1
|
Toropova AA, Razuvaeva YG, Olennikov DN. Dihydrosamidin: the basic khellactone ester derived from Phlojodicarpus komarovii and its impact on neurotrophic factors, energy and antioxidant metabolism after rat cerebral ischemia-reperfusion injury. Nat Prod Res 2024:1-6. [PMID: 39600223 DOI: 10.1080/14786419.2024.2433189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Dihydrosamidin (DHS), a khellactone 3'-O-isovaleroyl-4'-O-acetyl ester, is naturally found in Apiaceae plants yet remains underexplored in biomedical research. Employing HPLC-PDA-MS analysis, the profiling of coumarins in Phlojodicarpus komarovii revealed its significant presence, reaching DHS concentrations of 95 mg/g. DHS administering at a dosage of 80 mg/kg during bilateral transient occlusion of the common carotid artery in Wistar rats prevented neuronal death and decreased neuron-specific enolase levels in the blood serum, increases neurotrophic factors and vascular endothelial growth factor A levels in brain lysate. DHS influenced energy metabolism by reducing the lactate, enhancing the activity of pyruvate kinase and increasing the activities of NADH dehydrogenase and succinate dehydrogenase in brain cells. DHS reduced levels of malondialdehyde and increased activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, along with increased levels of reduced glutathione in brain homogenate. Thus, DHS administration promotes neuroplasticity, modulates glycolysis and oxidative phosphorylation and enhances antioxidant defences.
Collapse
Affiliation(s)
- Anyuta A Toropova
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, Ulan-Ude, Russia
| | - Yanina G Razuvaeva
- Laboratory of Bioactive Compounds Safety, Institute of General and Experimental Biology, Ulan-Ude, Russia
| | - Daniil N Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Ulan-Ude, Russia
| |
Collapse
|
2
|
Khandy MT, Grigorchuk VP, Sofronova AK, Gorpenchenko TY. The Different Composition of Coumarins and Antibacterial Activity of Phlojodicarpus sibiricus and Phlojodicarpus villosus Root Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:601. [PMID: 38475448 DOI: 10.3390/plants13050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Phlojodicarpus sibiricus, a valuable endangered medicinal plant, is a source of angular pyranocoumarins used in pharmacology. Due to limited resource availability, other pyranocoumarin sources are needed. In the present research, the chemical composition of a closely related species, Phlojodicarpus villosus, was studied, along with P. sibiricus. High-performance liquid chromatography and mass-spectrometric analyses, followed by antibacterial activity studies of root extracts from both species, were performed. P. sibiricus and P. villosus differed significantly in coumarin composition. Pyranocoumarins predominated in P. sibiricus, while furanocoumarins predominated in P. villosus. Osthenol, the precursor of angular pyrano- and furanocoumarins, was detected in both P. sibiricus and P. villosus. Angular forms of coumarins were detected in both species according to the mass-spectrometric behavior of the reference. Thus, P. villosus cannot be an additional source of pyranocoumarins because their content in the plant is critically low. At the same time, the plant contained large amounts of hydroxycoumarins and furanocoumarins. The extracts exhibited moderate antibacterial activity against five standard strains. The P. villosus extract additionally suppressed the growth of the Gram-negative bacterium E. coli. Thus, both Phlojodicarpus species are promising for further investigation in the field of pharmaceuticals as producers of different coumarins.
Collapse
Affiliation(s)
- Maria T Khandy
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletiya Street, Vladivostok 690022, Russia
- Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Valeria P Grigorchuk
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletiya Street, Vladivostok 690022, Russia
| | - Anastasia K Sofronova
- Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Tatiana Y Gorpenchenko
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletiya Street, Vladivostok 690022, Russia
| |
Collapse
|
3
|
Olennikov DN, Chirikova NK. Hogweed Seed Oil: Physico-Chemical Characterization, LC-MS Profile, and Neuroprotective Activity of Heracleum dissectum Nanosuspension. Life (Basel) 2023; 13:life13051112. [PMID: 37240757 DOI: 10.3390/life13051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The seeds of dissected hogweed (Heracleum dissectum Ledeb., Apiaceae) are the source of hogweed oil (HSO), which is still underexplored and requires careful chemical and biological studies. The performed physico-chemical analysis of HSO elucidated basic physical characteristics and revealed the presence of fatty acids, essential oil components, pigments, and coumarins. High-performance liquid chromatography with photodiode array detection and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS/MS) identified 38 coumarins that were characterized and quantified. Various furanocoumarins were the major components of HSO polyphenolics, including imperatorin, phellopterin, and isoimperatorin, and the total coumarin content in HSO varied from 181.14 to 238.42 mg/mL. The analysis of storage stability of the selected compounds in HSO indicated their good preservation after 3-year storage at cold and freezing temperatures. The application of the CO2-assisted effervescence method allowed the production of an HSO nanosuspension, which was used in a brain ischemia model of rats. The HSO nanosuspension enhanced cerebral hemodynamics and decreased the frequency of necrotic processes in the brain tissue. Thus, H. dissectum seeds are a good source of coumarins, and HSO nanosuspension promotes neuroprotection of the brain after lesions, which supports earlier ethnopharmacological data.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakhyanovoy Street, 670047 Ulan-Ude, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia
| |
Collapse
|
4
|
Coumarins of Lovage Roots ( Levisticum officinale W.D.J.Koch): LC-MS Profile, Quantification, and Stability during Postharvest Storage. Metabolites 2022; 13:metabo13010003. [PMID: 36676932 PMCID: PMC9860584 DOI: 10.3390/metabo13010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Lovage (Levisticum officinale W.D.J. Koch) is a known aromatic apiaceous species that is widely used as a culinary and medicinal plant. Traditionally, more scientific attention has been paid to lovage volatiles, while other groups of compounds have been underutilized. In this study, metabolites of fresh lovage roots were investigated by liquid chromatography-mass spectrometry, and 25 compounds were identified, including coumarins as basic components and minor hydroxycinnamates; most were detected for the first time in the plant. Four major coumarins (including apterin, xanthotoxin, isopimpinellin, and pimpinellin) were successfully separated by a validated HPLC-PDA method, and the fresh roots of seven lovage cultivars as well as the dry roots of commercial lovage were quantified. The coumarin content deviation was 1.7-2.9 mg/g in the fresh roots and 15-24 mg/g in the dry roots. A variation in the coumarin level was found during storage of the fresh lovage roots at chill and room temperatures, while storage of the dried roots at room temperature showed the lowest loss of target compounds. This new information about the metabolites of lovage indicates the prospects of the plant roots as a source of dietary coumarins.
Collapse
|
5
|
Khandy MT, Sofronova AK, Gorpenchenko TY, Chirikova NK. Plant Pyranocoumarins: Description, Biosynthesis, Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:3135. [PMID: 36432864 PMCID: PMC9693251 DOI: 10.3390/plants11223135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/23/2023]
Abstract
This overview article contains information about pyranocoumarins over the last 55 years. The article is based on the authors' phytochemical and physiological studies in vivo and in vitro as well as search and analysis of data in literature available on Google Scholar, Web of Science, PubMed, and ScienceDirect before January 2022. Pyranocoumarins are synthesized in plants of the Apiaceae, Rutaceae families, and one species in each of the Cornaceae, Calophyllaceae, and Fabaceae families can synthesize this class of compounds. The physiological role of these compounds in plants is not clear. It has been proven that these substances have a wide range of biological activities: anti-cancer, anti-spasmatic, and anticoagulant, and they also inhibit erythrocyte lysis and accumulation of triacylglycerides. The overview generalizes the modern understanding of the classification, structure, and biological activity of natural pyranocoumarins, and summarizes dispersed data into a unified scheme of biosynthesis. The review analyzes data on the localization and productivity of these substances in individual organs and the whole plant. It discusses a link between the unique structure of these substances and their biological activity, as well as new opportunities for pyranocoumarins in pharmacology. The article evaluates the potential of different plant species as producers of pyranocoumarins and considers the possibilities of cell cultures to obtain the end product.
Collapse
Affiliation(s)
- Maria T. Khandy
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Anastasia K. Sofronova
- Laboratory of Biomedical Cell Technologies of the Center for Genomic and Regenerative Medicine, Institute of Life Sciences and Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Tatiana Y. Gorpenchenko
- Laboratory of Cell and Developmental Biology, Federal Scientific Center of East-Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Stoletiya Vladivostoka Ave. 159, Vladivostok 690022, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, 58 Belinsky Str., Yakutsk 677000, Russia
| |
Collapse
|
6
|
Park J, Paudel SB, Jin CH, Lee G, Choi HI, Ryoo GH, Kil YS, Nam JW, Jung CH, Kim BR, Na MK, Han AR. Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo-Keto Reductase Inhibitory Activities. Molecules 2022; 27:7391. [PMID: 36364218 PMCID: PMC9657185 DOI: 10.3390/molecules27217391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 03/13/2024] Open
Abstract
Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Gileung Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeollabuk-do, Jeonju-si 54810, Korea
| | - Bo-Ram Kim
- Natural Product Research Division, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo-si 58762, Korea
| | - Min Kyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| |
Collapse
|
7
|
New Coumarins from Roots and Fruit of Peucedanum morisonii. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Baky MH, Badawy MT, Bakr AF, Hegazi NM, Abdellatif A, Farag MA. Metabolome-based profiling of African baobab fruit ( Adansonia digitata L.) using a multiplex approach of MS and NMR techniques in relation to its biological activity. RSC Adv 2021; 11:39680-39695. [PMID: 35494142 PMCID: PMC9044842 DOI: 10.1039/d1ra08277a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Adansonia digitata L. also known as African baobab is one of the most important fruit-producing trees, widely distributed in the African continent. Baobab fruits are known to possess potential health benefits and nutritional value. This study aimed to holistically dissect the metabolome of A. digitata fruits using a novel comparative protocol using three different analytical platforms. Ultra high performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS/MS), and headspace solid-phase microextraction/gas chromatography coupled to mass spectrometry (HS-SPME/GC-MS) were respectively employed for phytonutrients and aroma profiling, whereas GC-MS post silylation provided an overview of nutrients i.e., sugars. UHPLC-HRMS/MS analysis allowed for the assignment of 77 metabolites, among which 50% are reported for the first time in the fruit. While GC-MS of silylated and aroma compounds led to the identification of 74 and 16 compounds, respectively. Finally, NMR-based metabolite fingerprinting permitted the quantification of the major metabolites for future standardization. In parallel, in vivo antidiabetic potential of the baobab fruit using a streptozotocin (STZ) induced diabetic rat model was assessed. Histopathological and immune-histochemical investigations revealed hepatoprotective and renoprotective effects of A. digitata fruit along with mitigation against diabetes complications. Moreover, the administration of A. digitata fruits (150 mg kg-1) twice a week lowered fasting blood glucose levels.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt +01007906443
| | - Marwa T Badawy
- Biology Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University Gamaa St. 12211 Giza Egypt
| | - Nesrine M Hegazi
- Phytochemistry and Plant Systematics Department, Division of Pharmaceutical Industries, National Research Centre P. O. Box 12622 Cairo Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University Kasr El Aini St. P.B. 11562 Cairo Egypt +011-202-25320005 +011-202-2362245
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
9
|
de Armas-Ricard M, Quinán-Cárdenas F, Sanhueza H, Pérez-Vidal R, Mayorga-Lobos C, Ramírez-Rodríguez O. Phytochemical Screening and Antioxidant Activity of Seven Native Species Growing in the Forests of Southern Chilean Patagonia. Molecules 2021; 26:6722. [PMID: 34771130 PMCID: PMC8587661 DOI: 10.3390/molecules26216722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
The genus Nothofagus is one of the most abundant in the subantarctic Patagonian forests. Five species inhabit these ecosystems, three evergreen (Nothofagus betuloides, Nothofagus dombeyi, and Nothofagus nitida) and two deciduous (Nothofagus pumilio and Nothofagus antarctica). This is the first report on the levels of secondary metabolites and the antioxidant capacity of Patagonian tree species growing in natural environments. The aim of this work was to carry out a phytochemical screening, to determine the antioxidant capacity, the sun protection factor, and the α-glucosidase and tyrosinase inhibitory activity of foliar extracts of the five previous species. Besides, Aristotelia chilensis and Berberis microphylla, two species of Patagonian shrubs growing in the same forests, were used as reference. N. dombeyi was the Nothofagus with the best antioxidant capacity. B. microphylla differed from all studied species. Moreover, the Nothofagus was split into two groups. N. betuloides and N. dombeyi are the most similar species to A. chilensis. The α-glucosidase was completely inhibited by all studied extracts. Furthermore, N. antarctica, N.pumilio, and N. nitida inhibited about 70% of the tyrosinase activity. All the results found in this study for the species of the genus Nothofagus support further research on their potential beneficial properties for human health.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Campus Patagonia, Universidad Austral de Chile, Camino a Coyhaique Alto Km. 4, Coyhaique 5950000, Chile
| | - Francisco Quinán-Cárdenas
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago 7800003, Chile
| | - Harold Sanhueza
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| | - Rodrigo Pérez-Vidal
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| | - Cristina Mayorga-Lobos
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
- Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Oney Ramírez-Rodríguez
- Laboratory of Chemistry and Biochemistry, Campus Lillo, University of Aysén. Eusebio Lillo 667, Coyhaique 5951537, Chile; (F.Q.-C.); (H.S.); (R.P.-V.); (C.M.-L.)
| |
Collapse
|
10
|
The dose-dependent pteryxin-mediated molecular mechanisms in suppressing adipogenesis in vitro. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Olennikov DN. Synanthropic Plants as an Underestimated Source of Bioactive Phytochemicals: A Case of Galeopsis bifida (Lamiaceae). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1555. [PMID: 33198290 PMCID: PMC7696744 DOI: 10.3390/plants9111555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
Hemp nettle (Galeopsis bifida Boenn.) is a synanthropic species of the Lamiaceae family that is widely distributed across Europe, Asia, and Siberia. Galeopsis bifida is deeply embedded in the ethnomedical tradition of Asian healers; however, this plant is still poorly characterized, both chemically and pharmacologically. To study Siberian populations of G. bifida, we used high-performance liquid chromatography with photodiode array and electrospray triple quadrupole mass detection for metabolic profiling. Ninety compounds were identified, including iridoid glycosides, phenylethanoid glycosides, hydroxycinnamates, and flavone glycosides, most of which were identified in G. bifida for the first time, while some phenolics were found to have potential chemotaxonomic significance in the Lamiaceae family and Galeopsis genus. An unequal quantitative distribution of the selected metabolites was observed within separate organs of the G. bifida plant, characterized by high accumulation of most compounds within the aerial part of the plant (leaves, flowers). Analysis of the content of specific chosen compounds within the leaves of different populations of G. bifida from Eastern Siberia revealed the existence of two chemical types based on metabolic specifics: the southern type accumulates flavone glucuronides, while the northern type tends to accumulate high levels of phenylpropanoids and acylated flavone glucosides. The first study of the bioactivity of G. bifida extract demonstrated that the herb has low toxicity in acute experiments and expresses antioxidant potential against free radicals in the form of DPPH˙, ABTS˙+, and superoxide radical, as well as high ferric reducing antioxidant power, oxygen radical absorbance capacity, and protective action in the carotene bleaching assay. In general, our results suggest the herb of G. bifida as a new, prospective synanthropic plant for medical application.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakhyanovoy Street, Ulan-Ude 670047, Russia
| |
Collapse
|
12
|
I. Kashchenko N, Olennikov DN. Phenolome of Asian Agrimony Tea ( Agrimonia asiatica Juz., Rosaceae): LC-MS Profile, α-Glucosidase Inhibitory Potential and Stability. Foods 2020; 9:foods9101348. [PMID: 32977706 PMCID: PMC7598702 DOI: 10.3390/foods9101348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Functional beverages constitute the rapidly increasing part of the functional food section and represent an area with a wide range of products including herbal-based beverages. We carried out screening investigations of the extracts of 85 Rosaceous tea plants. Among the extracts analyzed Agrimonia asiatica herb extract demonstrated the highest inhibitory activity against the enzyme α-glucosidase (20.29 µg/mL). As a result of chromato-mass-spectrometric profiling of A. asiatica herb with high-performance liquid chromatography with photodiode array and electrospray triple quadrupole mass-spectrometric detection (HPLC-PDA-ESI-tQ-MS) 60 compounds were identified, including catechins, ellagitannins, flavones, flavonols, gallotannins, hydroxycinnamates, procyanidins, most for the very first time. The analysis of the seasonal variation of metabolites in A. asiatica herb demonstrated that the phenolic content was highest in summer samples and lower in spring and autumn. HPLC activity-based profiling was utilized to identify compounds of A. asiatica herb with the maximal α-glucosidase inhibitory activity. The most pronounced inhibition of α-glucosidase was observed for agrimoniin, while less significant results of inhibition were revealed for ellagic acid and isoquercitrin. The evaluation of phenolic content in A. asiatica herbal teas with the subsequent determination of α-glucosidase inhibiting potential was discovered. Maximum inhibition of α-glucosidase was observed for hot infusion (75.33 µg/mL) and the minimum for 30 min decoction (159.14 µg/mL). Our study demonstrated that A. asiatica herbal tea is a prospective functional beverage in which dietary intake may help to reduce blood glucose.
Collapse
Affiliation(s)
- Nina I. Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia;
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
- Correspondence: ; Tel.: +79-8342-17-340
| | - Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia;
| |
Collapse
|
13
|
|
14
|
|
15
|
Olennikov DN, Chirikova NK, Vasilieva AG, Fedorov IA. LC-MS Profile, Gastrointestinal and Gut Microbiota Stability and Antioxidant Activity of Rhodiola rosea Herb Metabolites: A Comparative Study with Subterranean Organs. Antioxidants (Basel) 2020; 9:E526. [PMID: 32560093 PMCID: PMC7346138 DOI: 10.3390/antiox9060526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Golden root (Rhodiola rosea L., Crassulaceae) is a famous medical plant with a one-sided history of scientific interest in the roots and rhizomes as sources of bioactive compounds, unlike the herb, which has not been studied extensively. To address this deficiency, we used high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection for comparative qualitative and quantitative analysis of the metabolic profiles of Rhodiola rosea organs before and after gastrointestinal digestion in simulated conditions together with various biochemical assays to determine antioxidant properties of the extracts and selected compounds. R. rosea organs showed 146 compounds, including galloyl O-glucosides, catechins, procyanidins, simple phenolics, phenethyl alcohol derivatives, (hydroxy)cinnamates, hydroxynitrile glucosides, monoterpene O-glucosides, and flavonol O-glycosides, most of them for the first time in the species. The organ-specific distribution of compounds found for catechins, procyanidins, and cinnamyl alcohols and glucosides was typical for underground organs and flavonoids and galloylated glucoses concentrated in the herb. Extracts from rhizomes, leaves and flowers showed high phenolic content and were effective scavengers of free radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), O2•-, •OH) and protected β-carotene in a bleaching assay. Digestion in the gastric and intestine phase influenced the composition of R. rosea extracts negatively, affecting the content of catechins, procyanidins, and galloyl glucoses, and therefore, the antioxidativity level. After gut microbiota treatment, the antioxidant capacity of rhizome extract was lower than leaves and flowers due to the aglycone composition found in the colonic phase of digestion. Our study demonstrated that the herb of R. rosea is a rich source of metabolites with high antioxidant properties and could be a valuable plant for new bioactive products.
Collapse
Affiliation(s)
- Daniil N. Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, Ulan-Ude 670047, Russia
| | - Nadezhda K. Chirikova
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia; (N.K.C.); (A.G.V.)
| | - Aina G. Vasilieva
- Department of Biology, Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia; (N.K.C.); (A.G.V.)
| | - Innokentii A. Fedorov
- Institute for Biological Problems of Cryolithozone, Siberian Division, Russian Academy of Science, 41 Lenina Street, Yakutsk 677000, Russia;
| |
Collapse
|
16
|
Olennikov DN, Kashchenko NI, Chirikova NK, Vasil'eva AG, Gadimli AI, Isaev JI, Vennos C. Caffeoylquinic Acids and Flavonoids of Fringed Sagewort ( Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS Profile, HPLC-DAD Quantification, in Vitro Digestion Stability, and Antioxidant Capacity. Antioxidants (Basel) 2019; 8:E307. [PMID: 31416222 PMCID: PMC6720735 DOI: 10.3390/antiox8080307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Fringed sagewort (Artemisia frigida Willd., Compositae family) is a well-known medicinal plant in Asian medical systems. Fifty-nine hydroxycinnamates and flavonoids have been found in A. frigida herbs of Siberian origin by high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection (HPLC-DAD-ESI-QQQ-MS). Their structures were determined after mass fragmentation analysis as caffeoylquinic acids, flavone O-/C-glycosides, flavones, and flavonol aglycones. Most of the discovered components were described in A. frigida for the first time. It was shown that flavonoids with different types of substitution have chemotaxonomic significance for species of Artemisia subsection Frigidae (section Absinthium). After HPLC-DAD quantification of 16 major phenolics in 21 Siberian populations of A. frigida and subsequent principal component analysis, we found substantial variation in the selected compounds, suggesting the existence of two geographical groups of A. frigida. The antioxidant activity of A. frigida herbal tea was determined using 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•) and hydrophilic/lipophilic oxygen radical absorbance capacity (ORAC) assays and DPPH•-HPLC profiling, revealing it to be high. The effect of digestive media on the phenolic profile and antioxidant capacity of A. frigida herbal tea was assessed under simulated gastrointestinal digestion. We found a minor reduction in caffeoylquinic acid content and ORAC values, but remaining levels were satisfactory for antioxidant protection. These results suggest that A. frigida and its food derivate herbal tea could be recommended as new plant antioxidants rich in phenolics.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia.
| | - Nina I Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh'yanovoy Street, Ulan-Ude 670047, Russia
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aina G Vasil'eva
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677027, Russia
| | - Aydan I Gadimli
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Javanshir I Isaev
- Department of Pharmacognosy, Azerbaijan Medical University, Anvar Gasimzade Street 14, Baku AZ1022, Azerbaijan
| | - Cecile Vennos
- Regulatory and Medical Scientific Affairs, Padma AG, 1 Underfeldstrasse, CH-8340 Hinwil, Switzerland
| |
Collapse
|