge, the simultaneous presence of riboflavin, lumichrome, and lumiflavin in honey is a novel finding responsible for the bright-yellow color of honey. Also, it is the first time that lumiflavin, rhusin, and bitterin have been reported in honey. We effectively distinguish pure honeys from adulterations, based on characteristic components and high-performance liquid chromatography fingerprints; thus, we seem to provide intrinsic markers and reliable assessment criteria to assess honey authenticity.
Collapse
Affiliation(s)
- Yinan Du
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China
| | - Shunyue Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Wentian Chen
- Xinjiang AAFUD Agriculture CO., LTD, Changji 831100, China
| | - Huabin Xu
- Hunan Mingyuan Apiculture Co., LTD, Changsha 410000, China
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Gengsheng Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Hongcheng Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
17
|
Orabi MAA, Orabi EA, Awadh AAA, Alshahrani MM, Abdel-Wahab BA, Sakagami H, Hatano T. New Megastigmane and Polyphenolic Components of Henna Leaves and Their Tumor-Specific Cytotoxicity on Human Oral Squamous Carcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1951. [PMID: 38001804 PMCID: PMC10669829 DOI: 10.3390/antiox12111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Polyphenols have a variety of phenolic hydroxyl and carbonyl functionalities that enable them to scavenge many oxidants, thereby preserving the human redox balance and preventing a number of oxidative stress-related chronic degenerative diseases. In our ongoing investigation of polyphenol-rich plants in search of novel molecules, we resumed the investigation of Lawsonia inermis L. (Lythraceae) or henna, a popular ancient plant with aesthetic and therapeutic benefits. The leaves' 70% aq acetone extract was fractionated on a Diaion HP-20 column with different ratios of H2O/an organic solvent. Multistep gel chromatographic fractionation and HPLC purification of the Diaion 75% aq MeOH and MeOH fractions led to a new compound (1) along with tannin-related metabolites, benzoic acid (2), benzyl 6'-O-galloyl-β-D-glucopyranoside (3), and ellagic acid (4), which are first isolated from henna. Repeating the procedures on the Diaion 50% aq MeOH eluate led to the first-time isolation of two O-glucosidic ellagitannins, heterophylliin A (5), and gemin D (6), in addition to four known C-glycosidic ellagitannins, lythracin D (7), pedunculagin (8), flosin B (9), and lagerstroemin (10). The compound structures were determined through intensive spectroscopic investigations, including HRESIMS, 1D (1H and 13C) and 2D (1H-1H COSY, HSQC, HMBC, and NOESY) NMR, UV, [α]D, and CD experiments. The new structure of 1 was determined to be a megastigmane glucoside gallate; its biosynthesis from gallic acid and a β-ionone, a degradative product of the common metabolite β-carotin, was highlighted. Cytotoxicity investigations of the abundant ellagitannins revealed that lythracin D2 (7) and pedunculagin (8) are obviously more cytotoxic (tumor specificity = 2.3 and 2.8, respectively) toward oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22) than normal human oral cells (HGF, HPC, and HPLF). In summary, Lawsonia inermis is a rich source of anti-oral cancer ellagitannins. Also, the several discovered polyphenolics highlighted here emphasize the numerous biological benefits of henna and encourage further clinical studies to profit from their antioxidant properties against oxidative stress-related disorders.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia
| | - Esam A. Orabi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 64462, Saudi Arabia;
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan;
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan;
| |
Collapse
|
18
|
Ma Q, Wang H, Wu E, Zhang H, Feng Y, Feng B. Widely targeted metabolomic analysis revealed the effects of alkaline stress on nonvolatile and volatile metabolites in broomcorn millet grains. Food Res Int 2023; 171:113066. [PMID: 37330826 DOI: 10.1016/j.foodres.2023.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Broomcorn millet (BM) is a future smart food. However, no information is available on the metabolism of BM grains under alkaline stress. In this study, the effects of alkaline stress on nonvolatile and volatile metabolites in the BM grains of two varieties (S223 and T289) were investigated through metabolomics approaches. All 933 nonvolatile metabolites and 313 volatile metabolites were identified, with 114 and 89 nonvolatile metabolites and 16 and 20 volatile metabolites accumulating differentially under normal vs. alkaline stresses of S223 and T289, respectively. The results indicated that alkaline stress altered phenylpropanoids, flavonoids, flavone and flavonol, valine, leucine, and isoleucine biosynthesis, as well as arginine, proline, tryptophan, and ascorbate metabolism. The effects of alkaline stress were not identical between the two varieties, which could lead to variations in active substance content. These results provide valuable information for further studies on food chemistry and the functional food development of BM grains.
Collapse
Affiliation(s)
- Qian Ma
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Enguo Wu
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yu Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, 712100, Shaanxi, China; Shaanxi Research Station of Crop Gene Resources &, Germplasm Enhancement, Ministry of Agriculture, Shaanxi 712100, China.
| |
Collapse
|
19
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
20
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park—III, Greater Noida 201308, India;
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park—I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (H.A.R.); (M.A.-Z.)
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (S.D.); (S.C.); (T.G.S.); (S.M.)
| |
Collapse
|
21
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
22
|
Orabi MAA, Orabi EA, Abdel-Sattar ES, English AM, Hatano T, Elimam H. Structural determination and anticholinesterase assay of C-glycosidic ellagitannins from Lawsonia inermis leaves: A study supported by DFT calculations and molecular docking. Fitoterapia 2023; 164:105360. [PMID: 36423882 DOI: 10.1016/j.fitote.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
An ellagitannin monomer, lythracin M (1), and a dimer, lythracin D (2), along with eight known monomers (3-10) were isolated from Lawsonia inermis (Lythraceae) leaves. Lythracin M (1) is a C-glycosidic ellagitannin with a flavogallonyl dilactone moiety that participates in the creation of a γ-lactone ring with the anomeric carbon of the glucose core. Lythracin D (2) was determined as an atropisomer of the reported lythcarin D. These newly discovered structures (1 and 2) were determined by intensive spectroscopic experiments and by comparing DFT-calculated 1H1H coupling, 1H NMR chemical shifts, and ECD data with experimental values. The anti-acetylcholinesterase assay of the compounds 1-10 revealed that the C-1 ellagitannin epimers [casuarinin (7; IC50 = 34 ± 2 nM) and stachyurin (8; IC50 = 56 ± 3 nM)], and the new dimer (2; IC50 = 61 ± 4 nM) possess enzyme inhibitory effects comparable to the reference drug (donepezil, IC50 = 44 ± 3 nM). Molecular docking of compounds 1-10 with AChE identified the free galloyl moiety as an important pharmacophore in the anticholinesterase activity of tannins.
Collapse
Affiliation(s)
- Mohamed A A Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia.
| | - Esam A Orabi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - El-Shaymaa Abdel-Sattar
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Ann M English
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-Ku, Okayama 700-8530, Japan
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| |
Collapse
|
23
|
Hoxha D, Stefkov G. Phytocomponents in treatment of Alzheimer condition. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Donika Hoxha
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, North Macedonia
| | - Gjoshe Stefkov
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, North Macedonia
| |
Collapse
|
24
|
Neuroprotective Effects of the Ethanolic Leaf Extract of Crassocephalum crepidioides (Asteracaeae) on Diazepam-Induced Amnesia in Mice. Adv Pharmacol Pharm Sci 2022; 2022:1919469. [PMID: 36212180 PMCID: PMC9534665 DOI: 10.1155/2022/1919469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the neuroprotective effects of the ethanolic leaf extract of Crassocephalum crepidioides (Cc) on diazepam-induced amnesia in mice. Thirty mice distributed into six groups of five mice each were used. The normal control and negative control groups received 2% ethanol per os, the positive control group received piracetam (150 mg/kg, p.o), and three experimental groups were treated with three doses of ethanolic leaf extract of Cc (100, 200, and 400 mg/kg, p.o). All groups except the normal control group were co-treated with diazepam (3 mg/kg, i.p) daily for 14 days. The memory effects were evaluated using the Radial Arm Maze (RAM) and the Novel Object Recognition (NOR) tests, while the anti-depressive effects were evaluated using the tail suspension test. All animals were sacrificed at the end of the study. Hippocampi, isolated from the right hemisphere, were used to prepare a homogenate for the determination of oxidative stress biomarkers. The ethanolic leaf extract of cc significantly (p < 0.001) decreased the number of working and reference memory errors in the RAM test and induced a significant (p < 0.01) increase in the time spent exploring the novel object in the NOR test. The extract also induced a significant (p < 0.001) increase in the mobility time in tail suspension. Moreover, compared to the negative control group, the extract significantly (p < 0.01) increased superoxide dismutase activity and significantly (p < 0.01) decreased malondialdehyde levels. The histopathological analysis of hippocampi showed that the cc extract increased cell density when compared with the negative control. These results suggest that the ethanolic left extract of cc could have neuroprotective properties, which could be attributed to its antioxidant properties.
Collapse
|
25
|
Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154:113561. [PMID: 36029537 DOI: 10.1016/j.biopha.2022.113561] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
In recent years, increasing attention has been paid to the pharmacological efficacy of tannins. Tannic acid (TA), the simplest hydrolysable tannin that has been approved by the FDA as a safe food additive, is one of the most important components of these traditional medicines. Studies have shown that TA displays a wide range of pharmacological activities, such as anti-inflammatory, neuroprotective, antitumor, cardioprotective, and anti-pathogenic effects. Here, we summarize the known pharmacological effects and associated mechanisms of TA. We focus on the effect and mechanism of TA in various animal models of inflammatory disease and organ, brain, and cardiovascular injury. Moreover, we discuss the possible molecular targets and signaling pathways of TA, in addition to the pharmacological effects of TA-based nanoparticles and TA in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wang Jing
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Chen Xiaolan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Chen Yu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Qin Feng
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Yang Haifeng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| |
Collapse
|
26
|
Hou J, Bhat AM, Ahmad S, Raza K, Qazi S. In silico Analysis of ACE2 Receptor to Find Potential Herbal Drugs in COVID-19 Associated Neurological Dysfunctions. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
COVID-19 mainly causes the collapse of the pulmonary system thereby causing a dearth of oxygen in the human body. Patients infected with this viral disease have been reported to experience various signs and symptoms associated with brain dysfunction, from the feeling of vagueness to loss of smell and taste to severe strokes. These neurological problems have been reported by younger COVID-19 infected patients mainly in their thirties and forties. Various researchers from around the globe have discerned numerous other brain dysfunctions, such as headache, dizziness, numbness, major depressive disorder, anosmia, encephalitis, febrile seizures, and Guillain-Barre syndrome. The involvement of the CNS by this viral infection has been predicted to be for a longer period of time, even if the patient recovers from COVID-19. The neuronal cell damage caused by COVID-19 is a potent factor responsible for cognitive, behavioral, and psychological problems among its sufferers. The hypoxic conditions can also trigger the formation of beta-amyloid plaques and tau-tangles and thus the virus can even induce Alzheimer’s in patients in the near future. The virus affects the brain directly, thereby causing encephalitis. This pandemic has also been shown to have a negative psychological toll on people. This research aims to highlight the brain dysfunction associated with the ACE2 receptor that is known to be a crucial player in the COVID-19 pandemic using genetic networking approaches. Furthermore, we have identified herbal drug candidates that bind to the ACE2 receptor in order to identify potential treatments for the neurological manifestations of COVID-19.
Collapse
Affiliation(s)
- Juan Hou
- Songjiang Hospital Affiliated to Shanghai Jiaotong, University School of Medicine (Preparatory Stage), Shanghai, China
| | - Adil Manzoor Bhat
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
27
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C. Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Mlozi SH, Mmongoyo JA, Chacha M. GC-MS analysis of bioactive phytochemicals from methanolic leaf and root extracts of Tephrosia vogelii. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Wang H, He Y, Sun Z, Ren S, Liu M, Wang G, Yang J. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation 2022; 19:132. [PMID: 35668399 PMCID: PMC9168645 DOI: 10.1186/s12974-022-02492-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Siyu Ren
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Mingxia Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 10 Xi tou tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
30
|
Abdollahi S, Raoufi Z. Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Vasarri M, Barletta E, Degl’Innocenti D. Marine Migrastatics: A Comprehensive 2022 Update. Mar Drugs 2022; 20:273. [PMID: 35621924 PMCID: PMC9145002 DOI: 10.3390/md20050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Metastasis is responsible for the bad prognosis in cancer patients. Advances in research on metastasis prevention focus attention on the molecular mechanisms underlying cancer cell motility and invasion to improve therapies for long-term survival in cancer patients. The so-called "migrastatics" could help block cancer cell invasion and lead to the rapid development of antimetastatic therapies, improving conventional cancer therapies. In the relentless search for migrastatics, the marine environment represents an important source of natural compounds due to its enormous biodiversity. Thus, this review is a selection of scientific research that has pointed out in a broad spectrum of in vitro and in vivo models the anti-cancer power of marine-derived products against cancer cell migration and invasion over the past five years. Overall, this review might provide a useful up-to-date guide about marine-derived compounds with potential interest for pharmaceutical and scientific research on antimetastatic drug endpoints.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| |
Collapse
|
32
|
Alharbi YM, Sakr SS, Albarrak SM, Almundarij TI, Barakat H, Hassan MFY. Antioxidative, Antidiabetic, and Hypolipidemic Properties of Probiotic-Enriched Fermented Camel Milk Combined with Salvia officinalis Leaves Hydroalcoholic Extract in Streptozotocin-Induced Diabetes in Rats. Antioxidants (Basel) 2022; 11:antiox11040668. [PMID: 35453353 PMCID: PMC9025180 DOI: 10.3390/antiox11040668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023] Open
Abstract
Antioxidative, antidiabetic, and hypolipidemic properties of probiotic-enriched fermented camel milk (FCM) combined with Salvia officinalis L. leaves hydroalcoholic extract (SOHE) in streptozotocin-induced diabetes in rats were investigated. Phytochemicals analysis and antioxidant capacity indicated that S. officinalis contained high phenolics with super antioxidant activity. Subsequently, HPLC analysis demonstrated 13 phenolic acids and 14 flavonoids in considerable amounts with ferulic acid and resveratrol as predominant, respectively. The antidiabetic and hypolipidemic properties of FCM and SOHE were examined in a designed animal model consisting of seven treated groups for four weeks. There was a negative group (G1); the positive group (G2) received a single dose (50 mg kg-1) of streptozotocin (STZ) by intraperitoneal injection (i.p.); in G3, diabetic rats (DRs) orally received 5 mL FCM kg-1 daily; in G4, DRs orally received 50 mg GAE SOHE kg-1 daily; in G5, DRs orally received 5 mL FCM contains 25 mg GAE SOHE kg-1 daily; in G6, DRs orally received 5 mL FCM contains 50 mg GAE SOHE kg-1 daily; in G7, DRs orally received 50 mg metformin kg-1 daily. Combining FCM with SOHE at 25 or 50 mg kg-1 exhibited a synergistic effect in significantly lowering random blood glucose (RBG), fasting blood glucose (FBG), and improved weight gain recovery %. The hypolipidemic effect of FCM + 50 mg GAE SOHE kg-1 was significantly higher than using FCM or SOHE individually, and attenuation in triglycerides (TG), total cholesterol (CHO), and high- and low-density lipoproteins (HDL and LDL), and very-low-density lipoproteins (VLDL) was remarked. Combining FCM with SOHE at 25 or 50 mg kg-1 ameliorated liver and kidney functions better than individual uses of FCM, SOHE, or metformin. Interestingly, FCM with 50 mg SOHE kg-1 presented significant improvement in the activity of antioxidant enzymes, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and a substantial reduction in malonaldehyde (MDA) levels with 53.75%, 89.93%, 63.06%, and 58.69% when compared to the STZ group (G2), respectively. Histopathologically, administrating FCM + 25, 50 mg SOHE kg-1 or 50 mg kg-1 metformin showed a normal histological structure of both islets of Langerhans cells and acini. In conclusion, combining FCM with SOHE presented synergistic and therapeutical efficacy. It could be beneficial and profitable for controlling diabetes mellitus complications and protecting against oxidative stress.
Collapse
Affiliation(s)
- Yousef M. Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (Y.M.A.); (S.M.A.); (T.I.A.)
| | - Sally S. Sakr
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (S.S.S.); or (M.F.Y.H.)
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (Y.M.A.); (S.M.A.); (T.I.A.)
| | - Tariq I. Almundarij
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (Y.M.A.); (S.M.A.); (T.I.A.)
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (S.S.S.); or (M.F.Y.H.)
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
- Correspondence: or ; Tel.: +966-54714-1277
| | - Mohamed F. Y. Hassan
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (S.S.S.); or (M.F.Y.H.)
- Department of Dairy Science, Faculty of Agriculture, Sohag University, Sohag 82755, Egypt
| |
Collapse
|
33
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
34
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
35
|
Surendhiran D, Li C, Cui H, Lin L. Marine algae as efficacious bioresources housing antimicrobial compounds for preserving foods - A review. Int J Food Microbiol 2021; 358:109416. [PMID: 34601353 DOI: 10.1016/j.ijfoodmicro.2021.109416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Certain synthetic chemicals used in global food industries eliminate pathogenic food microbes and prevent spoilage. Nevertheless, their toxicity precludes human consumption. This phenomenon has made scientific fraternity to look for alternative antimicrobial compounds from natural resources. In recent times, marine algae have been illustrated to be potent and rich sources of antimicrobial agents as chemical replacements for applications in food. Identifying novel antimicrobial agents from natural resources have become a worldwide research with immense significance. Marine algae are now considered as one of the most inexhaustible and unexposed sources of antimicrobial agents due to their abundance in seawaters and renewability. This review elaborated on marine algal antimicrobial agents against foodborne pathogens, mode of action and cumulated the prospective use of algal compounds in active food packaging as a natural food preservative. Due to poor solubility, unpleasant odor and ineffectiveness of plant derived antimicrobial agents against Gram-negative bacteria, researchers opted for marine algae, an ideal candidate to be used as natural food preservatives. This article elaborates and summarizes the efficient bioactive molecules in marine algae and their possible application in food preservation to extend shelf life of foods without causing any toxicity. In conclusion, marine algae have potential antimicrobial property against food pathogens and have more advantages than other natural sources of antimicrobial agents.
Collapse
Affiliation(s)
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, Kumar N, Singh JP, Acharya A. Putative role of natural products as Protein Kinase C modulator in different disease conditions. ACTA ACUST UNITED AC 2021; 29:397-414. [PMID: 34216003 DOI: 10.1007/s40199-021-00401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade. METHODS All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored. RESULTS The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression. CONCLUSION Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | | | - Munendra Singh Tomar
- Department of Pharmaceutical Science, School of Pharmacy, University of Colorado, Denver, USA
| | | | - Amit Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Jai Prakash Singh
- Department of Panchkarma, Institute of Medical Science, BHU, Varanasi, India, 221005
| | - Arbind Acharya
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India.
| |
Collapse
|
37
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
38
|
Rajasekaran S, Rajasekar N, Sivanantham A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J Nutr Biochem 2021; 94:108632. [PMID: 33794331 DOI: 10.1016/j.jnutbio.2021.108632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Respiratory diseases are the major cause of human illness and death around the world. Despite advances in detection and treatment, very few classes of safe and effective therapy have been introduced to date. At present, phytochemicals are getting more attention because of their diverse beneficial activities and minimal toxicity. Tannins are polyphenolic secondary metabolites with high molecular weights, which are naturally present in a wide variety of fruits, vegetables, cereals, and leguminous seeds. Many tannins are endowed with well-recognized protective properties, such as anti-cancer, anti-microbial, anti-oxidant, anti-hyperglycemic, and many others. This review summarizes a large body of experimental evidence implicating that tannins are helpful in tackling a wide range of non-malignant respiratory diseases including acute lung injury (ALI), pulmonary fibrosis, asthma, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Mechanistic pathways by which various classes of tannins execute their beneficial effects are discussed. In addition, clinical trials and our perspective on future research with tannins are also reviewed.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| | - Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
39
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
40
|
Tilaoui M, Achibat H, Lébri M, Lagou S, Ait Mouse H, Zazouli S, Hafid A, Zyad A, Khouili M. Phytochemical screening, antioxidant and in vitro anticancer activities of Bombax buonopozense stem bark extracts. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1997156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Mounir Tilaoui
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hanane Achibat
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Marius Lébri
- Laboratory of Pharmacodynamics and Biochemistry, Department of Biology, Biosciences Research Center, Félix Houphouët-Boigny University, Abidjan, Ivory Coast
| | - Stéphanie Lagou
- Laboratory of Biotechnology, Department of Biology, Nature Biosciences Research Center, Nangui Abrogoua University, Abidjan, Ivory Coast
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Sofia Zazouli
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Abderrafia Hafid
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| | - Abdelmajid Zyad
- Laboratory of Biological Engineering, Natural Substances, Cellular and Molecular Immunopharmacology, Immunobiology of Cancer Cells Cluster, Department of Biology, Faculty of Science and Technology, Beni-Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mostafa Khouili
- Laboratory of Organic and Analytical Chemistry, Department of Chemistry, Faculty of Science and Technology of Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal, Morocco
| |
Collapse
|
41
|
Durgadevi R, Abirami G, Swasthikka RP, Alexpandi R, Pandian SK, Ravi AV. Proteomic analysis deciphers the multi-targeting antivirulence activity of tannic acid in modulating the expression of MrpA, FlhD, UreR, HpmA and Nrp system in Proteus mirabilis. Int J Biol Macromol 2020; 165:1175-1186. [PMID: 33007322 DOI: 10.1016/j.ijbiomac.2020.09.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
In the present study, the multi-targeting antivirulence activity of tannic acid (TA) was explored against Proteus mirabilis through MS-based proteomic approach. The in vitro biofilm biomass quantification assay and microscopic analysis demonstrated the antibiofilm activity of TA against P. mirabilis in which, minimum biofilm inhibitory concentration (MBIC) of TA was found to be 200 μg/mL concentration. Moreover, the nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS) analysis revealed that TA (at MBIC) differentially regulated the proteins involved in fimbrial adhesion, flagellar motility, iron acquisition, Fe-S cluster assembly, heat shock response, virulence enzymes, and toxin secretion. Further, the transcriptomic analysis validated the outcomes of proteomic analysis in which, the expression level of virulence genes responsible for MR/P fimbrial adhesion (mrpA), flagellar transcriptional activation (flhD), biosynthesis of urease (ureR), hemolysin (hpmA), non-ribosomal peptide siderophore system (Nrp), oxidative stress responsible enzymes and fitness factors proteins were down-regulated in TA exposed P. mirabilis. These observations were also in correspondence with the in vitro bioassays. Thus, this study reports the feasibility of TA to act as a promising therapeutic agent against multifactorial P. mirabilis infections.
Collapse
Affiliation(s)
- Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Gurusamy Abirami
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
42
|
Advances in Azorella glabra Wedd. Extract Research: In Vitro Antioxidant Activity, Antiproliferative Effects on Acute Myeloid Leukemia Cells and Bioactive Compound Characterization. Molecules 2020; 25:molecules25214890. [PMID: 33105817 PMCID: PMC7660062 DOI: 10.3390/molecules25214890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022] Open
Abstract
Azorella glabra Wedd. (AG) is traditionally used to treat gonorrhea or kidney’s problems. The antioxidant, antidiabetic, anticholinesterase and in vitro antitumor activities of AG extracts were recently reported. The aim of this work was to investigate anti-leukemic properties of AG chloroform fraction (AG CHCl3) and of its ten sub-fractions (I-X) and to identify their possible bioactive compounds. We determined their in vitro antioxidant activity using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) and superoxide anion (SO) assays, and their phytochemical profile by spectrophotometric and LC-MS/MS techniques. I-X action on two acute myeloid leukemia (AML) cell lines viability, apoptosis and cell cycle were evaluated by MTS, western blotting and cytofluorimetric assays. Different polyphenol, flavonoid and terpenoid amount, and antioxidant activity were found among all samples. Most of I-X induced a dose/time dependent reduction of cell viability higher than parent extract. IV and VI sub-fractions showed highest cytotoxic activity and, of note, a negligible reduction of healthy cell viability. They activated intrinsic apoptotic pathway, induced a G0/G1 block in leukemic cells and, interestingly, led to apoptosis in patient AML cells. These activities could be due to mulinic acid or azorellane terpenoids and their derivatives, tentatively identified in both IV and VI. In conclusion, our data suggest AG plant as a source of potential anti-AML agents.
Collapse
|
43
|
Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Hydrolyzable vs. Condensed Wood Tannins for Bio-based Antioxidant Coatings: Superior Properties of Quebracho Tannins. Antioxidants (Basel) 2020; 9:antiox9090804. [PMID: 32878314 PMCID: PMC7556001 DOI: 10.3390/antiox9090804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Tannins have always been the subject of great interest for their countless properties, first of all their ability to produce functional coatings on a variety of materials. We report herein a comparative evaluation of the antioxidant properties of wood tannin-based coated substrates. In particular, nylon membrane filters were functionalized with chestnut (hydrolyzable) or quebracho (condensed) tannins by dip coating under different conditions. The efficiency of functionalization was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays, which invariably highlighted the superior ability of condensed tannins to induce the formation of a functional and robust coating. The results of the antioxidant assays revealed also the deleterious effects of aerial or enzymatic oxidation conditions on substrate functionalization, being more significant in the case of hydrolyzable tannins. On the other hand, the use of oxidizing conditions allowed to obtain more stable coatings, still exhibiting good antioxidant properties, in the case of condensed tannins. The presence of iron ions did not lead to a significant improvement of the coating efficiency for either tannins. The systematic approach used in this work provides novel and useful information for the optimal exploitation of tannins in antioxidant functional coatings.
Collapse
|
45
|
Razzaq A, Ahmad Malik S, Saeed F, Imran A, Rasul A, Qasim M, Zafar S, Kamran SKS, Maqbool J, Imran M, Hussain G, Hussain M. Moringa oleifera Lam.ameliorates the muscles function recovery following an induced insult to the Sciatic nerve in a mouse model. Food Sci Nutr 2020; 8:4009-4016. [PMID: 32884682 PMCID: PMC7455924 DOI: 10.1002/fsn3.1620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve injury (PNI) is an incapacitating situation and has no effective therapy until now. We examined the possible role of crude leaves of Moringa oleifera Lam. at 200 mg/kg body weight in accelerating the functional regain in the sciatic nerve lesion induced mouse model (Adult male albino mice (BALB/c). Motor functions were evaluated by using the sciatic functional index, muscle mass, and muscle grip strength measurement, whereas the sensory functions were evaluated by using the hot plate test. Blood glucose levels and blood cell composition were also analyzed. We found that the Moringa oleifera crude leaves endorse the sensory and motor functions reclamation following the PNI with a statistically significant difference (p < .05). It also revitalizes the gastrocnemius muscle by mass restoration with glycemic management perspective. Conclusively, the crude powder of Moringa oleifera leaves exhibited a function restoration boosting property and further detailed studies for its application as a therapeutic agent are strongly recommended.
Collapse
Affiliation(s)
- Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shoaib Ahmad Malik
- Department of BiochemistrySargodha Medical CollegeUniversity of SargodhaSargodhaPakistan
| | - Farhan Saeed
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Qasim
- Department of Bioinformatics and BiotechnologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Syed Kashif Shahid Kamran
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
46
|
Strychnos nux-vomica L. seed preparation promotes functional recovery and attenuates oxidative stress in a mouse model of sciatic nerve crush injury. BMC Complement Med Ther 2020; 20:181. [PMID: 32527244 PMCID: PMC7291632 DOI: 10.1186/s12906-020-02950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Peripheral nerve injury is a debilitating condition that may lead to partial or complete motor, sensory and autonomic function loss and lacks effective therapy until date. Therefore, it is quite imperative to explore impending remedies for rapid and accurate functional retrieval following such conditions. Natural product-based intervention can prove effective to facilitate the process of functions regain. Methods Here, we investigated the effect of processed Strychnos nux-vomica seeds at a dose of 250 mg/kg body weight in a mouse model of induced Sciatic nerve lesion in promoting the recovery of the functions. A compression injury was induced in the Sciatic nerve of the right leg in the mice. Sensory function recovery was evaluated by hot-plate and formalin tests, whereas the motor function retrieval was assessed by measuring muscle grip strength, sciatic functional index, and muscle mass restoration. Oxidative stress and blood cell count were measured by biochemistry and haematological analyses. Results This study indicates that Strychnos nux-vomica seeds enhance the rate of recovery of both sensory and motor functions. It helps restore the muscle mass, attenuates total oxidant status and enhances the total anti-oxidant capacity of the biological system. Moreover, the treated animals manifested an enhanced glucose tolerance aptitude and augmented granulocyte and platelet counts. Improved oxidant control, enhanced glucose sensitivity and amended granulocyte and platelet counts are likely to contribute to the advantageous effects of Strychnos nux-vomica, and warrant further in-depth studies for deciphering possible mechanisms and identification of active constituent(s) responsible for these effects. Conclusion Strychnos nux-vomica seed offers functional recovery promoting effects following a mechanical injury to the Sciatic nerve and the possible reasons behind this effect can be reduced oxidative stress and improved glycaemic control. Further and detailed investigations can unravel this mystery.
Collapse
|
47
|
Hricovíniová J, Ševčovičová A, Hricovíniová Z. Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol In Vitro 2020; 65:104789. [PMID: 32035223 DOI: 10.1016/j.tiv.2020.104789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
New gallotanins, methyl 2,3,4,6-tetra-O-galloyl-α-D-glucoside (G4Glc), methyl 2,3,4,6-tetra-O-galloyl-α-D-mannoside (G4Man), and methyl 2,3,4-tri-O-galloyl-α-L-rhamnoside (G3Rham), have been synthesized in order to study the protective effects of synthetic polyphenols that are structurally related with natural compounds. Apart from spectral analysis, examination of antioxidant ability and protective efficiency showed the differences among newly prepared compounds and commercial antioxidants - gallic acid (GA), methyl gallate (MG), and octyl gallate (OG) applying radical scavenging 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and iron-chelating assays. The genotoxicity and DNA-protective potential of tested compounds on human peripheral blood mononuclear cells (PBMCs) were evaluated using the single-cell gel electrophoresis (comet assay) and DNA-topology assay. Experimental data revealed that gallotannins G3Rham, G4Man, and G4Glc possess significant radical scavenging/antioxidant activities and manifest very low genotoxic effect on human PBMCs. Moreover, tested compounds considerably reduce the level of DNA damage induced by hydrogen peroxide or Fe2+-ions. The results imply that new synthetic gallotannins can be considered as nontoxic agents for subsequent design of new antioxidants with potential biomedical applications.
Collapse
Affiliation(s)
- Jana Hricovíniová
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovak Republic.
| |
Collapse
|
48
|
Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, Aziz N, Razzaq A, Hussain R, de Aguilar JLG, Sun T. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci 2020; 16:116-134. [PMID: 31892850 PMCID: PMC6930373 DOI: 10.7150/ijbs.35653] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/22/2019] [Indexed: 12/14/2022] Open
Abstract
Peripheral nerve injury is a complex condition with a variety of signs and symptoms such as numbness, tingling, jabbing, throbbing, burning or sharp pain. Peripheral nerves are fragile in nature and can easily get damaged due to acute compression or trauma which may lead to the sensory and motor functions deficits and even lifelong disability. After lesion, the neuronal cell body becomes disconnected from the axon's distal portion to the injury site leading to the axonal degeneration and dismantlement of neuromuscular junctions of targeted muscles. In spite of extensive research on this aspect, complete functional recovery still remains a challenge to be resolved. This review highlights detailed pathophysiological events after an injury to a peripheral nerve and the associated factors that can either hinder or promote the regenerative machinery. In addition, it throws light on the available therapeutic strategies including supporting therapies, surgical and non-surgical interventions to ameliorate the axonal regeneration, neuronal survival, and reinnervation of peripheral targets. Despite the availability of various treatment options, we are still lacking the optimal treatments for a perfect and complete functional regain. The need for the present age is to discover or design such potent compounds that would be able to execute the complete functional retrieval. In this regard, plant-derived compounds are getting more attention and several recent reports validate their remedial effects. A plethora of plants and plant-derived phytochemicals have been suggested with curative effects against a number of diseases in general and neuronal injury in particular. They can be a ray of hope for the suffering individuals.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, 361021 China
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Nimra Aziz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Rashad Hussain
- Department of Neurosurgery, Center for Translational Neuromedicine (SMD), School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, 361021 China
| |
Collapse
|
49
|
Bahadır Acıkara Ö, Ilhan M, Kurtul E, Šmejkal K, Küpeli Akkol E. Inhibitory activity of Podospermum canum and its active components on collagenase, elastase and hyaluronidase enzymes. Bioorg Chem 2019; 93:103330. [PMID: 31614286 DOI: 10.1016/j.bioorg.2019.103330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/21/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
Present study is aimed to investigate in vitro inhibitory effects of the extract prepared from the aerial parts of Podospermum canum (syn: Scorzonera cana var. jacquiniana) (Asteraceae) on hyaluronidase, collagenase, and elastase enzymes using a bioassay-guided fractionation. Inhibitory effects of the extract, sub-extracts, fractions obtained by column chromatography, and isolated compounds on collagenase, elastase, and hyaluronidase were performed by using in vitro enzyme inhibitory assays based on spectrophotometric evaluation. The methanolic extract obtained from P. canum exhibited strong inhibitory activities on elastase and collagenase while the insignificant activity was observed on hyaluronidase. Through bioactivity-guided fractionation, the ethyl acetate and remaining water sub-extracts obtained from the methanolic extract displayed significant inhibitory activities on collagenase and elastase, while petroleum ether and chloroform extracts did not show any inhibitory activity. Eleven known compounds: arbutin, 6́-O-caffeoylarbutin, cichoriin, 3,5-dicaffeoylquinic acid methyl ester, apigenin 7-O-β-glucoside, luteolin 7-O-β-glucoside, apigenin 7-O-β-rutinoside, isoorientin, orientin, vitexin, procatechuic acid, and new compound 4-hydroxy-benzoic acid 4-(6-O-α-rhamnopyranosyl-β-glucopyranosyl) benzyl ester have been obtained from ethyl acetate sub-extract. Results of the present study have revealed that apigenin 7-O-β-glucoside, luteolin 7-O-β-glucoside, apigenin 7-O-β-rutinoside, and isoorientin showed potent enzyme inhibitory activities. However, methanolic extract of P. canum displayed a greater inhibitory activity than fractions and isolated compounds both on collagenase and elastase.
Collapse
Affiliation(s)
- Özlem Bahadır Acıkara
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Mert Ilhan
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Tuşba 65080, Van, Turkey
| | - Ekin Kurtul
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandoğan, 06100 Ankara, Turkey
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 61242 Brno, Czech Republic
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey.
| |
Collapse
|
50
|
Imran A, Xiao L, Ahmad W, Anwar H, Rasul A, Imran M, Aziz N, Razzaq A, Arshad MU, Shabbir A, Gonzalez de Aguilar JL, Sun T, Hussain G. Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem 2019; 43:e12983. [PMID: 31489666 DOI: 10.1111/jfbc.12983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/16/2019] [Accepted: 06/21/2019] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury is one of the major health concerns of the present era which can lead to the long-lasting disability and even demise. Currently, no effective and side effect free remedy exists and exploration of effective therapeutic strategies to regain functional outcome is a need of hour. In the present study, we used BALB/c mice (N = 14 age, 10-12 weeks & weight 32-34 g) that were divided into two groups: Normal chow (n = 7) and Fennel chow (n = 7) group. Here, we have explored the role of crude Foeniculum vulgare mill seeds in promoting functional recovery following a mechanical insult to the sciatic nerve by an oral administration of a crude dose of 500 mg/kg BW. The recovery of both sensory and motor functions was significantly (p > .05) accelerated in the treatment group, assessed by behavioral analyses alongside total antioxidant capacity increase. Conclusively, F. vulgare can be a potential therapeutic candidate for accelerating functional recovery after peripheral nerve injury. PRACTICAL APPLICATIONS: The outcomes of study have vital practical application both for scientists and consumers. The therapeutic role of phytochemicals on functional recovery has not been explored yet. This study will help figure out plant based regimen as booster for brain health and intervention against traumatic nerve injuries. Moreover, it may also attract the food and pharmaceutical industries to formulate cost effective therapeutic products. Likewise, it can prove instrumental for scientists for advance research on this aspect with more mechanistic targets.
Collapse
Affiliation(s)
- Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Lei Xiao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Waseem Ahmad
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Nimra Aziz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France.,INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|