1
|
Sun J, Li S, Shao X, Fang M, Zhang H, Zhu Z, Sun X. Two Methods for Detecting PCM Residues in Vegetables Based on Paper-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:2602. [PMID: 40285294 PMCID: PMC12031288 DOI: 10.3390/s25082602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Procymidone (PCM) is an effective, low-toxicity fungicide commonly used to control plant diseases in grains, vegetables, and fruits. Its usage has significantly increased in recent years, resulting in higher residues in vegetables. This study developed a sensitive and rapid immunoassay method utilizing a gold- and fluorescence-labeled monoclonal antibody (mAb) for detecting PCM residues in vegetable samples. Under optimal conditions, the fluorescent microsphere-labeled monoclonal antibody immunochromatographic strips achieved a limit of detection (LOD) of 1.67 ng/mL, with a visual LOD of 50 ng/mL. Intra-batch accuracy ranged from 94.98% to 103.82%, with a coefficient of variation (CV) of 1.97% to 8.26%. Inter-batch accuracy ranged from 96.16% to 102.51%, with a CV of 4.62% to 8.91%. The visual detection range of the gold nanoparticle-labeled monoclonal antibody immunochromatographic strips was 50 to 200 ng/g. The method demonstrated excellent performance in actual vegetable samples, confirming its applicability across various matrices. This dual-method approach enables rapid screening of negative samples with gold test strips, followed by accurate quantitative analysis of positive samples using fluorescent test strips, thereby enhancing efficiency and addressing diverse detection needs. Consequently, this method holds significant market potential for practical applications.
Collapse
Affiliation(s)
- Jiazheng Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Shiling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Xijun Shao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Mingxuan Fang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Heng Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Zhiheng Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China; (J.S.); (S.L.); (X.S.); (M.F.); (H.Z.); (Z.Z.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, Zibo 255049, China
| |
Collapse
|
2
|
Alam AKM, Xiang C. Development of a Colorimetric Polydiacetylene Nanocomposite Fiber Sensor for Selective Detection of Organophosphate Pesticides. ACS OMEGA 2025; 10:12346-12356. [PMID: 40191323 PMCID: PMC11966579 DOI: 10.1021/acsomega.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Exposure to organophosphate (OP) pesticides is highly hazardous to human health and well-being. It has been linked to over 250,000 annual deaths connected to various chronic diseases, including cancer, Parkinson's, Alzheimer's, depression, etc. In the absence of any solid-state sensing system suitable for integration into a clothing system, an equipment-free on-site detection system for OP insecticides is essential for mitigating the severe health risks from OP exposure. This work demonstrates the synthesis, fabrication, and naked-eye and quantitative detection of OP insecticides with a polydiacetylene (PDA) ester containing the nanocomposite fiber sensor. Ester of PDA (PDA-HBA) was synthesized via facile green chemical synthesis and incorporated into a cellulosic nanocomposite fibrous assembly via the electrospinning technique. The solid-state soft sensor exhibited a blue-to-pink/red color transition within seconds of exposure to OP pesticide diisopropylfluorophosphate (DFP), and the color change was visible to the naked eye. Nanocomposite fibers containing 10% PCDA-HBA were found to be the optimum composition for DFP detection. The limit of DFP detection was 63 ppm. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, wide-angle X-ray diffraction (XRD), small-angle XRD, nuclear magnetic resonance, and Fourier-transform infrared spectroscopy were employed for characterization. This research is a landmark study in the development of a highly sensitive and selective OP sensing system.
Collapse
Affiliation(s)
- A K M
Mashud Alam
- Department of Apparel, Events, and
Hospitality Management, Iowa State University, Ames, Iowa 50011, United States
| | - Chunhui Xiang
- Department of Apparel, Events, and
Hospitality Management, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Bashir K, Shikha S, Rattu G, Jan K, Krishna PM, Pattanayek SK. Pesticide residues and their detection techniques in foods using sensors- a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:221-239. [PMID: 39868385 PMCID: PMC11757846 DOI: 10.1007/s13197-024-06116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025]
Abstract
The use of pesticides in agricultural produce is continuously increasing and it raises the question of whether the food is safe or not. Only 0.1% of the sprayed pesticide reaches its target and the rest acts as a contaminant in soil and the environment, thus contaminating the future foods as well. The pesticide residue management is gaining attention as pesticide poisoning account for more than 3.5% of total deaths. The use of pesticides needs to be checked and applied in a controlled manner. Easy and rapid methods for the quantification of pesticides in foods need to be developed. In the present review, details about pesticides have been described in the first part. Secondly, the techniques and recent developments for the detection of pesticides have been summarized and finally, the emerging challenges and future perspectives for pesticide handling has been discussed with special emphasis on the use of Nano-sensors for pesticide detection. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06116-8.
Collapse
Affiliation(s)
- Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - Shalini Shikha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| | - Gurdeep Rattu
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka 560064 India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, 110062 India
| | - P. Murali Krishna
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana 131028 India
| | - Sudip K. Pattanayek
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, 110062 India
| |
Collapse
|
4
|
Ashiagbor K, Jayan H, Yosri N, Amaglo NK, Zou X, Guo Z. Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables. Food Chem 2025; 463:141394. [PMID: 39326308 DOI: 10.1016/j.foodchem.2024.141394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Fruits and vegetables with pesticide residues pose a serious public health risk. Since 2022, 3 million people worldwide have been poisoned by pesticides annually, with a 20 % fatality rate. This review provides an overview of current research on detecting pesticide residues in produce, focusing on the potential of SERS-based aptasensor. These sensors offer improved efficiency and accuracy in pesticide analysis, ensuring the safety of fruits and vegetables. The review also discusses essential techniques for efficient aptamer production, highlighting their advantages and disadvantages. It emphasizes the benefits and challenges of using SERS-based aptasensor, particularly the need for enhanced anti-interference capabilities and the development of intelligent sensors for on-site detection without extensive sample preparation. This comprehensive review is a great resource that can help with future developments in pesticide residue analysis, food safety, and consumer health protection in contemporary agriculture.
Collapse
Affiliation(s)
- Kwami Ashiagbor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Heera Jayan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Newton K Amaglo
- Department of Horticulture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Philip JJ, C S A, Kottam N, Hunsur Ravikumar C, Balakrishna RG. Reliability of Multi-Emissive Carbon Quantum Dots for Multiplexing; Assessing the Figures of Merit. J Fluoresc 2024:10.1007/s10895-024-04041-9. [PMID: 39589686 DOI: 10.1007/s10895-024-04041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Incredible properties of quantum dots (QDs) have once again been acclaimed with this year's (2023) Nobel prize in chemistry. On the other hand, the invention of multicolour molecular imaging of cell surface receptors for tumour diagnosis by Koyama and group has opened up a new era in diagnostics. Among them carbon quantum dots (CQDs) are interesting class of fluorescent nanomaterials, superior in terms of low toxicity, high solubility and biocompatibility along with simple and cost-effective synthesis processes unlike the traditional metal chalcogenide or perovskite quantum dots. Multi emissive fluorescence property of these carbon quantum dots are very useful in multiplex sensing. Their excellent biocompatibility and low toxicity have attracted researchers to use them extensively for biosensing and imaging of multiple analytes at a time. Core state emission from π-domains and surface state emissions of functional groups surrounding CQDs play a major role in achieving the multicolour emissions and this review discusses the various strategies used to achieve desired multi colour emissions, yet preserving their stability, non-interactive emissive states and quantum yields. Their fine tuning via variation in temperature, pH, time, and heteroatom doping has been comprehensively discussed. A thorough history compared to a list of characteristics for creating effective multicolour CQDs will point us in the proper route. This minireview also assesses the electronic band structure of these multicolour CQDs, their stability with respect to multi emissions, photoluminescence quantum yields, approaches employed for tunability of their optical band gaps, and also enhancement of carrier lifetimes, to arrive at conclusions on the reliability of these materials for multiplexing. The mechanisms namely chemical coupling, FRET, On-Off, Ab-antigen interactions involved in sensing mechanisms involving these materials are analysed in depth. Ultimately, the present obstacles and future directions for the use of these CQDs in sensing applications are discussed.
Collapse
Affiliation(s)
- Jomy Jose Philip
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India
| | - Aishwarya C S
- Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, 560054, India
| | - Nagaraju Kottam
- Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, 560054, India
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India.
| |
Collapse
|
6
|
Latif U, Yaqub S, Dickert FL. Sensitive Coatings Based on Molecular-Imprinted Polymers for Triazine Pesticides' Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5934. [PMID: 39338679 PMCID: PMC11436188 DOI: 10.3390/s24185934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure.
Collapse
Affiliation(s)
- Usman Latif
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad-Lahore Campus, Lahore 54600, Pakistan
| | - Sadaf Yaqub
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - Franz L. Dickert
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Kamalasekaran K, Sundramoorthy AK. Applications of chemically modified screen-printed electrodes in food analysis and quality monitoring: a review. RSC Adv 2024; 14:27957-27971. [PMID: 39224631 PMCID: PMC11367709 DOI: 10.1039/d4ra02470b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Food analysis and food quality monitoring are vital aspects of the food industry, ensuring the safety and authenticity of various food products, from packaged goods to fast food. In this comprehensive review, we explore the applications of chemically modified Screen-Printed Electrodes (SPEs) in these critical domains. SPEs have become extremely useful devices for ensuring food safety and quality assessment because of their adaptability, affordability, and convenience of use. The Introduction opens the evaluation, that covers a wide spectrum of foods, encompassing packaged, junk food, and food quality concerns. This sets the stage for a detailed exploration of chemically modified SPEs, including their nature, types, utilization, and the advantages they offer in the context of food analysis. Subsequently, the review delves into the multitude applications of SPEs in food analysis, ranging from the detection of microorganisms such as bacteria and fungi, which are significant indicators of food spoilage and safety, to the identification of pesticide residues, food colorants, chemicals, toxins, and antibiotics. Furthermore, chemically modified SPEs have proven to be invaluable in the quantification of metal ions and vitamins in various food matrices, shedding light on nutritional content and quality.
Collapse
Affiliation(s)
- Kavitha Kamalasekaran
- Department of Chemistry, Velammal Engineering College Chennai 600066 Tamil Nadu India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics and Materials Science, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai 600077 Tamil Nadu India
| |
Collapse
|
8
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
9
|
Moschopoulou G, Tsekouras V, Mercader JV, Abad-Fuentes A, Kintzios S. Development of a Portable Cell-Based Biosensor for the Ultra-Rapid Screening for Boscalid Residues in Lettuce. BIOSENSORS 2024; 14:311. [PMID: 38920615 PMCID: PMC11201857 DOI: 10.3390/bios14060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Fungal plant pathogens have posed a significant threat to crop production. However, the large-scale application of pesticides is associated with possible risks for human health and the environment. Boscalid is a widely used fungicide, consistently implemented for the management of significant plant pathogens. Conventionally, the detection and determination of boscalid residues is based on chromatographic separations. In the present study, a Bioelectric Recognition Assay (BERA)-based experimental approach combined with MIME technology was used, where changes in the electric properties of the membrane-engineering cells with anti-boscalid antibodies were recorded in response to the presence of boscalid at different concentrations based on the maximum residue level (MRL) for lettuce. The membrane-engineering Vero cells with 0.5 μg/mL of antibody in their surface were selected as the best cell line in combination with the lowest antibody concentration. Furthermore, the biosensor was tested against another fungicide in order to prove its selectivity. Finally, the BERA cell-based biosensor was able to detect the boscalid residue, below and above the MRL, in spiked lettuce leaf extracts in an entirely distinct and reproducible manner. This study indicates that the BERA-based biosensor, after further development and optimization, could be used for the routine, high-throughput detection of boscalid residue in lettuce, and not only that.
Collapse
Affiliation(s)
- Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Josep V. Mercader
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Antonio Abad-Fuentes
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| |
Collapse
|
10
|
Pandey S, Pant P, Dall'Acqua S. Advances in sample preparation methods for pesticide residue analysis in medicinal plants: A focus on Nepal. Arch Pharm (Weinheim) 2024; 357:e2300652. [PMID: 38332309 DOI: 10.1002/ardp.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Medicinal plant safety is a rising challenge worldwide due to the continued overuse of pesticides to their maximum residue limits. Due to the high demand for medicinal plants, their production is being increased and sometimes protected by pesticide use. The analysis of these residues requires robust analytical methods to ensure the safety and quality of medicinal plants. Developing effective sample preparation for detecting pesticides is challenging, due to their diverse natures, classes, and physico-chemical characteristics. Hence, existing techniques and strategies are needed to improve the reliability of the results. The review discusses the current state of sample preparation techniques, analytical methods, and instrumental technologies employed in pesticide residue analysis in medicinal plants. It highlights the challenges, limitations, and advancements in the field, providing insights into the analytical strategies used to detect and quantify pesticide residues. Reliable, accessible, affordable, and high-resolution analytical procedures are essential to ensure that pesticide levels in medicinal plants are effectively regulated. By understanding the complexities of pesticide residue analysis in medicinal plants, this review article aims to support the conservation of medicinal plant resources, promote public health, and contribute to the development of sustainable strategies for ensuring the safety and quality of medicinal plants in Nepal. The findings of this review will benefit researchers, policymakers, and stakeholders involved in the conservation of medicinal plant resources and the promotion of public health.
Collapse
Affiliation(s)
- Sudip Pandey
- Institute of Forest Biomaterials Science and Engineering, Madan Bhandari University of Science and Technology, Chitlang, Nepal
| | - Poonam Pant
- Faculty of Pharmacy, CiST College, Kathmandu, Nepal
| | - Stefano Dall'Acqua
- DSF Department of Pharmaceutical and Pharmacological Science, Padova, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
12
|
Zhao X, Chen S, Fan Y, Lei X, Li Y, Ji T, Xia H, Wang L. Rapid Quantitative Detection for Nitrofurantoin Based on Nitrogen-Doped Highly Photoluminescent Carbon Dots. ACS OMEGA 2024; 9:13183-13190. [PMID: 38524484 PMCID: PMC10955566 DOI: 10.1021/acsomega.3c09620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Nitrogen-doped carbon dots (NCD) with high fluorescence retention and good stability were successfully fabricated using citric acid and urea via a facile and eco-friendly one-step microwave method, which exhibited superior specificity for detection of nitrofurantoin (NFT). Upon the addition of NFT, the fluorescence intensity of NCD at 450 nm was significantly decreased. Besides, a satisfactory linear relationship between the fluorescence quenching efficiency and concentrations of NFT was obtained. Especially, NCD was qualitatively and quantitatively applied for detection NFT in milk and meat extract samples with a high recovery rate. Consequently, it was suggested that the detection method had potential application in the specific detection of NFT, offering a novel approach for veterinary drug residue detection.
Collapse
Affiliation(s)
- Xing Zhao
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Shiwen Chen
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Yangyang Fan
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Xianglan Lei
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Yulin Li
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Tianxing Ji
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| | - Hui Xia
- College
of Chemistry & Environment, Southwest
Minzu University, Chengdu 610041, China
| | - Lu Wang
- College
of Animal and Veterinary Sciences, Southwest
Minzu University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
14
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
15
|
Majer-Baranyi K, Szendrei F, Adányi N, Székács A. Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate. BIOSENSORS 2023; 13:771. [PMID: 37622857 PMCID: PMC10452378 DOI: 10.3390/bios13080771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
The herbicide active ingredient glyphosate is the most widely applied herbicidal substance worldwide. Currently it is the market-leading pesticide, and its use is projected to further grow 4.5-fold between 2022 and 2029. Today, glyphosate use exceeds one megaton per year worldwide, which represents a serious environmental burden. A factor in the overall boost in the global use of glyphosate has been the spread of glyphosate-tolerant genetically modified (GM) crops that allow post-emergence applications of the herbicide on these transgenic crops. In turn, cultivation of glyphosate-tolerant GM crops represented 56% of the glyphosate use in 2019. Due to its extremely high application rate, xenobiotic behaviour and a water solubility (11.6 mg/mL at 25 °C) unusually high among pesticide active ingredients, glyphosate has become a ubiquitous water pollutant and a primary drinking water contaminant worldwide, presenting a threat to water quality. The goal of our research was to develop a rapid and sensitive method for detecting this herbicide active ingredient. For this purpose, we applied the novel analytical biosensor technique optical waveguide light-mode spectroscopy (OWLS) to the label-free detection of glyphosate in a competitive immunoassay format using glyphosate-specific polyclonal antibodies. After immobilising the antigen conjugate in the form of a glyphosate conjugated to human serum albumin for indirect measurement, the sensor chip was used in a flow-injection analyser system. For the measurements, an antibody stock solution was diluted to 2.5 µg/mL. During the measurement, standard solutions were mixed with the appropriate concentration of antibodies and incubated for 1 min before injection. The linear detection range and the EC50 value of the competitive detection method were between 0.01 and 100 ng/mL and 0.60 ng/mL, respectively. After investigating the indirect method, we tested the cross-reactivity of the antibody with glyphosate and structurally related compounds.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Fanni Szendrei
- Institute of Isotopes Co., Ltd., Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
16
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
18
|
Moram SSB, Byram C, Soma VR. Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection. RSC Adv 2023; 13:2620-2630. [PMID: 36741174 PMCID: PMC9844677 DOI: 10.1039/d2ra07859g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
We have developed simple and cost-effective surface-enhanced Raman scattering (SERS) substrates for the trace detection of pesticide (thiram and thiabendazole) and dye (methylene blue and Nile blue) molecules. Surface patterns (micro/nanostructures) on silicon (Si) substrates were fabricated using the technique of femtosecond (fs) laser ablation in ambient air. Different surface patterns were achieved by tuning the number of laser pulses per unit area (4200, 8400, 42 000, and 84 000 pulses per mm2) on Si. Subsequently, chemically synthesized gold (Au) nanostars were embedded in these laser-patterned areas of Si to achieve a plasmonic active hybrid SERS substrate. Further, the SERS performance of the as-prepared Au nanostar embedded Si substrates were tested with different probe molecules. The as-prepared substrates allowed us to detect a minimum concentration of 0.1 ppm in the case of thiram, 1 ppm in the case of thiabendazole (TBZ), 1.6 ppb in the case of methylene blue (MB), and 1.8 ppb in case of Nile blue (NB). All these were achieved using a simple, field-deployable, portable Raman spectrometer. Additionally, the optimized SERS substrate demonstrated ∼21 times higher SERS enhancement than the Au nanostar embedded plain Si substrate. Furthermore, the optimized SERS platform was utilized to detect a mixture of dyes (MB + NB) and pesticides (thiram + TBZ). The possible reasons for the observed additional enhancement are elucidated.
Collapse
Affiliation(s)
- Sree Satya Bharati Moram
- Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia–Centre of Excellence (DIA-COE), University of HyderabadProf. C. R. Rao RoadHyderabad 500046TelanganaIndia
| | - Chandu Byram
- Department of Physics, College of Arts and Sciences, University of Dayton300 College ParkDaytonOhio 45469USA
| | - Venugopal Rao Soma
- Advanced Centre for Research in High Energy Materials (ACRHEM), DRDO Industry Academia–Centre of Excellence (DIA-COE), University of HyderabadProf. C. R. Rao RoadHyderabad 500046TelanganaIndia
| |
Collapse
|
19
|
Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics (Basel) 2022; 7:biomimetics7040175. [PMID: 36412703 PMCID: PMC9680295 DOI: 10.3390/biomimetics7040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microfluidic technology is one of the new technologies that has been able to take advantage of the specific properties of micro and nanoliters, and by reducing the costs and duration of tests, it has been widely used in research and treatment in biology and medicine. Different materials are often processed into miniaturized chips containing channels and chambers within the microscale range. This review (containing 117 references) demonstrates the significance and application of nanofluidic biosensing of various pathogenic bacteria. The microfluidic application devices integrated with bioreceptors and advanced nanomaterials, including hyperbranched nano-polymers, carbon-based nanomaterials, hydrogels, and noble metal, was also investigated. In the present review, microfluid methods for the sensitive and selective recognition of photogenic bacteria in various biological matrices are surveyed. Further, the advantages and limitations of recognition methods on the performance and efficiency of microfluidic-based biosensing of photogenic bacteria are critically investigated. Finally, the future perspectives, research opportunities, potential, and prospects on the diagnosis of disease related to pathogenic bacteria based on microfluidic analysis of photogenic bacteria are provided.
Collapse
|
20
|
Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, Mahmud MS, Chrysochoou M, Yang M, Vadas TM, Lei Y, Li B. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13546-13564. [PMID: 36121207 DOI: 10.1021/acs.est.2c03562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution. First, the barriers for reliable RTCSM data acquisition are elucidated by examining typical soil monitoring techniques (e.g., electrochemical and spectroscopic sensors). Next, the prevailing challenges of the RTCSM sensor network, data transmission, data processing, and personalized data management are comprehensively discussed. Furthermore, this review explores RTCSM data application for updating diverse strategies including high-fidelity soil process models, control methodologies, digital soil mapping, soil degradation, food security, and climate change mitigation. Finally, the significance of RTCSM implementation in agricultural and environmental fields is underscored through illuminating future directions and perspectives in this systematic review.
Collapse
Affiliation(s)
- Yingzheng Fan
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Thomas Funk
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ishrat Rashid
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Brianna Herman
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Nefeli Bompoti
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Md Shaad Mahmud
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Meijian Yang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Center for Environmental Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
21
|
Recent Advances in Nanomaterial-Based Biosensors for Pesticide Detection in Foods. BIOSENSORS 2022; 12:bios12080572. [PMID: 36004968 PMCID: PMC9405907 DOI: 10.3390/bios12080572] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Biosensors are a simple, low-cost, and reliable way to detect pesticides in food matrices to ensure consumer food safety. This systematic review lists which nanomaterials, biorecognition materials, transduction methods, pesticides, and foods have recently been studied with biosensors associated with analytical performance. A systematic search was performed in the Scopus (n = 388), Web of Science (n = 790), and Science Direct (n = 181) databases over the period 2016–2021. After checking the eligibility criteria, 57 articles were considered in this study. The most common use of nanomaterials (NMs) in these selected studies is noble metals in isolation, such as gold and silver, with 8.47% and 6.68%, respectively, followed by carbon-based NMs, with 20.34%, and nanohybrids, with 47.45%, which combine two or more NMs, uniting unique properties of each material involved, especially the noble metals. Regarding the types of transducers, the most used were electrochemical, fluorescent, and colorimetric, representing 71.18%, 13.55%, and 8.47%, respectively. The sensitivity of the biosensor is directly connected to the choice of NM and transducer. All biosensors developed in the selected investigations had a limit of detection (LODs) lower than the Codex Alimentarius maximum residue limit and were efficient in detecting pesticides in food. The pesticides malathion, chlorpyrifos, and paraoxon have received the greatest attention for their effects on various food matrices, primarily fruits, vegetables, and their derivatives. Finally, we discuss studies that used biosensor detection systems devices and those that could detect multi-residues in the field as a low-cost and rapid technique, particularly in areas with limited resources.
Collapse
|
22
|
Freitas C, Machado LS, Pereira I, da Silva RR, dos Santos GF, Chaves AR, Simas RC, Lima GS, Vaz BG. Assessing organophosphorus and carbamate pesticides in maize samples using MIP extraction and PSI-MS analyzes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2510-2515. [PMID: 35602426 PMCID: PMC9114180 DOI: 10.1007/s13197-022-05464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/07/2022] [Accepted: 04/03/2022] [Indexed: 06/03/2023]
Abstract
The indiscriminate utilization of agrochemicals causes environmental and animal life impacts. In this regard, methodologies have been developed to offer efficiency and quickness for agrochemicals detection. Due to their selectivity and molecular recognition sites, Molecular Imprinted Polymer (MIPs) have been widely employed in some areas, including biotechnology, waste analyses, foodstuff, biological fluids, and others. This work proposed developing a method to determine aminocarb, pirimicarb, dimethoate, omethoate, pyridaphenthion, and fenitrothion pesticides using molecularly imprinted polymer combined with solid-phase extraction (MIP-SPE) for clean-up and paper spray ionization mass spectrometry for their analysis. Extractions analysis for Aminocarb, Pirimicarb, and Omethoate using MIP-SPE showed better performance when compared with MIP and NIP. The R 2 values were found with R 2 > 0.98 for all pesticides, and LODs and LOQs values were 50 and 100 µg kg-1, respectively. The precision and accuracy were assessed at three concentration levels-low, medium, and high. The precision values (interday and intraday) were below 10%, and the variation of recovery was between 80 and 120% for all pesticides. Therefore, it was possible to verify the presence of two carbamates and five organophosphorus without the necessity of preconcentration samples with precision and good recovery. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05464-7.
Collapse
Affiliation(s)
- Carla Freitas
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Lucas S. Machado
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Rodolfo R. da Silva
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | | | - Andrea R. Chaves
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Rosineide C. Simas
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Gesiane S. Lima
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| | - Boniek G. Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia, GO 74690-900 Brazil
| |
Collapse
|
23
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
24
|
Chadha R, Das A, Lobo J, Meenu V, Paul A, Ballal A, Maiti N. γ-Cyclodextrin capped silver and gold nanoparticles as colorimetric and Raman sensor for detecting traces of pesticide “Chlorpyrifos” in fruits and vegetables. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Vrabelj T, Finšgar M. Recent Progress in Non-Enzymatic Electroanalytical Detection of Pesticides Based on the Use of Functional Nanomaterials as Electrode Modifiers. BIOSENSORS 2022; 12:263. [PMID: 35624564 PMCID: PMC9139166 DOI: 10.3390/bios12050263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022]
Abstract
This review presents recent advances in the non-enzymatic electrochemical detection and quantification of pesticides, focusing on the use of nanomaterial-based electrode modifiers and their corresponding analytical response. The use of bare glassy carbon electrodes, carbon paste electrodes, screen-printed electrodes, and other electrodes in this research area is presented. The sensors were modified with single nanomaterials, a binary composite, or triple and multiple nanocomposites applied to the electrodes' surfaces using various application techniques. Regardless of the type of electrode used and the class of pesticides analysed, carbon-based nanomaterials, metal, and metal oxide nanoparticles are investigated mainly for electrochemical analysis because they have a high surface-to-volume ratio and, thus, a large effective area, high conductivity, and (electro)-chemical stability. This work demonstrates the progress made in recent years in the non-enzymatic electrochemical analysis of pesticides. The need for simultaneous detection of multiple pesticides with high sensitivity, low limit of detection, high precision, and high accuracy remains a challenge in analytical chemistry.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
26
|
Narayanan N, Mandal A, Kaushik P, Singh S. Fluorescence turn off azastilbene sensor for detection of pesticides in vegetables: An experimental and computational investigation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Nandhini AR, Harshiny M, Gummadi SN. Chlorpyrifos in environment and food: a critical review of detection methods and degradation pathways. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1255-1277. [PMID: 34553733 DOI: 10.1039/d1em00178g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorpyrifos (CP) is a class of organophosphorus (OP) pesticides, which find extensive applications as acaricide, insecticide and termiticide. The use of CP has been indicated in environmental contamination and disturbance in the biogeochemical cycles. CP has been reported to be neurotoxic and has a detrimental effect on immunological and psychological health. Therefore, it is necessary to design and develop effective degradation methods for the removal of CP from the environment. In the past few years, physicochemical (advanced oxidation process) and biological treatment approaches have been widely employed for the pesticide removal. However, the byproducts of this process are more toxic than the parent compound and along with an incomplete degradation of CP. This review focuses on the toxicity of CP, the sources of contamination, degradation pathways, physicochemical, biological, and nano-technology based methods employed for the degradation of CP. In addition, consolidated information on various detection methods and materials used for the detection have been provided in this review.
Collapse
Affiliation(s)
- A R Nandhini
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai-600025, India
| | - M Harshiny
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
29
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|
30
|
Alam AKMM, Jenks D, Kraus GA, Xiang C. Synthesis, Fabrication, and Characterization of Functionalized Polydiacetylene Containing Cellulose Nanofibrous Composites for Colorimetric Sensing of Organophosphate Compounds. NANOMATERIALS 2021; 11:nano11081869. [PMID: 34443700 PMCID: PMC8399134 DOI: 10.3390/nano11081869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Abstract
Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.
Collapse
Affiliation(s)
- A K M Mashud Alam
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
| | - Donovan Jenks
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA; (D.J.); (G.A.K.)
| | - Chunhui Xiang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50011, USA; or
- Correspondence: ; Tel.: +1-(515)294-7515
| |
Collapse
|
31
|
Kong XP, Zhang BH, Wang J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6735-6754. [PMID: 34110151 DOI: 10.1021/acs.jafc.1c01091] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pollution related to pesticides has become a global problem due to their low utilization and non-targeting application, and nanotechnology has shown great potential in promoting sustainable agriculture. Nowadays, mesoporous silica-based nanomaterials have garnered immense attention for improving the efficacy and safety of pesticides due to their distinctive advantages of low toxicity, high thermal and chemical stability, and particularly size tunability and versatile functionality. Based on the introduction of the structure and synthesis of different types of mesoporous silica nanoparticles (MSNs), the multiple roles of mesoporous silica in safe pesticide application using nanotechnology are discussed in this Review: (i) as nanocarrier for sustained/controlled delivery of pesticides, (ii) as adsorbent for enrichment or removal of pesticides in aqueous media, (iii) as support of catalysts for degradation of pesticide contaminants, and (iv) as support of sensors for detection of pesticides. Several scientific issues, strategies, and mechanisms regarding the application of MSNs in the pesticide field are presented, with their future directions discussed in terms of their environmental risk assessment, in-depth mechanism exploration, and cost-benefit consideration for their continuous development. This Review will provide critical information to related researchers and may open up their minds to develop new advances in pesticide application.
Collapse
Affiliation(s)
- Xiang-Ping Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Bao-Hua Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Juan Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| |
Collapse
|
32
|
Burratti L, Ciotta E, De Matteis F, Prosposito P. Metal Nanostructures for Environmental Pollutant Detection Based on Fluorescence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:276. [PMID: 33494342 PMCID: PMC7911013 DOI: 10.3390/nano11020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Heavy metal ions and pesticides are extremely dangerous for human health and environment and an accurate detection is an essential step to monitor their levels in water. The standard and most used methods for detecting these pollutants are sophisticated and expensive analytical techniques. However, recent technological advancements have allowed the development of alternative techniques based on optical properties of noble metal nanomaterials, which provide many advantages such as ultrasensitive detection, fast turnover, simple protocols, in situ sampling, on-site capability and reduced cost. This paper provides a review of the most common photo-physical effects impact on the fluorescence of metal nanomaterials and how these processes can be exploited for the detection of pollutant species. The final aim is to provide readers with an updated guide on fluorescent metallic nano-systems used as optical sensors of heavy metal ions and pesticides in water.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| | - Erica Ciotta
- Institute for Microelectronics and Microsystems (IMM) CNR Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Fabio De Matteis
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| | - Paolo Prosposito
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| |
Collapse
|
33
|
Phopin K, Tantimongcolwat T. Pesticide Aptasensors-State of the Art and Perspectives. SENSORS 2020; 20:s20236809. [PMID: 33260648 PMCID: PMC7730859 DOI: 10.3390/s20236809] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Contamination by pesticides in the food chain and the environment is a worldwide problem that needs to be actively monitored to ensure safety. Unfortunately, standard pesticide analysis based on mass spectrometry takes a lot of time, money and effort. Thus, simple, reliable, cost-effective and field applicable methods for pesticide detection have been actively developed. One of the most promising technologies is an aptamer-based biosensor or so-called aptasensor. It utilizes aptamers, short single-stranded DNAs or RNAs, as pesticide recognition elements to integrate with various innovative biosensing technologies for specific and sensitive detection of pesticide residues. Several platforms for aptasensors have been dynamically established, such as colorimetry, fluorometry, electrochemistry, electrochemiluminescence (ECL) and so forth. Each platform has both advantages and disadvantages depending on the purpose of use and readiness of technology. For example, colorimetric-based aptasensors are more affordable than others because of the simplicity of fabrication and resource requirements. Electrochemical-based aptasensors have mainly shown better sensitivity than others with exceedingly low detection limits. This paper critically reviews the progression of pesticide aptasensors throughout the development process, including the selection, characterization and modification of aptamers, the conceptual frameworks of integrating aptamers and biosensors, the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end users) criteria of different platforms and the future outlook.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakorn Pathom 73170, Thailand;
- Correspondence:
| |
Collapse
|
34
|
Rahmati F, Hosseini SS, Mahuti Safai S, Asgari Lajayer B, Hatami M. New insights into the role of nanotechnology in microbial food safety. 3 Biotech 2020; 10:425. [PMID: 32968610 PMCID: PMC7483685 DOI: 10.1007/s13205-020-02409-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Today, the role of nanotechnology in human life is undeniable as a broad range of industries, particularly food and medicine sectors, have been dramatically influenced. Nanomaterials can contribute to food safety by forming new nano-sized ingredients with modified physicochemical characteristics. Nanotechnologies can inhibit the growth of food spoilage microorganisms by recruiting novel and unique agents that are involved in removal of microbes from foods or prevent adhesion of microbial cells to food surfaces. Hence, nanotechnology could be considered as a high-potential tool in food packaging, safety, and preservation. Moreover, the prevention of biofilm formation by disturbing the attachment of bacteria to the food surface is another useful nanotechnological approach. Recently, nanoparticle-based biosensors have been designed and developed to detect the food-borne pathogens and hazardous substances through complicated mechanisms. During the past half-century, many methods such as freeze-drying and spray drying have been employed for increasing the viability in food industries; however, the other novel approaches such as encapsulation methods have also been developed. Admittedly, some beneficial bacteria such as probiotics bring diverse benefits for human health if only they are in a sufficient number and viability in the food products and gastrointestinal tract (GI). Encapsulation of these valuable microbial strains by nanoparticles improves the survival of probiotics under harsh conditions such as extreme levels of temperature, pH, and salinity during the processing of food products and within the GIT tract. The survival and effectiveness of encapsulated microorganisms depends on different factors including function of cell wall components in bacteria and type of coating materials. This review aims to broadly explore the potential of different aspects of nanotechnology in food industry, especially for packaging, preservation, safety, and viability.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Islamic Azad University, Qom Branch, Qom, Iran
| | | | - Sadaf Mahuti Safai
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Behnam Asgari Lajayer
- Health and Environmental Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349 Iran
| |
Collapse
|
35
|
Berneschi S, Bettazzi F, Giannetti A, Baldini F, Nunzi Conti G, Pelli S, Palchetti I. Optical whispering gallery mode resonators for label-free detection of water contaminants. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Tucci M, Bombelli P, Howe CJ, Vignolini S, Bocchi S, Schievano A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019; 7:E630. [PMID: 31795453 PMCID: PMC6956157 DOI: 10.3390/microorganisms7120630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
A novel mediatorless photo-bioelectrochemical sensor operated with a biofilm of the cyanobacterium Synechocystis PCC6803 wt. for herbicide detection with long term stability (>20 days) was successfully developed and tested. Photoanodic current generation was obtained in the absence of artificial mediators. The inhibitory effect on photocurrent of three commonly used herbicides (i.e., atrazine, diuron, and paraquat) was used as a means of measuring their concentrations in aqueous solution. The injection of atrazine and diuron into the algal medium caused an immediate photocurrent drop due to the inhibition of photosynthetic electron transport. The detected concentrations were suitable for environmental analysis, as revealed by a comparison with the freshwater quality benchmarks set by the Environmental Protection Agency of the United States (US EPA). In contrast, paraquat caused an initial increase (~2 h) of the photocurrent effect of about 200%, as this compound can act as a redox mediator between the cells and the anode. A relatively long-term stability of the biosensor was demonstrated, by keeping anodes colonized with cyanobacterial biofilm in the dark at 4 °C. After 22 days of storage, the performance in terms of the photocurrent was comparable with the freshly prepared biosensor. This result was confirmed by the measurement of chlorophyll content, which demonstrated preservation of the cyanobacterial biofilm. The capacity of this biosensor to recover after a cold season or other prolonged environmental stresses could be a key advantage in field applications, such as in water bodies and agriculture. This study is a step forward in the biotechnological development and implementation of storable mediatorless electrochemical biosensors for herbicide detection.
Collapse
Affiliation(s)
- Matteo Tucci
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| | - Paolo Bombelli
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK;
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Stefano Bocchi
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria, 2, 20,133 Milano, Italy;
| | - Andrea Schievano
- e-Bio Center, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 2, 20,133 Milan, Italy; (M.T.); (A.S.)
| |
Collapse
|