1
|
Sester C, Liu Y, Sen A, Hodgkiss JM. Using Disulfide DNA to Enhance Control over DNA Self-Assembled Monolayer Surface Coverage and Reduce Impedance Signal Drift. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6603-6611. [PMID: 40036326 DOI: 10.1021/acs.langmuir.4c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Thiolated DNA biopolymer probes are widely used for their spontaneous interactions with gold electrodes to achieve self-assembled monolayers (SAMs) of DNA. This offers an attractive class of bio-interfaces for developing point-of-care (POC) diagnostics. However, SAMs are prone to structural instability and can be challenging to reproducibly fabricate for probes of different sizes and shapes. Among methods of studying SAMs, electrochemical impedance spectroscopy (EIS) has attracted a lot of attention for its extremely high sensitivity to surface electrostatics and its label-free operation. However, the strong interfacial sensitivity also brings about susceptibility to unstable and drifting impedance signals due to the disorganization of the SAM, which has thwarted the development of EIS analytical methods. Here, we combine EIS and chronocoulometry (CC) to investigate the formation of DNA SAMs created via different methods and demonstrate the impact on the quality of SAMs via background signal drifts and DNA density fixation. Specifically, we find that enhancing stability and suppressing background drift require maximizing the density of upright DNA probes. This understanding led us to develop a protocol in which thiolated DNA probes are delivered to gold surfaces in the form of disulfide dimers. This approach not only enhances the surface density by pairwise delivery but also results in controllable probe density, and it may also intrinsically favor probes binding in the stable upright position, thereby eliminating a key obstacle for creating DNA monolayers adsorbed onto gold surfaces.
Collapse
Affiliation(s)
- Clement Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington P.O. Box 600, Wellington 6040, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6040, New Zealand
| | - Yasmin Liu
- Forensic Research and Development Department, Institute of Environmental Science and Research, Porirua 5022, New Zealand
| | - Anindita Sen
- Forensic Research and Development Department, Institute of Environmental Science and Research, Porirua 5022, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington P.O. Box 600, Wellington 6040, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6040, New Zealand
| |
Collapse
|
2
|
Zangana S, Veres M, Bonyár A. Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection. Molecules 2024; 29:3338. [PMID: 39064915 PMCID: PMC11279622 DOI: 10.3390/molecules29143338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for the detection and analysis of biomolecules due to its high sensitivity and selectivity. In recent years, SERS-based sensors have received significant attention for the detection of deoxyribonucleic acid (DNA) molecules, offering promising applications in fields such as medical diagnostics, forensic analysis, and environmental monitoring. This paper provides a concise overview of the principles, advancements, and potential of SERS-based sensors for DNA detection. First, the fundamental principles of SERS are introduced, highlighting its ability to enhance the Raman scattering signal by several orders of magnitude through the interaction between target molecules with metallic nanostructures. Then, the fabrication technologies of SERS substrates tailored for DNA detection are reviewed. The performances of SERS substrates previously reported for DNA detection are compared and analyzed in terms of the limit of detection (LOD) and enhancement factor (EF) in detail, with respect to the technical parameters of Raman spectroscopy (e.g., laser wavelength and power). Additionally, strategies for functionalizing the sensor surfaces with DNA-specific capture probes or aptamers are outlined. The collected data can be of help in selecting and optimizing the most suitable fabrication technology considering nucleotide sensing applications with Raman spectroscopy.
Collapse
Affiliation(s)
- Shireen Zangana
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Miklós Veres
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| |
Collapse
|
3
|
Papadakis VM, Cheimonidi C, Panagopoulou M, Karaglani M, Apalaki P, Katsara K, Kenanakis G, Theodosiou T, Constantinidis TC, Stratigi K, Chatzaki E. Label-Free Human Disease Characterization through Circulating Cell-Free DNA Analysis Using Raman Spectroscopy. Int J Mol Sci 2023; 24:12384. [PMID: 37569759 PMCID: PMC10418917 DOI: 10.3390/ijms241512384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Circulating cell-free DNA (ccfDNA) is a liquid biopsy biomaterial attracting significant attention for the implementation of precision medicine diagnostics. Deeper knowledge related to its structure and biology would enable the development of such applications. In this study, we employed Raman spectroscopy to unravel the biomolecular profile of human ccfDNA in health and disease. We established reference Raman spectra of ccfDNA samples from healthy males and females with different conditions, including cancer and diabetes, extracting information about their chemical composition. Comparative observations showed a distinct spectral pattern in ccfDNA from breast cancer patients taking neoadjuvant therapy. Raman analysis of ccfDNA from healthy, prediabetic, and diabetic males uncovered some differences in their biomolecular fingerprints. We also studied ccfDNA released from human benign and cancer cell lines and compared it to their respective gDNA, confirming it mirrors its cellular origin. Overall, we explored for the first time Raman spectroscopy in the study of ccfDNA and provided spectra of samples from different sources. Our findings introduce Raman spectroscopy as a new approach to implementing liquid biopsy diagnostics worthy of further elaboration.
Collapse
Affiliation(s)
- Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
| | - Christina Cheimonidi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
| | - Maria Panagopoulou
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Makrina Karaglani
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Paraskevi Apalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
| | - Klytaimnistra Katsara
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013 Heraklion, Greece (G.K.)
- Department of Agriculture, Hellenic Mediterranean University—Hellas, Estavromenos, 71410 Heraklion, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013 Heraklion, Greece (G.K.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Theodoros C. Constantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece; (V.M.P.); (C.C.); (P.A.); (K.S.)
| | - Ekaterini Chatzaki
- Institute of Agri-Food and Life Sciences, University Research & Innovation Center, Hellenic Mediterranean University, 71410 Heraklion, Greece; (M.P.); (M.K.)
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
4
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
5
|
Sabir A, Majeed MI, Nawaz H, Rashid N, Javed MR, Iqbal MA, Shahid Z, Ashfaq R, Sadaf N, Fatima R, Sehar A, Zulfiqar A. Surface-enhanced Raman spectroscopy for studying the interaction of N-propyl substituted imidazole compound with salmon sperm DNA. Photodiagnosis Photodyn Ther 2022; 41:103262. [PMID: 36587860 DOI: 10.1016/j.pdpdt.2022.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.
Collapse
Affiliation(s)
- Amina Sabir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zaeema Shahid
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rayha Ashfaq
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Nimra Sadaf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Rida Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Aafia Sehar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Anam Zulfiqar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Ramachandran K, Daoudi K, Kacem HH, Columbus S, Benaoum H, Gaidi M. Rapid and ultra-sensitive detection of pork DNA with surface enhanced Raman spectroscopy for onsite food quality inspection. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Jankowski K, Jabłońska J, Uznański P, Całuch S, Szybowicz M, Brzozowski R, Ostafin A, Kwaśny M, Tomasik M. Necked gold nanoparticles prepared by submerged alternating current arc discharge in water. RSC Adv 2022; 12:33955-33963. [PMID: 36505693 PMCID: PMC9703297 DOI: 10.1039/d2ra06050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The article presents the method of producing gold nanoparticles using a high voltage arc discharge of alternating current with a frequency of 50 Hz in distilled water. The equipment necessary to carry out the process is described, including the construction of the reactor and the power source of a very simple design necessary to generate a high-voltage arc discharge between the electrodes. Arc discharge processes were carried out two times for 2 and 5 minutes, respectively, in ambient conditions without thermostating the reactor, at medium temperature varying in the range of 25-70 °C. The obtained gold nanoparticles were examined by means of various analytical techniques such as UV-vis spectroscopy, zeta potential measurement, energy dispersive X-ray analysis (EDS), X-ray diffraction (XRD). The morphology, surface, and size of the obtained nanoparticles were carried out using transmission electron microscopy (HRTEM) and dynamic light scattering (DLS). The concentration of the obtained colloids were determined using the mass spectrometry ICP-MS technique. The results show that high-voltage AC arc discharge is a simple and effective way to obtain stable gold nanoparticles under environmentally friendly conditions at relatively low production costs, and can be considered as an alternative to arc discharge nanoparticles synthesis by means of direct current (DC) methods.
Collapse
Affiliation(s)
- K. Jankowski
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland,Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - J. Jabłońska
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland,Faculty of Materials Engineering and Technical Physics, Poznan University of TechnologyPiotrowo 3A St.61-138 PoznanPoland
| | - P. Uznański
- Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - S. Całuch
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| | - M. Szybowicz
- Faculty of Materials Engineering and Technical Physics, Poznan University of TechnologyPiotrowo 3A St.61-138 PoznanPoland
| | - R. Brzozowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesSienkiewicza 112 St.90-363 LodzPoland
| | - A. Ostafin
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| | - M. Kwaśny
- Institute of Optoelectronics, Military University of TechnologyKaliskiego 2 St.00-908 WarsawPoland
| | - M. Tomasik
- Institute of Nanotechnology and Nanobiology, Jacob of Paradies UniversityChopina St. 52, Bldg. 666-400 Gorzow WielkopolskiPoland
| |
Collapse
|
8
|
An Y, Sedinkin SL, Venditti V. Solution NMR methods for structural and thermodynamic investigation of nanoparticle adsorption equilibria. NANOSCALE ADVANCES 2022; 4:2583-2607. [PMID: 35769933 PMCID: PMC9195484 DOI: 10.1039/d2na00099g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/07/2022] [Indexed: 05/09/2023]
Abstract
Characterization of dynamic processes occurring at the nanoparticle (NP) surface is crucial for developing new and more efficient NP catalysts and materials. Thus, a vast amount of research has been dedicated to developing techniques to characterize sorption equilibria. Over recent years, solution NMR spectroscopy has emerged as a preferred tool for investigating ligand-NP interactions. Indeed, due to its ability to probe exchange dynamics over a wide range of timescales with atomic resolution, solution NMR can provide structural, kinetic, and thermodynamic information on sorption equilibria involving multiple adsorbed species and intermediate states. In this contribution, we review solution NMR methods for characterizing ligand-NP interactions, and provide examples of practical applications using these methods as standalone techniques. In addition, we illustrate how the integrated analysis of several NMR datasets was employed to elucidate the role played by support-substrate interactions in mediating the phenol hydrogenation reaction catalyzed by ceria-supported Pd nanoparticles.
Collapse
Affiliation(s)
- Yeongseo An
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Sergey L Sedinkin
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
9
|
Mariño-López A, Alvarez-Puebla RA, Vaz B, Correa-Duarte MA, Pérez-Lorenzo M. SERS optical accumulators as unified nanoplatforms for tear sampling and sensing in soft contact lenses. NANOSCALE 2022; 14:7991-7999. [PMID: 35467676 DOI: 10.1039/d2nr00531j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tear analysis has become an invaluable asset in clinical research in order to identify and quantify novel biomarkers for a wide array of conditions. The present work is intended to take this area of study one step further by implementing an innovative sensing platform through which exploration of low-molecular-weight compounds is conducted outperforming traditional analytical technologies. With this aim, carefully engineered plasmonic nanoassemblies have been synergistically combined with molecular-sieving materials giving rise to size-selective samplers with SERS detection capabilities. These architectures have been then integrated onto hydrogel-based contact lenses and tested in simulated tear fluids in order to evidence their operational features. Through this approach, a prolonged analyte accumulation can be realized, thus providing a competitive advantage in those scenarios where concentration of biomarkers is typically low or minimum sample volumes are not met. Additionally, quenching of metabolic flux and analyte extraction protocols can be circumvented, hence preventing the intrinsic physical and chemical interferences stemming from these procedures. The obtained results render these sensing platforms as promising medical devices, and constitute a great opportunity in order to expand the clinical toolkit in tear analysis.
Collapse
Affiliation(s)
- Andrea Mariño-López
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Ramon A Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- ICREA, Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| | - Belén Vaz
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310 Vigo, Spain.
| | - Miguel A Correa-Duarte
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, Department of Physical Chemistry, 36310 Vigo, Spain.
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Vigo, Spain
| |
Collapse
|
10
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
11
|
Katsara K, Psatha K, Kenanakis G, Aivaliotis M, Papadakis VM. Subtyping on Live Lymphoma Cell Lines by Raman Spectroscopy. MATERIALS 2022; 15:ma15020546. [PMID: 35057267 PMCID: PMC8778083 DOI: 10.3390/ma15020546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
Abstract
Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantitative estimation of amino acids, lipids, nucleic acids, and carbohydrates. Lymphoma cell classification is a crucial task for accurate and prompt lymphoma diagnosis, prognosis, and treatment. Currently, it is mostly based on limited information and requires costly and time-consuming approaches. In this work, we are proposing a fast characterization and differentiation methodology of lymphoma cell subtypes based on Raman spectroscopy. The study was performed in the temperature range of 15-37 °C to identify the best cell measurement conditions. The proposed methodology is fast, accurate, and requires minimal sample preparation, resulting in a potentially promising, non-invasive strategy for early and accurate cell lymphoma characterization.
Collapse
Affiliation(s)
- Klytaimnistra Katsara
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (K.K.); (K.P.); (M.A.)
- Department of Chemistry/Biochemistry Section, University of Crete, Andrea Kalokerinou, GR-71500 Heraklion, Greece
| | - Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (K.K.); (K.P.); (M.A.)
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece;
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (K.K.); (K.P.); (M.A.)
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, GR-70013 Heraklion, Greece; (K.K.); (K.P.); (M.A.)
- Correspondence: ; Tel.: +30-28-1039-1267
| |
Collapse
|
12
|
Attachment of Single-Stranded DNA to Certain SERS-Active Gold and Silver Substrates: Selected Practical Tips. Molecules 2021; 26:molecules26144246. [PMID: 34299520 PMCID: PMC8305401 DOI: 10.3390/molecules26144246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Layers formed from single-stranded DNA on nanostructured plasmonic metals can be applied as “working elements” in surface–enhanced Raman scattering (SERS) sensors used to sensitively and accurately identify specific DNA fragments in various biological samples (for example, in samples of blood). Therefore, the proper formation of the desired DNA layers on SERS substrates is of great practical importance, and many research groups are working to improve the process in forming such structures. In this work, we propose two modifications of a standard method used for depositing DNA with an attached linking thiol moiety on certain SERS-active structures; the modifications yield DNA layers that generate a stronger SERS signal. We propose: (i) freezing the sample when forming DNA layers on the nanoparticles, and (ii) when forming DNA layers on SERS-active macroscopic silver substrates, using ω-substituted alkanethiols with very short alkane chains (such as cysteamine or mercaptopropionic acid) to backfill the empty spaces on the metal surface unoccupied by DNA. When 6-mercapto-1-hexanol is used to fill the unoccupied places on a silver surface (as in experiments on standard gold substrates), a quick detachment of chemisorbed DNA from the silver surface is observed. Whereas, using ω-substituted alkanethiols with a shorter alkane chain makes it possible to easily form mixed DNA/backfilling thiol monolayers. Probably, the significantly lower desorption rate of the thiolated DNA induced by alkanethiols with shorter chains is due to the lower stabilization energy in monolayers formed from such compounds.
Collapse
|
13
|
Batool F, Nawaz H, Majeed MI, Rashid N, Bashir S, Akbar S, Abubakar M, Ahmad S, Ashraf MN, Ali S, Kashif M, Amin I. SERS-based viral load quantification of hepatitis B virus from PCR products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119722. [PMID: 33789190 DOI: 10.1016/j.saa.2021.119722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Hepatitis B is a contagious liver disorder caused by hepatitis B virus and if not treated at an early stage, it becomes chronic and results in liver cirrhosis and hepatocellular carcinoma which can even lead to death. In present study, surface-enhanced Raman spectroscopy (SERS) is employed for the analysis of polymerase chain reaction (PCR) products of DNA extracted from hepatitis B virus (HBV) infected patients in comparison with healthy individuals. SERS spectral features are identified which are solely present in the HBV positive samples and consistently increase in intensities with increase in viral load which can be considered as a SERS spectral marker for HBV infection. For sake of understanding, these various levels of viral loads in this study are classified as low (1-1000 IU), medium (1000-10,000 IU), high (above 10,000 IU) and negative control (>1). In order to explore the efficiency of SERS for discrimination of SERS spectral datasets of different samples of varying viral loads and healthy individuals, principal component analysis (PCA) is applied. PCA is used for comparison of these classes including low, medium and high levels of viral loads with each other and with healthy class. Moreover, partial least square discriminant analysis and partial least square regression analysis are employed for the classification of different levels of viral loads in the HBV positive samples and prediction of viral loads in the unknown samples, respectively. PLS-DA is applied for validity of classification and its sensitivity and specificity was found to be 89% and 98% respectively. PLSR model was constructed for prediction of viral loads on the bases of SERS spectral markers of HBV infection with goodness value of 0.9031 and value of root means square error (RMSE) 0.2923. PLSR model also proved to be valid for prediction of blind sample.
Collapse
Affiliation(s)
- Fatima Batool
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan.
| | | | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Lahore, Faisalabad Campus, Pakistan
| | - Saba Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saba Akbar
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Abubakar
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Shamsheer Ahmad
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Saqib Ali
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Imran Amin
- PCR Laboratory, PINUM Hospital, Faisalabad, Pakistan
| |
Collapse
|
14
|
Farshad M, Rasaiah JC. Light-Nucleotide versus Ion-Nucleotide Interactions for Single-Nucleotide Resolution. J Phys Chem B 2021; 125:2863-2870. [PMID: 33688740 DOI: 10.1021/acs.jpcb.0c10759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several parallel reads of ionic currents through multiple CsgG nanopores provide information about ion-nucleotide interactions for sequencing single-stranded DNA (ss-DNA) using base-calling algorithms. However, the information in ion-nucleotide interactions seems insufficient for single-read nanopore DNA sequencing. Here we report discriminative light-nucleotide interactions calculated from density functional theory (DFT), which are compared with ionic currents obtained from molecular dynamics (MD) simulations. The MD simulations were performed on a system containing a transverse nanochannel and a longitudinal solid state nanopore. We show that both of the transverse and longitudinal ionic currents during the translocation of A16, G16, T16, and C16 through the nanopore, overlapped widely. On the other hand, the UV-vis and Raman spectra of different types of single nucleotides, nucleosides, and nucleobases show relatively higher resolution than the ionic currents. Light-nucleotide interactions provide better information for characterizing the nucleotides in comparison to ion-nucleotide interactions for nanopore DNA sequencing. This can be realized by using optical techniques including surface-enhanced Raman spectroscopy (SERS) or tip-enhanced Raman spectroscopy (TERS), while plasmon excitation can be used to localize light and control the rate of nucleotide flow.
Collapse
Affiliation(s)
- Mohsen Farshad
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| | - Jayendran C Rasaiah
- Department of Chemistry, University of Maine, Orono, Maine 04469, United States
| |
Collapse
|
15
|
Pyrak E, Krajczewski J, Kowalik A, Kudelski A, Jaworska A. Surface Enhanced Raman Spectroscopy for DNA Biosensors-How Far Are We? Molecules 2019; 24:E4423. [PMID: 31817059 PMCID: PMC6943648 DOI: 10.3390/molecules24244423] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
A sensitive and accurate identification of specific DNA fragments (usually containing a mutation) can influence clinical decisions. Standard methods routinely used for this type of detection are PCR (Polymerase Chain Reaction, and its modifications), and, less commonly, NGS (Next Generation Sequencing). However, these methods are quite complicated, requiring time-consuming, multi-stage sample preparation, and specially trained staff. Usually, it takes weeks for patients to obtain their results. Therefore, different DNA sensors are being intensively developed by many groups. One technique often used to obtain an analytical signal from DNA sensors is Raman spectroscopy. Its modification, surface-enhanced Raman spectroscopy (SERS), is especially useful for practical analytical applications due to its extra low limit of detection. SERS takes advantage of the strong increase in the efficiency of Raman signal generation caused by a local electric field enhancement near plasmonic (typically gold and silver) nanostructures. In this condensed review, we describe the most important types of SERS-based nanosensors for genetic studies and comment on their potential for becoming diagnostic tools.
Collapse
Affiliation(s)
- Edyta Pyrak
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Jan Krajczewski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Artur Kowalik
- Holy Cross Cancer Center, 3 Stefana Artwińskiego St., 25-734 Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| | - Aleksandra Jaworska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093 Warsaw, Poland; (E.P.); (J.K.)
| |
Collapse
|