1
|
Tian RQ, Gao Y, Hu XH, Jia MH, Fu LY, Pan D, Su SF, Shen XC, Xiao CD. Unmodified RNA sequences form unusual stable G-quadruplexes with potential anti-RSV and anti-angiogenesis applications. Commun Biol 2025; 8:474. [PMID: 40119117 PMCID: PMC11928468 DOI: 10.1038/s42003-025-07915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
DNA or RNA sequences with customizable designs form unique three-dimensional structures that bind to targets with high precision and strength, making them promising tools for medical diagnosis and therapy. However, their clinical use is limited by rapid clearance from blood and safety concerns. This study introduces a novel RNA-based structure called G-quadruplex, which requires no chemical modifications. These G-quadruplexes remain highly stable in biological fluids, retaining over 90% of their concentration after 96 h. Experiments confirm their strong binding to a cell surface protein (nucleolin) without significant cellular uptake, resulting in nearly zero harm to cells. They effectively block respiratory syncytial virus infection, suppress the growth and movement of human blood vessel cells, and prevent new blood vessel formation in chicken embryos, even without specialized delivery systems. These stable G-quadruplex structures demonstrate dual potential for treating cancers and viral infections, offering a versatile and safe strategy for future therapies.
Collapse
Affiliation(s)
- Rui-Qing Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, PR China
- Department of Hematology-oncology, The First People's Hospital of Guiyang, Guiyang, PR China
| | - Yue Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Xiao-Hui Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Meng-Hao Jia
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Ling-Yun Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Di Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China
| | - Sheng-Fa Su
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, PR China.
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China.
| | - Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, PR China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, PR China.
| |
Collapse
|
2
|
Sánchez-Salcedo R, Sharma P, Voelcker NH. Advancements in Porous Silicon Biosensors for Point of Care, Wearable, and Implantable Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2814-2843. [PMID: 39757779 DOI: 10.1021/acsami.4c18273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Biosensors play a critical role in modern diagnostics, offering high sensitivity and specificity for detecting various relevant clinical analytes as well as real-time monitoring and integrability in point-of-care (POC) platforms and wearable/implantable devices. Among the numerous materials used as biosensing substrates, porous silicon (pSi) has garnered significant attention due to its tunable properties, ease of fabrication, large surface area, and versatile surface chemistry. These attributes make pSi an ideal platform for transducer development, particularly in the fabrication of optical and electrochemical biosensors. This review explores the various stages of the design of a pSi-based biosensor starting from pSi fabrication, followed by a deep study about the stabilization and functionalization techniques providing a comparative analysis of their performance. Moreover, we survey the reported designs categorized as optical and electrochemical sensors, presenting a critical evaluation of their analytical validity as well as identifying the challenges of bringing these devices to the clinical practice. By bridging existing knowledge gaps, this review aims to inspire future innovation, providing valuable insights into how pSi-based biosensors can be further optimized for noninvasive diagnostics, personalized healthcare, and early disease detection leading to a doable commercialization.
Collapse
Affiliation(s)
- Raquel Sánchez-Salcedo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Pritam Sharma
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
3
|
Andrew A, Sum MSH, Ch'ng ES, Tang TH, Citartan M. Selection of DNA aptamers against Chikungunya virus Envelope 2 Protein and their application in sandwich ELASA. Talanta 2025; 281:126842. [PMID: 39305759 DOI: 10.1016/j.talanta.2024.126842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024]
Abstract
Chikungunya fever, caused by Chikungunya virus (CHIKV) exhibits clinical features that mimic that of other arbovirus infections such as dengue. CHIKV Envelope 2 (E2) protein, an antigenic epitope of CHIKV, has been identified as an ideal marker for diagnostics. The current CHIKV antigen detection tests are largely based on antibodies but are beleaguered by issues such as sensitivity to high temperature, expensive and prone to batch-to-batch variations. Aptamers are suitable alternatives to antibodies as they are cheaper and have no batch-to-batch variations compared to antibodies. In this study, DNA aptamer selection against CHIKV E2 proteins was performed using two different randomized ssDNA libraries. Chik-2 (96-mer) and Chik-3 (76-mer) were isolated from these two libraries and were identified as the potential aptamers against CHIKV E2 protein. The binding affinity of Chik-2 and Chik-3 against CHIKV E2 protein was estimated at 177.5 ± 32.69 nM and 30.01 ± 3.60 nM, respectively. A sandwich ELASA was developed, and this assay showed a detection limit of 2.17 x 103 PFU/mL. The sensitivity and specificity of the assay were 80 % and 100 %, respectively. The assay showed no cross-reactivity with dengue-positive samples, demonstrating the enormous diagnostic potential of these aptamers for the detection of CHIKV.
Collapse
Affiliation(s)
- Anna Andrew
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia; Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Magdline S H Sum
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
4
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
5
|
Nandhakumar P, Djassemi O, Raucci A, Chang AY, Cheung C, Dugas Y, Silberman J, Morales-Fermin S, S Sandhu S, Reynoso M, Saha T, Cinti S, Wang J. Simultaneous and Rapid Detection of Glucose and Insulin: Coupling Enzymatic and Aptamer-Based Assays. Anal Chem 2024; 96:18806-18814. [PMID: 39546403 DOI: 10.1021/acs.analchem.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip. The insulin voltammetric sensor employs a G-quadraplex methylene-blue-modified aptamer, while the amperometric biocatalytic glucose sensor utilizes a second-generation mediator-based approach. Simultaneous reagent-less sensing of I and G has been achieved by addressing key challenges. These include combining different surface chemistries, assay formats, and detection principles at closely spaced working electrodes and the substantially different concentration levels of the I and G targets. An attractive analytical performance, with no apparent crosstalk, is demonstrated for the simultaneous detection of millimolar G concentrations and picomolar I concentrations in single microliter serum or saliva sample droplets. This dual biosensor offers rapid, cost-effective, and reliable monitoring, addressing the unmet need for integrated multiplexed diabetes biomarker detection in decentralized settings. Such integration of enzymatic and aptamer-based bioassays could greatly expand the scope of decentralized testing in healthcare beyond diabetes care.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Omeed Djassemi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ada Raucci
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - An-Yi Chang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Cheung
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yuma Dugas
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Silberman
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sofia Morales-Fermin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Samar S Sandhu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Maria Reynoso
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Mohammadi Z, Rahaie M, Moradifar F. A Novel Approach for Colorimetric Detection of Glyphosate in Food Based on a Split Aptamer Nanostructure and DNAzyme Activity. J Fluoresc 2024:10.1007/s10895-024-03998-x. [PMID: 39470896 DOI: 10.1007/s10895-024-03998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Glyphosate has become the most widely used herbicide worldwide in recent years. There are many concerns about toxicity and mutagenicity from long-term use of glyphosate in humans and animals. Therefore, the methods that can help in easy and quick detection of this chemical compound in food and water are critical. In this work, a biosensor was fabricated by combining the enzymatic properties of a specific DNA G-quadruplex and selectivity of a split aptamer to detect glyphosate in foods and water in a quick and simple colorimetric manner. The color change in this method is based on the oxidation of TMB by the G-quadruplex enzyme and the function of aptamer to trap glyphosate, which is visible to the naked eye in the presence and absence of the herbicide. The biosensor showed its high performance in various real samples of water and foods and provided a detection limit of 1.37 nM (R² = 0.9899) with a linear response range of 100 to 400 nM of glyphosate. This biosensor can provide an innovative, cheap and fast approach for the detection and monitoring of glyphosate in various foods and water.
Collapse
Affiliation(s)
- Zahra Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399-57131, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399-57131, Iran.
| | - Fatemeh Moradifar
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 14399-57131, Iran
| |
Collapse
|
7
|
Tam DY, Lau WKM, Limanto YT, Ng DKP. Light-Promoted Lysosomal Escape of a Phthalocyanine and Antisense Oligonucleotide-Complexed G-Quadruplex for Dual Photodynamic and Antisense Therapy. ACS Pharmacol Transl Sci 2024; 7:3216-3227. [PMID: 39416965 PMCID: PMC11475320 DOI: 10.1021/acsptsci.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Combination therapy has been proven as an effective strategy for cancer treatment. To this end, we report herein a self-assembled nucleic acid-based complex for dual photodynamic and antisense therapy. It contains a nucleolin-targeting As1411-based G-quadruplex platform, a partially hybridized antisense oligonucleotide 4625, which can inhibit the antiapoptotic protein B cell lymphoma-xL inducing apoptotic cell death, and a zinc(II) phthalocyanine (ZnPc)-based photosensitizer held by noncovalent interactions. Through a series of in vitro experiments, we have demonstrated that this DNA complex can be internalized selectively to nucleolin-overexpressed MCF-7 and A549 cells through receptor-mediated endocytosis and is localized in the lysosomes. Upon light irradiation, the photosensitization of ZnPc triggers the formation of reactive oxygen species for cell killing and promotes the lysosomal escape of 4625 for antisense therapy. The combined therapeutic effect can eliminate the cancer cells effectively with a half maximal inhibitory concentration of ca. 0.5 μM.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Wendy K. M. Lau
- Department of Chemistry, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yosephine Tania Limanto
- Department of Chemistry, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Dennis K. P. Ng
- Department of Chemistry, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
8
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
9
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
10
|
Hu B, Ouyang SQ, Zhu YP, Lu XL, Ning Z, Jiao BH, Wang LH, Yu HB, Liu XY. Brevetoxin Aptamer Selection and Biolayer Interferometry Biosensor Application. Toxins (Basel) 2024; 16:411. [PMID: 39453187 PMCID: PMC11510897 DOI: 10.3390/toxins16100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Brevetoxins (PbTxs) are very potent marine neurotoxins that can cause an illness clinically described as neurologic shellfish poisoning (NSP). These toxins are cyclic polyether in chemistry and have increased their geographical distribution in the past 2 decades. However, the ethical problems as well as technical difficulties associated with currently employed analysis methods for marine toxins have spurred the quest for suitable alternatives to be applied in a regulatory monitoring regime. In this work, we reported the first instance of concurrent aptamer selection of Brevetoxin-1 (PbTx-1) and Brevetoxin-2 (PbTx-2) and constructed a biolayer interferometry (BLI) biosensor utilizing PbTx-1 aptamer as a specific recognition element. Through an in vitro selection process, we have, for the first time, successfully selected DNA aptamers with high affinity and specificity to PbTx-1 and PbTx-2 from a vast pool of random sequences. Among the selected aptamers, aptamer A5 exhibited the strongest binding affinity to PbTx-1, with an equilibrium dissociation constant (KD) of 2.56 μM. Subsequently, we optimized aptamer A5 by truncation to obtain the core sequence (A5-S3). Further refinement was achieved through mutations based on the predictions of a QGRS mapper, resulting in aptamer A5-S3G, which showed a significant increase in the KD value by approximately 100-fold. Utilizing aptamer A5-S3G, we fabricated a label-free, real-time optical BLI aptasensor for the detection of PbTx-1. This aptasensor displayed a broad detection range from 100 nM to 4000 nM PbTx-1, with a linear range between 100 nM and 2000 nM, and a limit of detection (LOD) as low as 4.5 nM. Importantly, the aptasensor showed no cross-reactivity to PbTx-2 or other marine toxins, indicating a high level of specificity for PbTx-1. Moreover, the aptasensor exhibited excellent reproducibility and stability when applied for the detection of PbTx-1 in spiked shellfish samples. We strongly believe that this innovative aptasensor offers a promising alternative to traditional immunological methods for the specific and reliable detection of PbTx-1.
Collapse
Affiliation(s)
- Bo Hu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Sheng-Qun Ouyang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Yu-Ping Zhu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Xiao-Ling Lu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Zhe Ning
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Bing-Hua Jiao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Liang-Hua Wang
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China; (S.-Q.O.); (Y.-P.Z.); (X.-L.L.); (B.-H.J.); (L.-H.W.)
| | - Hao-Bing Yu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| | - Xiao-Yu Liu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, China; (B.H.); (Z.N.)
| |
Collapse
|
11
|
Fallah A, Havaei SA, Sedighian H, Kachuei R, Fooladi AAI. Prediction of aptamer affinity using an artificial intelligence approach. J Mater Chem B 2024; 12:8825-8842. [PMID: 39158322 DOI: 10.1039/d4tb00909f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Aptamers are oligonucleotide sequences that can connect to particular target molecules, similar to monoclonal antibodies. They can be chosen by systematic evolution of ligands by exponential enrichment (SELEX), and are modifiable and can be synthesized. Even if the SELEX approach has been improved a lot, it is frequently challenging and time-consuming to identify aptamers experimentally. In particular, structure-based methods are the most used in computer-aided design and development of aptamers. For this purpose, numerous web-based platforms have been suggested for the purpose of forecasting the secondary structure and 3D configurations of RNAs and DNAs. Also, molecular docking and molecular dynamics (MD), which are commonly utilized in protein compound selection by structural information, are suitable for aptamer selection. On the other hand, from a large number of sequences, artificial intelligence (AI) may be able to quickly discover the possible aptamer candidates. Conversely, sophisticated machine and deep-learning (DL) models have demonstrated efficacy in forecasting the binding properties between ligands and targets during drug discovery; as such, they may provide a reliable and precise method for forecasting the binding of aptamers to targets. This research looks at advancements in AI pipelines and strategies for aptamer binding ability prediction, such as machine and deep learning, as well as structure-based approaches, molecular dynamics and molecular docking simulation methods.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sundaresan S, Uttamrao PP, Kovuri P, Rathinavelan T. Entangled World of DNA Quadruplex Folds. ACS OMEGA 2024; 9:38696-38709. [PMID: 39310165 PMCID: PMC11411666 DOI: 10.1021/acsomega.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
DNA quadruplexes participate in many biological functions. It takes up a variety of folds based on the sequence and environment. Here, a meticulous analysis of experimentally determined 437 quadruplex structures (433 PDBs) deposited in the PDB is carried out. The analysis reveals the modular representation of the quadruplex folds. Forty-eight unique quadruplex motifs (whose diversity arises out of the propeller, bulge, diagonal, and lateral loops that connect the quartets) are identified, leading to simple to complex inter/intramolecular quadruplex folds. The two-layered structural motifs are further classified into 33 continuous and 15 discontinuous motifs. While the continuous motifs can directly be extended to a quadruplex fold, the discontinuous motif requires an additional loop(s) to complete a fold, as illustrated here with examples. Similarly, higher-order quadruplex folds can also be represented by continuous or discontinuous motifs or their combinations. Such a modular representation of the quadruplex folds may assist in custom engineering of quadruplexes, designing motif-based drugs, and the prediction of the quadruplex structure. Furthermore, it could facilitate understanding of the role of quadruplexes in biological functions and diseases.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Purnima Kovuri
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | | |
Collapse
|
13
|
Bruce-Tagoe TA, Harnish MT, Soleimani S, Ullah N, Shen T, Danquah MK. Surface plasmon resonance aptasensing and computational analysis of Staphylococcus aureus IsdA surface protein. Biotechnol Prog 2024; 40:e3475. [PMID: 38682836 DOI: 10.1002/btpr.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Staphylococcus aureus (S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor in S. aureus infections. In this work, we present an integrated in-silico and experimental approach using MD simulations and surface plasmon resonance (SPR)-based aptasensing measurements to investigate S. aureus biorecognition via IsdA surface protein binding. SPR, a powerful real-time and label-free technique, was utilized to characterize interaction dynamics between the aptamer and IsdA protein, and MD simulations was used to characterize the stable and dynamic binding regions. By characterizing and optimizing pivotal parameters such as aptamer concentration and buffer conditions, we determined the aptamer's binding performance. Under optimal conditions of pH 7.4 and 150 mM NaCl concentration, the kinetic parameters were determined; ka = 3.789 × 104/Ms, kd = 1.798 × 103/s, and KD = 4.745 × 10-8 M. The simulations revealed regions of interest in the IsdA-aptamer complex. Region I, which includes interactions between amino acid residues H106 and R107 and nucleotide residues 9G, 10U, 11G and 12U of the aptamer, had the strongest interaction, based on ΔG and B-factor values, and hence contributed the most to the stability of the interaction. Region II, which covers residue 37A reflects the dynamic nature of the interaction due to frequent contacts. The approach presents a rigorous characterization of aptamer-IsdA binding behavior, supporting the potential application of the IsdA-binding aptamer system for S. aureus biosensing.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael T Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shokoufeh Soleimani
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Wong KY, Wong MS, Liu J. Aptamer-functionalized liposomes for drug delivery. Biomed J 2024; 47:100685. [PMID: 38081386 PMCID: PMC11340590 DOI: 10.1016/j.bj.2023.100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 12/05/2023] [Indexed: 07/26/2024] Open
Abstract
Among the various targeting ligands for drug delivery, aptamers have attracted much interest in recent years because of their smaller size compared to antibodies, ease of modification, and better batch-to-batch consistency. In addition, aptamers can be selected to target both known and even unknown cell surface biomarkers. For drug loading, liposomes are the most successful vehicle and many FDA-approved formulations are based on liposomes. In this paper, aptamer-functionalized liposomes for targeted drug delivery are reviewed. We begin with the description of related aptamers selection, followed by methods to conjugate aptamers to liposomes and the fate of such conjugates in vivo. Then a few examples of applications are reviewed. In addition to intravenous injection for systemic delivery and hoping to achieve accumulation at target sites, for certain applications, it is also possible to have aptamer/liposome conjugates applied directly at the target tissue such as intratumor injection and dropping on the surface of the eye by adhering to the cornea. While previous reviews have focused on cancer therapy, the current review mainly covers other applications in the last four years. Finally, this article discusses potential issues of aptamer targeting and some future research opportunities.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| |
Collapse
|
15
|
Troisi R, Sica F. Structural overview of DNA and RNA G-quadruplexes in their interaction with proteins. Curr Opin Struct Biol 2024; 87:102846. [PMID: 38848656 DOI: 10.1016/j.sbi.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Since the discovery of G-quadruplex (G4) participation in vital cellular processes, the regulation of the interaction of naturally occurring G4s with the relative target proteins has emerged as a promising approach for therapeutic development. Additionally, a synthetic strategy has produced several oligonucleotide aptamers, embodying a G4 module, which exhibit relevant biological activity by binding selectively to a target protein. In this context, the G4-protein structures available in the Protein Data Bank represent a valuable molecular view of the different G4 topologies involved in protein interaction. Interestingly, recent results have shown the co-existence of G4s with other structural domains such as duplexes. Overall, these findings allow a better understanding of the mechanisms that regulate intricate biological functions and suggest new design for innovative medical treatments.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy; Institute of Biostructures and Bioimaging, CNR, via Pietro Castellino 111, 80131 Naples, Italy. https://twitter.com/TroRom
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Naples, Italy.
| |
Collapse
|
16
|
Rabiei P, Mohabatkar H, Behbahani M. A label-free G-quadruplex aptamer/gold nanoparticle-based colorimetric biosensor for rapid detection of bovine viral diarrhea virus genotype 1. PLoS One 2024; 19:e0293561. [PMID: 39078832 PMCID: PMC11288453 DOI: 10.1371/journal.pone.0293561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/16/2023] [Indexed: 08/02/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the cause of bovine viral diarrhea disease, one of the most economically important livestock diseases worldwide. The majority of BVD disease control programs rely on the detection and then elimination of persistent infection (PI) cattle, as the continuing source of disease. The main purpose of this study was to design and develop an accurate G-quadruplex-based aptasensor for rapid and simple detection of BVDV-1. In this work, we utilized in silico techniques to design a G-quadruplex aptamer specific for the detection of BVDV-1. Also, the rationally designed aptamer was validated experimentally and was used for developing a colorimetric biosensor based on an aptamer-gold nanoparticle system. Firstly, a pool of G-quadruplex forming ssDNA sequences was constructed. Then, based on the stability score in secondary and tertiary structures and molecular docking score, an aptamer (Apt31) was selected. In the experimental part, gold nanoparticles (AuNPs) with an average particle size of 31.7 nm were synthesized and electrostatically linked with the Apt31. The colorimetric test showed that salt-induced color change of AuNPs from red to purple-blue occurs only in the presence of BVDV-Apt31 complex, after 20 min. These results approved the specificity of Apt31 for BVDV. Furthermore, our biosensor could detect the virus at as low as 0.27 copies/ml, which is an acceptable value in comparison to the qPCR method. The specificity of the aptasensor was confirmed through cross-reactivity testing, while its selectivity was confirmed through plasma testing. The sample analysis showed 90% precision and 94% accuracy. It was concluded that the biosensor was adequately sensitive and specific for the detection of BVDV in plasma samples and could be used as a simple and rapid method on the farm.
Collapse
Affiliation(s)
- Parisa Rabiei
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
Santiago-Maldonado X, Rodríguez-Martínez JA, López L, Cunci L, Bayro M, Nicolau E. Selection, characterization, and biosensing applications of DNA aptamers targeting cyanotoxin BMAA. RSC Adv 2024; 14:13787-13800. [PMID: 38681844 PMCID: PMC11046380 DOI: 10.1039/d4ra02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Scientists have established a connection between environmental exposure to toxins like β-N-methylamino-l-alanine (BMAA) and a heightened risk of neurodegenerative disorders. BMAA is a byproduct from certain strains of cyanobacteria that are present in ecosystems worldwide and is renowned for its bioaccumulation and biomagnification in seafood. The sensitivity, selectivity, and reproducibility of the current analytical techniques are insufficient to support efforts regarding food safety and environment monitoring adequately. This work outlines the in vitro selection of BMAA-specific DNA aptamers via the systematic evolution of ligands through exponential enrichment (SELEX). Screening and characterization of the full-length aptamers was achieved using the SYBR Green (SG) fluorescence displacement assay. Aptamers BMAA_159 and BMAA_165 showed the highest binding affinities, with dissociation constants (Kd) of 2.2 ± 0.1 μM and 0.32 ± 0.02 μM, respectively. After truncation, the binding affinity was confirmed using a BMAA-conjugated fluorescence assay. The Kd values for BMAA_159_min and BMAA_165_min were 6 ± 1 μM and 0.63 ± 0.02 μM, respectively. Alterations in the amino proton region studied using solution nuclear magnetic resonance (NMR) provided further evidence of aptamer-target binding. Additionally, circular dichroism (CD) spectroscopy revealed that BMAA_165_min forms hybrid G-quadruplex (G4) structures. Finally, BMAA_165_min was used in the development of an electrochemical aptamer-based (EAB) sensor that accomplished sensitive and selective detection of BMAA with a limit of detection (LOD) of 1.13 ± 0.02 pM.
Collapse
Affiliation(s)
- Xaimara Santiago-Maldonado
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | | | - Luis López
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Marvin Bayro
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| |
Collapse
|
18
|
Brown A, Brill J, Amini R, Nurmi C, Li Y. Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angew Chem Int Ed Engl 2024; 63:e202318665. [PMID: 38253971 DOI: 10.1002/anie.202318665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.
Collapse
Affiliation(s)
- Alex Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Jake Brill
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4 K1, Canada
| |
Collapse
|
19
|
Costanzo H, Gooch J, Tungsirisurp S, Frascione N. The Development and Characterisation of ssDNA Aptamers via a Modified Cell-SELEX Methodology for the Detection of Human Red Blood Cells. Int J Mol Sci 2024; 25:1814. [PMID: 38339091 PMCID: PMC10855528 DOI: 10.3390/ijms25031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Blood is one of the most commonly found biological fluids at crime scenes, with the detection and identification of blood holding a high degree of evidential value. It can provide not only information about the nature of the crime but can also lead to identification via DNA profiling. Presumptive tests for blood are usually sensitive but not specific, so small amounts of the substrate can be detected, but false-positive results are often encountered, which can be misleading. Novel methods for the detection of red blood cells based on aptamer-target interactions may be able to overcome these issues. Aptamers are single-stranded DNA or RNA sequences capable of undergoing selective antigen association due to three-dimensional structure formation. The use of aptamers as a target-specific moiety poses several advantages and has the potential to replace antibodies within immunoassays. Aptamers are cheaper to produce, display no batch-to-batch variation and can allow for a wide range of chemical modifications. They can help limit cross-reactivity, which is a hindrance to current forensic testing methods. Within this study, a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process was used to generate aptamers against whole red blood cells. Obtained aptamer pools were analysed via massively parallel sequencing to identify viable sequences that demonstrate a high affinity for the target. Using bioinformatics platforms, aptamer candidates were identified via their enrichment profiles. Binding characterisation was also conducted on two selected aptamer candidates via fluorescent microscopy and qPCR to visualise and quantify aptamer binding. The potential for these aptamers is broad as they can be utilised within a range of bioassays for not only forensic applications but also other analytical science and medical applications. Potential future work includes the incorporation of developed aptamers into a biosensing platform that can be used at crime scenes for the real-time detection of human blood.
Collapse
Affiliation(s)
| | | | | | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (H.C.); (J.G.); (S.T.)
| |
Collapse
|
20
|
Umapathy VR, Dhanavel A, Kesavan R, Natarajan PM, S B, P V. Anticancer Potential of the Principal Constituent of Piper nigrum, Piperine: A Comprehensive Review. Cureus 2024; 16:e54425. [PMID: 38405638 PMCID: PMC10894018 DOI: 10.7759/cureus.54425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024] Open
Abstract
Black pepper's main component, piperine, is a phytochemical that gives the spice its distinctively pungent flavor, which has made it a staple in human diets for decades and a widely used food item. In addition to its use as a culinary component and preservation agent, it is also employed in traditional medicine for a diverse range of objectives, a practice that has been substantiated by existing scientific investigations on its physiological impacts in the majority of instances. Piperine contains various bioactive effects, such as antibacterial activity, in addition to several physiological benefits that could help overall human health, such as immunomodulatory, hepatoprotective, antioxidant, antimetastatic, anticancer, and many more properties that have been established. Clinical trials revealed that this phytochemical has exceptional antioxidant, anticancer, and drug availability-enhancing properties, as well as immunomodulatory potential. The different components of evidence indicate the therapeutic potential of piperine and underscore the importance of incorporating it into both broad health-promoting interventions and supplementary treatment pharmaceutical formulations. This inclusion can enhance the bioavailability of other therapeutic medications, including those used in chemotherapy.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Public Health Dentistry, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - Anandhi Dhanavel
- Biochemistry, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, IND
| | - R Kesavan
- Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai, IND
| | | | - Bhuminathan S
- Public Health Dentistry, Sree Balaji Dental College & Hospital, Chennai, IND
| | - Vijayalakshmi P
- Biotechnology, Holy Cross College (Autonomous) Tiruchirappalli, Tiruchirappalli, IND
| |
Collapse
|
21
|
Chowdhury MA, Collins JM, Gell DA, Perry S, Breadmore MC, Shigdar S, King AE. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem Neurosci 2024; 15:346-356. [PMID: 38149631 DOI: 10.1021/acschemneuro.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Aptamers are functional oligonucleotide ligands used for the molecular recognition of various targets. The natural characteristics of aptamers make them an excellent alternative to antibodies in diagnostics, therapeutics, and biosensing. DNA aptamers are mainly single-stranded oligonucleotides (ssDNA) that possess a definite binding to targets. However, the application of aptamers to the fields of brain health and neurodegenerative diseases has been limited to date. Herein, a DNA aptamer against the brain-derived neurotrophic factor (BDNF) protein was obtained by in vitro selection. BDNF is a potential biomarker of brain health and neurodegenerative diseases and has functions in the synaptic plasticity and survival of neurons. We identified eight aptamers that have binding affinity for BDNF from a 50-nucleotide library. Among these aptamers, NV_B12 showed the highest sensitivity and selectivity for detecting BDNF. In an aptamer-linked immobilized sorbent assay (ALISA), the NV_B12 aptamer strongly bound to BDNF protein, in a dose-dependent manner. The dissociation constant (Kd) for NV_B12 was 0.5 nM (95% CI: 0.4-0.6 nM). These findings suggest that BDNF-specific aptamers could be used as an alternative to antibodies in diagnostic and detection assays for BDNF.
Collapse
Affiliation(s)
- Md Anisuzzaman Chowdhury
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - David A Gell
- Menzies Research Institute, School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Michael C Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, University of Tasmania, Sandy Bay, Hobart, Tasmania 7001, Australia
| | - Sarah Shigdar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria 3220, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| |
Collapse
|
22
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
23
|
Pavlova S, Fab L, Savchenko E, Ryabova A, Ryzhova M, Revishchin A, Pronin I, Usachev D, Kopylov A, Pavlova G. The Bi-(AID-1-T) G-Quadruplex Has a Janus Effect on Primary and Recurrent Gliomas: Anti-Proliferation and Pro-Migration. Pharmaceuticals (Basel) 2024; 17:74. [PMID: 38256907 PMCID: PMC10819273 DOI: 10.3390/ph17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
High-grade gliomas are considered an incurable disease. Despite all the various therapy options available, patient survival remains low, and the tumor usually returns. Tumor resistance to conventional therapy and stimulation of the migratory activity of surviving cells are the main factors that lead to recurrent tumors. When developing new treatment approaches, the effect is most often evaluated on standard and phenotypically depleted cancer cell lines. Moreover, there is much focus on the anti-proliferative effect of such therapies without considering the possible stimulation of migratory activity. In this paper, we studied how glioma cell migration changes after exposure to bi-(AID-1-T), an anti-proliferative aptamer. We investigated the effect of this aptamer on eight human glioma cell cultures (Grades III and IV) that were derived from patients' tumor tissue; the difference between primary and recurrent tumors was taken into account. Despite its strong anti-proliferative activity, bi-(AID-1-T) was shown to induce migration of recurrent tumor cells. This result shows the importance of studying the effect of therapeutic molecules on the invasive properties of glioma tumor cells in order to reduce the likelihood of inducing tumor recurrence.
Collapse
Affiliation(s)
- Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Lika Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Ekaterina Savchenko
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Ryzhova
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexander Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Igor Pronin
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Dmitry Usachev
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexey Kopylov
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Department of Medical Genetics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
24
|
Quint I, Simantzik J, Kaiser L, Laufer S, Csuk R, Smith D, Kohl M, Deigner HP. Ready-to-use nanopore platform for label-free small molecule quantification: Ethanolamine as first example. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102724. [PMID: 38007066 DOI: 10.1016/j.nano.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.
Collapse
Affiliation(s)
- Isabel Quint
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Jonathan Simantzik
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany; Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tuebingen, Germany
| | - Rene' Csuk
- Institute of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
| | - David Smith
- Fraunhofer Institute IZI (Leipzig), Perlickstrasse 1, 04103 Leipzig, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany.
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen 78054, Germany; EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany; Faculty of Science, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, Tuebingen, 72076, Germany.
| |
Collapse
|
25
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
26
|
Guillon J, Le Borgne M, Milano V, Guédin-Beaurepaire A, Moreau S, Pinaud N, Ronga L, Savrimoutou S, Albenque-Rubio S, Marchivie M, Kalout H, Walker C, Chevallier L, Buré C, Largy E, Gabelica V, Mergny JL, Baylot V, Ferrer J, Idrissi Y, Chevret E, Cappellen D, Desplat V, Schelz Z, Zupkó I. New 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazoline and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinoline Derivatives: Synthesis and Biological Evaluation as Novel Anticancer Agents by Targeting G-Quadruplex. Pharmaceuticals (Basel) 2023; 17:30. [PMID: 38256866 PMCID: PMC10819771 DOI: 10.3390/ph17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines 12 and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines 13 are reported here in six steps starting from various halogeno-quinazoline-2,4-(1H,3H)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines 12b, 12f, and 12i displayed the most interesting antiproliferative activities against six human cancer cell lines. In the series of quinoline derivatives, 6-phenyl-bis(3-dimethylaminopropyl)aminomethylphenylquinoline 13a proved to be the most active. G-quadruplexes (G4) stacked non-canonical nucleic acid structures found in specific G-rich DNA, or RNA sequences in the human genome are considered as potential targets for the development of anticancer agents. Then, as small aza-organic heterocyclic derivatives are well known to target and stabilize G4 structures, their ability to bind G4 structures have been determined through FRET melting, circular dichroism, and native mass spectrometry assays. Finally, telomerase inhibition ability has been also assessed using the MCF-7 cell line.
Collapse
Affiliation(s)
- Jean Guillon
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ. Lyon, F-69373 Lyon, France
| | - Vittoria Milano
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Aurore Guédin-Beaurepaire
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Stéphane Moreau
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Noël Pinaud
- ISM—CNRS UMR 5255, Univ. Bordeaux, F-33405 Talence, France;
| | - Luisa Ronga
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, F-64053 Pau, France;
| | - Solène Savrimoutou
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Sandra Albenque-Rubio
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | | | - Haouraa Kalout
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Charley Walker
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Louise Chevallier
- INSERM, CNRS, ARNA, U1212, UMR 5320, UFR des Sciences Pharmaceutiques, Univ. Bordeaux, F-33076 Bordeaux, France; (J.G.); (V.M.); (A.G.-B.); (S.M.); (S.S.); (S.A.-R.); (H.K.); (C.W.); (L.C.)
| | - Corinne Buré
- CNRS, INSERM, IECB, US1, UAR 3033, Univ. Bordeaux, F-33600 Pessac, France;
| | - Eric Largy
- CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, Univ. Bordeaux, F-33600 Pessac, France; (E.L.); (V.G.)
| | - Valérie Gabelica
- CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, Univ. Bordeaux, F-33600 Pessac, France; (E.L.); (V.G.)
| | - Jean-Louis Mergny
- Ecole Polytechnique, Laboratoire d’Optique et Biosciences, CNRS, INSERM, Institut Polytechnique de Paris, F-91120 Palaiseau, France;
| | - Virginie Baylot
- Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, CNRS UMR7258, Inserm U1068, Univ. Aix Marseille, F-13009 Marseille, France;
| | - Jacky Ferrer
- INSERM UMR1312, BRIC, Bordeaux Institute of Oncology, Univ. Bordeaux, F-33076 Bordeaux, France; (J.F.); (Y.I.); (E.C.); (D.C.); (V.D.)
| | - Yamina Idrissi
- INSERM UMR1312, BRIC, Bordeaux Institute of Oncology, Univ. Bordeaux, F-33076 Bordeaux, France; (J.F.); (Y.I.); (E.C.); (D.C.); (V.D.)
| | - Edith Chevret
- INSERM UMR1312, BRIC, Bordeaux Institute of Oncology, Univ. Bordeaux, F-33076 Bordeaux, France; (J.F.); (Y.I.); (E.C.); (D.C.); (V.D.)
| | - David Cappellen
- INSERM UMR1312, BRIC, Bordeaux Institute of Oncology, Univ. Bordeaux, F-33076 Bordeaux, France; (J.F.); (Y.I.); (E.C.); (D.C.); (V.D.)
- Service Tumor Biology and Tumor Bank Laboratory, Groupe Hospitalier Bordeaux, CHU Bordeaux, F-33000 Bordeaux, France
| | - Vanessa Desplat
- INSERM UMR1312, BRIC, Bordeaux Institute of Oncology, Univ. Bordeaux, F-33076 Bordeaux, France; (J.F.); (Y.I.); (E.C.); (D.C.); (V.D.)
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary;
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary;
| |
Collapse
|
27
|
Scognamiglio PL, Vicidomini C, Roviello GN. Dancing with Nucleobases: Unveiling the Self-Assembly Properties of DNA and RNA Base-Containing Molecules for Gel Formation. Gels 2023; 10:16. [PMID: 38247739 PMCID: PMC10815473 DOI: 10.3390/gels10010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Nucleobase-containing molecules are compounds essential in biology due to the fundamental role of nucleic acids and, in particular, G-quadruplex DNA and RNA in life. Moreover, some molecules different from nucleic acids isolated from different vegetal sources or microorganisms show nucleobase moieties in their structure. Nucleoamino acids and peptidyl nucleosides belong to this molecular class. Closely related to the above, nucleopeptides, also known as nucleobase-bearing peptides, are chimeric derivatives of synthetic origin and more rarely isolated from plants. Herein, the self-assembly properties of a vast number of structures, belonging to the nucleic acid and nucleoamino acid/nucleopeptide family, are explored in light of the recent scientific literature. Moreover, several technologically relevant properties, such as the hydrogelation ability of some of the nucleobase-containing derivatives, are reviewed in order to make way for future experimental investigations of newly devised nucleobase-driven hydrogels. Nucleobase-containing molecules, such as mononucleosides, DNA, RNA, quadruplex (G4)-forming oligonucleotides, and nucleopeptides are paramount in gel and hydrogel formation owing to their distinctive molecular attributes and ability to self-assemble in biomolecular nanosystems with the most diverse applications in different fields of biomedicine and nanotechnology. In fact, these molecules and their gels present numerous advantages, underscoring their significance and applicability in both material science and biomedicine. Their versatility, capability for molecular recognition, responsiveness to stimuli, biocompatibility, and biodegradability collectively contribute to their prominence in modern nanotechnology and biomedicine. In this review, we emphasize the critical role of nucleobase-containing molecules of different nature in pioneering novel materials with multifaceted applications, highlighting their potential in therapy, diagnostics, and new nanomaterials fabrication as required for addressing numerous current biomedical and nanotechnological challenges.
Collapse
Affiliation(s)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
28
|
Largy E, Ranz M, Gabelica V. A General Framework to Interpret Hydrogen-Deuterium Exchange Native Mass Spectrometry of G-Quadruplex DNA. J Am Chem Soc 2023; 145:26843-26857. [PMID: 38044563 DOI: 10.1021/jacs.3c09365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution. We correlated the time range of G4 exchange to the number of guanines involved in the inner and outer tetrads. We also established relationships among exchange rates, numbers of tetrads and bound cations, and stability. The use of HDX/native MS allows for the determination of tetrads formed and assessment of G4 stability at a constant temperature. A key finding is that stable G4s exchange through local fluctuations (EX2 exchange), whereas less stable G4s also undergo exchange through partial or complete unfolding (EX1 exchange). Deconvolution of the bimodal isotope distributions resulting from EX1 exchange provides valuable insight into the kinetics of folding and unfolding processes and allows one to detect and characterize transiently unfolded intermediates, even if scarcely populated. HDX/native MS thus represents a powerful tool for a more comprehensive exploration of the folding landscapes of G4s.
Collapse
Affiliation(s)
- Eric Largy
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Matthieu Ranz
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
29
|
Figueiredo J, Djavaheri-Mergny M, Ferret L, Mergny JL, Cruz C. Harnessing G-quadruplex ligands for lung cancer treatment: A comprehensive overview. Drug Discov Today 2023; 28:103808. [PMID: 38414431 DOI: 10.1016/j.drudis.2023.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/29/2024]
Abstract
Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Paris, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120 Palaiseau, France.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
30
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
31
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
32
|
Sharma T, Kundu N, Kaur S, Tandon V, Shankaraswamy J, Saxena S. Short designed peptide unfolding human telomeric G-quadruplex: mimicking the helicase function. J Biomol Struct Dyn 2023; 41:9977-9986. [PMID: 36437795 DOI: 10.1080/07391102.2022.2150316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Human telomeric DNA can fold into G-quadruplex structures involving the interaction of four guanine bases in a square planar arrangement. The highly distinctive nature of quadruplex topologies suggests that they can act as novel therapeutic targets. In this study, we provide the evidence of human telomeric G4 destabilization in dilute and cell-mimicking molecular crowing conditions upon peptide binding. We have used three human telomeric sequences of different lengths. CD data showed that these sequences folded into anti-parallel G-quadruplex and CD intensity decreased significantly on increasing the peptide concentration. UV-thermal melting results showed significant decrease in hypochromicity due to formation of G4-peptide complex at 295 nm. Fluorescence data showed the quenching on titrating the peptide with human telomere G4. Electrophoretic mobility shift assay confirmed the unfolding of G4 structure. Cell viability was significantly reduced in the presence of QW5 peptide with IC50 values as 8.78 μM and 7.72 μM after 72 and 96 hours of incubation respectively. These results confirmed that QW5 peptide has an ability to bind and unfold to human telomeric G-quadruplex and hence might be the key modulator for targeting diseases having over-representation of G4 motifs and their destabilization will be helpful in increasing the efficiency of DNA replication, transcription or duplex reannealing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - J Shankaraswamy
- Department of Fruit Science, College of Horticulture, Sri Konda Laxman Telangana State Horticultural University, Mojerla, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
33
|
Roxo C, Zielińska K, Pasternak A. Bispecific G-quadruplexes as inhibitors of cancer cells growth. Biochimie 2023; 214:91-100. [PMID: 37562706 DOI: 10.1016/j.biochi.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
A therapeutic system with the ability to target more than one protein is an important aim of cancer therapy since tumor growth is accompanied by dysregulation of many biological pathways. G-quadruplexes (G4s) are non-canonical structures formed by guanine-rich DNA or RNA oligonucleotides, with the ability to bind to different targets. In this study, we constructed ten novel bispecific G-quadruplex conjugates based on AT11, TBA, T40214 and T40231 aptamer structures, with the ability to bind two different targets at once in cancer cells. We analyzed the physicochemical aspects and the anticancer properties of novel molecules relating them with the single G-quadruplex unit and attempted to comprehend the correlation between the structures of bispecific G-quadruplexes with their biological activity. Our studies uncovered conjugates with considerable antiproliferative potential in HeLa and MCF-7 cancer cell lines, however with relatively low thermal stability or low nuclease resistance. Three conjugates among all studied oligonucleotides possess improved antiproliferative activity in MCF-7 cell line in comparison to their single G-quadruplex units leading to up to 90% inhibition of cancer cells growth, but their inhibitory potential is rather comparable to the effect observed for mix of two separate G-quadruplex units. Importantly, the conjugation enhances oligonucleotides enzymatic stability leading to the improvement of their therapeutic profile. The comprehensive studies presented herein indicate new approach for possibly effective cancer therapy and for the design of G4-based drugs.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Karolina Zielińska
- Department of Biomolecular NMR, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
34
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
35
|
Xiao CD, Zhong MQ, Gao Y, Yang ZL, Jia MH, Hu XH, Xu Y, Shen XC. A Unique G-Quadruplex Aptamer: A Novel Approach for Cancer Cell Recognition, Cell Membrane Visualization, and RSV Infection Detection. Int J Mol Sci 2023; 24:14344. [PMID: 37762645 PMCID: PMC10531985 DOI: 10.3390/ijms241814344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Surface staining has emerged as a rapid technique for applying external stains to trace cellular identities in diverse populations. In this study, we developed a distinctive aptamer with selective binding to cell surface nucleolin (NCL), bypassing cytoplasmic internalization. Conjugation of the aptamer with a FAM group facilitated NCL visualization on live cell surfaces with laser confocal microscopy. To validate the aptamer-NCL interaction, we employed various methods, including the surface plasmon resonance, IHC-based flow cytometry, and electrophoretic mobility shift assay. The G-quadruplex formations created by aptamers were confirmed with a nuclear magnetic resonance and an electrophoretic mobility shift assay utilizing BG4, a G-quadruplex-specific antibody. Furthermore, the aptamer exhibited discriminatory potential in distinguishing between cancerous and normal cells using flow cytometry. Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. This effect was subsequently counteracted with dsRNA transfection and suppressed the NCL expression; thus, emphasizing the dynamic attributes of the probe. These collective findings highlight the robust versatility of our aptamer as a powerful tool for imaging cell surfaces, holding promising implications for cancer cell identification and the detection of RSV infections.
Collapse
Affiliation(s)
- Chao-Da Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ming-Qing Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yue Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Zheng-Lin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Meng-Hao Jia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Xiao-Hui Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Xiang-Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (M.-Q.Z.); (Y.G.); (Z.-L.Y.); (M.-H.J.); (X.-H.H.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
36
|
Yu M, He T, Wang Q, Cui C. Unraveling the Possibilities: Recent Progress in DNA Biosensing. BIOSENSORS 2023; 13:889. [PMID: 37754122 PMCID: PMC10526863 DOI: 10.3390/bios13090889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Due to the advantages of its numerous modification sites, predictable structure, high thermal stability, and excellent biocompatibility, DNA is the ideal choice as a key component of biosensors. DNA biosensors offer significant advantages over existing bioanalytical techniques, addressing limitations in sensitivity, selectivity, and limit of detection. Consequently, they have attracted significant attention from researchers worldwide. Here, we exemplify four foundational categories of functional nucleic acids: aptamers, DNAzymes, i-motifs, and G-quadruplexes, from the perspective of the structure-driven functionality in constructing DNA biosensors. Furthermore, we provide a concise overview of the design and detection mechanisms employed in these DNA biosensors. Noteworthy advantages of DNA as a sensor component, including its programmable structure, reaction predictility, exceptional specificity, excellent sensitivity, and thermal stability, are highlighted. These characteristics contribute to the efficacy and reliability of DNA biosensors. Despite their great potential, challenges remain for the successful application of DNA biosensors, spanning storage and detection conditions, as well as associated costs. To overcome these limitations, we propose potential strategies that can be implemented to solve these issues. By offering these insights, we aim to inspire subsequent researchers in related fields.
Collapse
Affiliation(s)
| | | | | | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; (M.Y.)
| |
Collapse
|
37
|
Garaiová Z, Gašperová M, Šubjaková V, Hianik T. Interaction of G-quadruplex Forming DNA Aptamers with PAMAM Dendrimers Studied by Dynamic Light Scattering and UV-VIS Spectrophotometry. Chemphyschem 2023; 24:e202300264. [PMID: 37318900 DOI: 10.1002/cphc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The complexes of G-quadruplex forming DNA thrombin binding aptamers (TBA) and polyamidoamine dendrimers (PAMAM) were studied with the aim to form a model targeted drug delivery system. Hydrodynamic diameter, zeta potential and melting temperature (Tm ) were investigated by dynamic light scattering and UV-VIS spectrophotometry. Non-covalent adsorption by means of electrostatic interaction between positively charged amino groups of dendrimers (+) and negatively charged phosphate groups of aptamers (-) has driven the formation of aggregates. The size of complexes was in the range of 0.2-2 μm and depended on the type of dispersant, charge ratio (+/-) and temperature. Raising the temperature increased the polydispersity, new smaller size distributions were observed indicating the G-quadruplex unfolding. The melting transition temperature of TBA aptamer was affected by the presence of amino-terminated PAMAM rather than carboxylated succinic acid PAMAM-SAH dendrimer, thus supporting the electrostatic nature of interaction that disturbed denaturation of target-specific quadruplex aptamer structure.
Collapse
Affiliation(s)
- Zuzana Garaiová
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Martina Gašperová
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Veronika Šubjaková
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 842 48, Bratislava, Slovakia
| |
Collapse
|
38
|
DeRosa M, Lin A, Mallikaratchy P, McConnell E, McKeague M, Patel R, Shigdar S. In vitro selection of aptamers and their applications. NATURE REVIEWS. METHODS PRIMERS 2023; 3:55. [PMID: 37969927 PMCID: PMC10647184 DOI: 10.1038/s43586-023-00247-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The introduction of the in-vitro evolution method known as SELEX (Systematic Evolution of Ligands by Exponential enrichment) more than 30 years ago led to the conception of versatile synthetic receptors known as aptamers. Offering many benefits such as low cost, high stability and flexibility, aptamers have sparked innovation in molecular diagnostics, enabled advances in synthetic biology and have facilitated new therapeutic approaches. The SELEX method itself is inherently adaptable and offers near limitless possibilities in yielding functional nucleic acid ligands. This Primer serves to provide guidance on experimental design and highlight new growth areas for this impactful technology.
Collapse
Affiliation(s)
- M.C. DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - A. Lin
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
| | - P. Mallikaratchy
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - E.M. McConnell
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1T2S2
| | - M. McKeague
- Department of Chemistry, Faculty of Sciences, McGill University, Montreal, QC, Canada, H3A 0B8
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada, H3G 1Y6
| | - R. Patel
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA
| | - S. Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
39
|
Esposito V, Benigno D, Bello I, Panza E, Bucci M, Virgilio A, Galeone A. Structural and Biological Features of G-Quadruplex Aptamers as Promising Inhibitors of the STAT3 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24119524. [PMID: 37298475 DOI: 10.3390/ijms24119524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this paper, we investigate the structural and biological features of G-quadruplex (G4) aptamers as promising antiproliferative compounds affecting the STAT3 signalling pathway. Targeting the STAT3 protein through high-affinity ligands to reduce its levels or activity in cancer has noteworthy therapeutic potential. T40214 (STAT) [(G3C)4] is a G4 aptamer that can influence STAT3 biological outcomes in an efficient manner in several cancer cells. To explore the effects of an extra cytidine in second position and/or of single site-specific replacements of loop residues in generating aptamers that can affect the STAT3 biochemical pathway, a series of STAT and STATB [GCG2(CG3)3C] analogues containing a thymidine residue instead of cytidines was prepared. NMR, CD, UV, and PAGE data suggested that all derivatives adopt dimeric G4 structures like that of unmodified T40214 endowed with higher thermal stability, keeping the resistance in biological environments substantially unchanged, as shown by the nuclease stability assay. The antiproliferative activity of these ODNs was tested on both human prostate (DU145) and breast (MDA-MB-231) cancer cells. All derivatives showed similar antiproliferative activities on both cell lines, revealing a marked inhibition of proliferation, particularly at 72 h at 30 µM. Transcriptomic analysis aimed to evaluate STAT's and STATB's influence on the expression of many genes in MDA-MB-231 cells, suggested their potential involvement in STAT3 pathway modulation, and thus their interference in different biological processes. These data provide new tools to affect an interesting biochemical pathway and to develop novel anticancer and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Daniela Benigno
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Ivana Bello
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Antonella Virgilio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| |
Collapse
|
40
|
Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci 2023; 14:4961-4978. [PMID: 37206388 PMCID: PMC10189874 DOI: 10.1039/d3sc00439b] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.
Collapse
Affiliation(s)
- Lucy F Yang
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Melissa Ling
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Nataly Kacherovsky
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| |
Collapse
|
41
|
González-González RB, Flores-Contreras EA, González-González E, Torres Castillo NE, Parra-Saldívar R, Iqbal HMN. Biosensor Constructs for the Monitoring of Persistent Emerging Pollutants in Environmental Matrices. Ind Eng Chem Res 2023; 62:4503-4520. [DOI: 10.1021/acs.iecr.2c00421] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
42
|
Molejon NA, Lapada CM, Skouridou V, Rollon AP, El-Shahawi M, Bashammakh A, O'Sullivan CK. Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Anal Biochem 2023; 669:115118. [PMID: 36963555 DOI: 10.1016/j.ab.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Cholera and milder diarrheal disease are caused by Vibrio cholerae and enterotoxigenic Escherichia coli and are still a prominent public health concern. Evaluation of suspicious isolates is essential for the rapid containment of acute diarrhea outbreaks or prevention of epidemic cholera. Existing detection techniques require expensive equipment, trained personnel and are time-consuming. Antibody-based methods are also available, but cost and stability issues can limit their applications for point-of-care testing. This study focused on the selection of single stranded DNA aptamers as simpler, more stable and more cost-effective alternatives to antibodies for the co-detection of AB5 toxins secreted by enterobacteria causing acute diarrheal infections. Cholera toxin and Escherichia coli heat-labile enterotoxin, the key toxigenicity biomarkers of these bacteria, were immobilized on magnetic beads and were used in a SELEX-based selection strategy. This led to the enrichment of sequences with a high % GC content and a dominant G-rich motif as revealed by Next Generation Sequencing. Enriched sequences were confirmed to fold into G-quadruplex structures and the binding of one of the most abundant candidates to the two enterotoxins was confirmed. Ongoing work is focused on the development of monitoring tools for potential environmental surveillance of epidemic choleraand milder diarrheal disease.
Collapse
Affiliation(s)
- Nerissa A Molejon
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Catherine M Lapada
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Vasso Skouridou
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.
| | - Analiza P Rollon
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Mohammed El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdulaziz Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ciara K O'Sullivan
- Interfibio Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
43
|
Shien Yeoh T, Yusof Hazrina H, Bukari BA, Tang TH, Citartan M. Generation of an RNA aptamer against LipL32 of Leptospira isolated by Tripartite-hybrid SELEX coupled with in-house Python-aided unbiased data sorting. Bioorg Med Chem 2023; 81:117186. [PMID: 36812779 DOI: 10.1016/j.bmc.2023.117186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira. The major hurdle of the diagnosis of Leptospirosis lies in the issues associated with current methods of detection, which are time-consuming, tedious and the need for sophisticated, special equipments. Restrategizing the diagnostics of Leptospirosis may involve considerations of the direct detection of the outer membrane protein, which can be faster, cost-saving and require fewer equipments. One such promising marker is LipL32, which is an antigen with high amino acid sequence conservation among all the pathogenic strains. In this study, we endeavored to isolate an aptamer against LipL32 protein via a modified SELEX strategy known as tripartite-hybrid SELEX, based on 3 different partitioning strategies. In this study, we also demonstrated the deconvolution of the candidate aptamers by using in-house Python-aided unbiased data sorting in examining multiple parameters to isolate potent aptamers. We have successfully generated an RNA aptamer against LipL32 of Leptospira, LepRapt-11, which is applicable in a simple direct ELASA for the detection of LipL32. LepRapt-11 can be a promising molecular recognition element for the diagnosis of leptospirosis by targeting LipL32.
Collapse
Affiliation(s)
- Tzi Shien Yeoh
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hamdani Yusof Hazrina
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Bakhtiar A Bukari
- School of Medicine, Deakin University, 3216 Geelong, Victoria, Australia
| | - Thean-Hock Tang
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Marimuthu Citartan
- Department of Biomedical Science, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
44
|
Wagh AA, Kumar VA, Ravindranathan S, Fernandes M. Unlike RNA-TBA (rTBA), iso-rTBA, the 2'-5'-linked RNA-thrombin-binding aptamer, is a functional equivalent of TBA. Chem Commun (Camb) 2023; 59:1461-1464. [PMID: 36651344 DOI: 10.1039/d2cc05718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An antiparallel, functional RNA G-quadruplex of the 2'-5'-linked thrombin-binding aptamer (iso-rTBA) is reported for the first time. It can inhibit clotting and is remarkably stable to nuclease-degradation, besides having high thermal stability. It is thus, a superior candidate to TBA, rTBA or isoTBA, for further development as an anticoagulant.
Collapse
Affiliation(s)
- Atish A Wagh
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Ravindranathan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Central NMR Facility, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Moneesha Fernandes
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
45
|
Lee SJ, Cho J, Lee BH, Hwang D, Park JW. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023; 11:356. [PMID: 36830893 PMCID: PMC9953197 DOI: 10.3390/biomedicines11020356] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
An aptamer is a single-stranded DNA or RNA that binds to a specific target with high binding affinity. Aptamers are developed through the process of systematic evolution of ligands by exponential enrichment (SELEX), which is repeated to increase the binding power and specificity. However, the SELEX process is time-consuming, and the characterization of aptamer candidates selected through it requires additional effort. Here, we describe in silico methods in order to suggest the most efficient way to develop aptamers and minimize the laborious effort required to screen and optimise aptamers. We investigated several methods for the estimation of aptamer-target molecule binding through conformational structure prediction, molecular docking, and molecular dynamic simulation. In addition, examples of machine learning and deep learning technologies used to predict the binding of targets and ligands in the development of new drugs are introduced. This review will be helpful in the development and application of in silico aptamer screening and characterization.
Collapse
Affiliation(s)
- Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Junmin Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Byung-Hoon Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Donghwan Hwang
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
46
|
Kotkowiak W, Roxo C, Pasternak A. Physicochemical and antiproliferative characteristics of RNA and DNA sequence-related G-quadruplexes. ACS Med Chem Lett 2023; 14:35-40. [PMID: 36655120 PMCID: PMC9841586 DOI: 10.1021/acsmedchemlett.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023] Open
Abstract
In this article the physicochemical and biological properties of sequence-related G-quadruplex forming oligonucleotides in RNA and DNA series are analyzed and compared. The intermolecular G-quadruplexes vary in loop length, number of G-tetrads and homogeneity of the core. Our studies show that even slight variations in sequence initiate certain changes of G-quadruplex properties. DNA G-quadruplexes are less thermally stable than their RNA counterparts, more topologically diversified and are better candidates as inhibitors of cancer cells proliferation. The most efficient antiproliferative activity within the studied group of molecules was observed for two DNA G-quadruplexes with unperturbed core and lower content of thymidine residues within the loops leading to reduction of cells viability up to 65% and 33% for HeLa and MCF-7 cell lines, respectively.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Carolina Roxo
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Anna Pasternak
- Department of Nucleic Acids
Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
47
|
de Freitas Saito R, Barion BG, da Rocha TRF, Rolband A, Afonin KA, Chammas R. Anticoagulant Activity of Nucleic Acid Nanoparticles (NANPs) Assessed by Thrombin Generation Dynamics on a Fully Automated System. Methods Mol Biol 2023; 2709:319-332. [PMID: 37572292 PMCID: PMC10482313 DOI: 10.1007/978-1-0716-3417-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Rapidly reversible anticoagulant agents have great clinical potential. Oligonucleotide-based anticoagulant agents are uniquely positioned to fill this clinical niche, as they are able to be deactivated through the introduction of the reverse complement oligo. Once the therapeutic and the antidote oligos meet in solution, they are able to undergo isothermal reassociation to form short, inactive, duplexes that are rapidly secreted via filtration by the kidneys. The formation of the duplexes interrupts the structure of the anticoagulant oligo, allowing normal coagulation to be restored. To effectively assess these new anticoagulants, a variety of methods may be employed. The measurement of thrombin generation (TG) reflects the overall capacity of plasma to produce active thrombin and provides a strong contribution to identifying new anticoagulant drugs, including DNA/RNA thrombin binding aptamer carrying fibers which are used through this chapter as an example. Here we describe the TG assessed by Calibrated Automated Thrombogram (CAT) assay in a fully automated system. This method is based on the detection of TG in plasma samples by measuring fluorescent signals released from a quenched fluorogenic thrombin substrate and the subsequent conversion of these signals in TG curves.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Bárbara Gomes Barion
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania Rubia Flores da Rocha
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex Rolband
- University of North Carolina, Charlotte, NC, USA
| | | | - Roger Chammas
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
48
|
Chauhan P, Datta I, Dhiman A, Shankar U, Kumar A, Vashist A, Sharma TK, Tyagi JS. DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity. ACS Infect Dis 2022; 8:2540-2551. [PMID: 36332135 DOI: 10.1021/acsinfecdis.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
49
|
Aptamers Regulating the Hemostasis System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238593. [PMID: 36500686 PMCID: PMC9739204 DOI: 10.3390/molecules27238593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The hemostasis system is a complex structure that includes the fibrinolysis system, and Yes this is correct coagulation and anticoagulation parts. Due to the multicomponent nature, it becomes relevant to study the key changes in the functioning of signaling pathways, and develop new diagnostic methods and modern drugs with high selectivity. One of the ways to solve this problem is the development of molecular recognition elements capable of blocking one of the hemostasis systems and/or activating another. Aptamers can serve as ligands for targeting specific clinical needs, promising anticoagulants with minor side effects and significant biological activity. Aptamers with several clotting factors and platelet proteins are used for the treatment of thrombosis. This review is focused on the aptamers used for the correction of the hemostasis system, and their structural and functional features. G-rich nucleic acid aptamers, mostly versatile G-quadruplexes, recognize different components of the hemostasis system and are capable of correcting the functioning.
Collapse
|
50
|
Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, Zhang P, Yang C, Song J. Computational tools for aptamer identification and optimization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|