1
|
Lee SG, Lee EB, Nam TS, You S, Im D, Kim K, Gu B, Nam GY, Lee H, Kwon SJ, Kim YS, Kim SG. Anti-Inflammatory and Pain-Relieving Effects of Arnica Extract Hydrogel Patch in Carrageenan-Induced Inflammation and Hot Plate Pain Models. Pharmaceutics 2025; 17:171. [PMID: 40006537 PMCID: PMC11858859 DOI: 10.3390/pharmaceutics17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 02/27/2025] Open
Abstract
Arnica montana (AM), which belongs to the daisy family Asteraceae, has a longstanding traditional use in Europe and North America for pain and inflammation treatment. This study investigates the inhibitory effects of 'Arnica montana extract hydrogel patch (AHP)' on Carrageenan-induced paw edema and hot plate-induced pain models. AHP exhibited transdermal permeability without the occurrence of issues like crystal precipitation. This study employed two animal model assessments using AHP, in comparison with Arnicare Gel (AG), to evaluate anti-inflammatory and pain relief effects. AHP treatment for 2 days showed a decrease in paw edema thickness in mice as compared to vehicle or AG groups; Carrageenan-induced swelling increased maximally at 1 h with the AHP group demonstrating a higher reduction. Thus, the AHP group exhibited a lower ratio of right/left paw thickness and a superior reduction in swelling, supportive of its ability to diminish edema. A histological analysis showed that AHP treatment reduced inflammatory cell infiltration. Consistently, the mRNA levels of inflammatory markers (tnfa, il1b, and il6) were decreased to a greater extent than the AG group. Particularly, tnfa inhibition was better in the AHP group, and the levels of il1b and il6 transcripts showed ~80% and 40% lower. Likewise, AHP reduced pain scores in a hot plate-induced rat model, although AG failed to do so. Together, these results demonstrate that AHP has long-lasting inhibitory effects on fluid effusion and edema formation, the production of inflammatory mediators, and pain-sensation, supporting its anti-inflammatory and pain-relieving pharmacological effects.
Collapse
Affiliation(s)
- Sang Gil Lee
- Center of Research and Development, A Pharma Inc., Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.G.L.); (E.B.L.)
| | - Eun Byul Lee
- Center of Research and Development, A Pharma Inc., Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.G.L.); (E.B.L.)
| | - Tack Soo Nam
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Sunho You
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Dahye Im
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Kyusun Kim
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Bonseung Gu
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Ga-young Nam
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Hyerim Lee
- R&D Center, Wooshin Labottach, Digital-ro 288, Guro-gu, Seoul 08390, Republic of Korea; (T.S.N.); (S.Y.); (D.I.); (K.K.); (B.G.); (G.-y.N.); (H.L.)
| | - Soon Jae Kwon
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Kyeonggi-do, Republic of Korea;
| | - Yun Seok Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanakro-1, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Kyeonggi-do, Republic of Korea;
| |
Collapse
|
2
|
Bańkosz M, Tyliszczak B. Investigation of Silver- and Plant Extract-Infused Polymer Systems: Antioxidant Properties and Kinetic Release. Int J Mol Sci 2024; 25:12816. [PMID: 39684526 DOI: 10.3390/ijms252312816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated the impact of silver particles, suspended in Arnica montana flower extract, on the physicochemical characteristics and release dynamics of antioxidant compounds in PVP (polyvinylpyrrolidone)-based hydrogel systems. The hydrogels were synthesized via photopolymerization with fixed amounts of crosslinker (PEGDA) and photoinitiator, while the concentration of the silver-infused extract was systematically varied. Key properties, including the density, porosity, surface roughness, swelling capacity, and water vapor transmission rate (WVTR), were quantitatively analyzed. The results demonstrated that increasing the silver content reduced the hydrogel density from 0.6669 g/cm3 to 0.2963 g/cm3 and increased the porosity from 4% to 11.04%. The surface roughness parameters (Ra) rose from 8.42 µm to 16.33 µm, while the WVTR increased significantly from 65.169 g/m2·h to 93.772 g/m2·h. These structural changes directly influenced the release kinetics of antioxidant compounds, with kinetic modeling revealing silver-dependent variations in the evaluated release mechanisms. This innovative approach of integrating silver particles and plant-derived antioxidants into hydrogels highlights a novel pathway for tailoring material properties. The observed enhanced porosity and moisture regulation underscore the hydrogels' potential for biomedical applications, particularly in wound care, where controlled moisture and antioxidant delivery are critical. These findings provide new insights into how silver particles modulate hydrogel structures and functionalities.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Material Engineering, Faculty of Materials Engineering and Physics, CUT Doctoral School, Cracow University of Technology, 31-864 Kraków, Poland
| | - Bożena Tyliszczak
- Department of Material Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 31-864 Kraków, Poland
| |
Collapse
|
3
|
Sugier D, Sugier P, Jakubowicz-Gil J, Gawlik-Dziki U, Zając A, Król B, Chmiel S, Kończak M, Pięt M, Paduch R. Nitrogen Fertilization and Solvents as Factors Modifying the Antioxidant and Anticancer Potential of Arnica montana L. Flower Head Extracts. PLANTS (BASEL, SWITZERLAND) 2022; 12:142. [PMID: 36616270 PMCID: PMC9824058 DOI: 10.3390/plants12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Arnica montana L. is one of Europe's endemic endangered medicinal plants, with diverse biological activities commonly used in medicine, pharmacy, and cosmetics. Its flower heads are a rich source of raw material, with antibacterial, antifungal, antiseptic, anti-inflammatory, antiradical, antioxidant, and antitumor properties. The objective of the present study was (i) to characterize the chemical composition of flower heads of A. montana plants cultivated under nitrogen fertilization, (ii) to identify the impact of the nitrogen fertilization and extraction method (water, ethanol) on the antioxidant activity of extracts, and (iii) to determine the role of different nitrogen doses applied during plant cultivation and different extraction methods in the anticancer activity of the extracts through analysis of apoptosis and autophagy induction in HT29, HeLa, and SW620 cell lines. The present study shows that nitrogen is a crucial determinant of the chemical composition of arnica flower heads and the antioxidant and anticancer activity of the analyzed extracts. Nitrogen fertilization can modify the composition of pharmacologically active substances (sesquiterpene lactones, flavonoids, essential oil) in Arnicae flos. The content of sesquiterpene lactones, flavonoids, and essential oil increased with the increase in the nitrogen doses to 60 kg N ha-1 by 0.66%, 1.45%, and 0.27%, respectively. A further increase in the nitrogen dose resulted in a decrease in the content of the analyzed secondary metabolites. Varied levels of nitrogen application can be regarded as a relevant way to modify the chemical composition of arnica flower heads and to increase the anticancer activity, which was confirmed by the increase in the level of apoptosis with the increase in fertilization to a level of 60 kg N ha-1. The fertilization of arnica plants with low doses of nitrogen (30 and 60 kg N ha-1) significantly increased the LOX inhibition ability of the ethanol extracts. The present study is the first report on the anticancer activity of A. montana water extracts, with emphasis on the role of water as a solvent. In further studies of factors modifying the quality of Arnicae flos, attention should be paid to the simultaneous use of nitrogen and other microelements to achieve synergistic results and to the possibility of a more frequent use of water as a solvent in studies on the biological activity of A. montana extracts.
Collapse
Affiliation(s)
- Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Beata Król
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Stanisław Chmiel
- Department of Hydrology and Climatology, Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka Av. 2d, 20-718 Lublin, Poland
| | - Magdalena Kończak
- Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka Av. 2d, 20-718 Lublin, Poland
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, 19 Akademicka Street, 20-033 Lublin, Poland
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 1 Chmielna Street, 20-079 Lublin, Poland
| |
Collapse
|
4
|
Sugier P, Rysiak A, Sugier D, Winiarczyk K, Wołkowycki D, Kołos A. Differentiation and Propagation Potential of Arnica montana L. Achenes as a Consequence of the Morphological Diversity of Flowers and the Position of Flower Heads on the Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243424. [PMID: 36559536 PMCID: PMC9785536 DOI: 10.3390/plants11243424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/12/2023]
Abstract
Arnica montana L. is a very important medicinal plant and simultaneously a European endemic endangered plant species. The morphological features and details of seed development and achene variability are poorly recognized. The aim of this study was to determine the impact of the achene position in the infructescence and the location of the inflorescence on the plant on the (i) morphological characteristics and germination ability of achenes, and (ii) recruitment of seedlings and their biometric features. Infructescences containing fully ripe achenes were randomly collected from A. montana individuals for the measurements and the germination experiment. Scanning electron microscopy, fluorescence microscopy, and light microscopy were used for characterization of flowers and achenes. The morphological traits of achenes and reproductive characteristics of A. montana were determined by the position of the achenes in the infructescence and the location of the inflorescence on the plant. The surface of arnica achenes is equipped with non-glandular and glandular trichomes, which is very rarely presented in species of the family Asteraceae. It is possible that the fluid-containing glandular trichomes are a source of essential oils. The peripherally located achenes were longer, thinner, and lighter. They were characterized by lower embryo weight, lower embryo/achene weight ratio, and lower germination capacity in comparison to the centrally located ones. The results presented in this article fill the gap in the knowledge of the morphology of achenes and the biology of the species, and provide information that can help in breeding programs, active protection, and field cultivation.
Collapse
Affiliation(s)
- Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Krystyna Winiarczyk
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland
| | - Dan Wołkowycki
- Department of Forest Environment, Institute of Forest Sciences, Bialystok University of Technology, 45E Wiejska Street, 15-351 Białystok, Poland
| | - Aleksander Kołos
- Department of Forest Environment, Institute of Forest Sciences, Bialystok University of Technology, 45E Wiejska Street, 15-351 Białystok, Poland
| |
Collapse
|
5
|
Walking around the Autonomous Province of Trento (Italy): An Ethnobotanical Investigation. PLANTS 2022; 11:plants11172246. [PMID: 36079629 PMCID: PMC9460053 DOI: 10.3390/plants11172246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The Trentino-South Tyrol region is a special statute region of northeastern Italy. This territory is of particular interest for its morphology, flourishing vegetation, and history, having been a meeting area among different civilizations. Hence, Trentino is characterized by an ethnic plurality and a rich ethnobotanical knowledge, even if the available information is fragmentary, widely dispersed, and often guarded in oral popular culture. To fill this gap, in the present work 200 subjects were interviewed using an ethnobotanical survey. The resulting 817 citations referred to 64 native species, used either for human or animal health or for domestic purposes. As a second step, for each plant exploited for medicinal purposes, local importance was evaluated by calculating their relative frequency of citation. Moreover, the main traditional preparations were discussed. Among them, the most cited and exploited ones are Achillea millefolium, Arnica montana, Hypericum perforatum, Malva sylvestris, Pinus mugo, and Satureja montana, for which a deeper analysis has been performed. Lastly, the ethnobotanical knowledge of the plants growing in this territory will add a piece to the mosaic of traditional medicine in Italy and may lay the foundation for a nature-aided drug discovery process.
Collapse
|
6
|
Žitek T, Postružnik V, Knez Ž, Golle A, Dariš B, Knez Marevci M. Arnica Montana L. Supercritical Extraction Optimization for Antibiotic and Anticancer Activity. Front Bioeng Biotechnol 2022; 10:897185. [PMID: 35620474 PMCID: PMC9127360 DOI: 10.3389/fbioe.2022.897185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Arnica montana L. flower heads are known for their antioxidant, antimicrobial, and anticancer activity. The aim of this work was to optimize the process of supercritical CO2 extraction, to achieve high extraction yield and high content of biologically active components, and to confirm the antimicrobial and anticancer activity of the extract. The influence of pressure and temperature on the total phenolic content, antioxidant activity, and proanthocyanidin content was evaluated. The pressure and temperature were found to be interdependent. A temperature of 60°C and a pressure of 30 MPa resulted in a high extraction yield, antioxidant activity and phenolic content. The content of proanthocyanidins was highest at a pressure between 18 and 24 MPa. The extracts inhibited three different microorganisms successfully; Staphylococcus aureus, Escherichia coli and Candida albicans, at concentrations ranging from 0.1 to 5.16 mg/ml and showed anticancer activity decrease up to 85% at a concentration of 0.5 mg/ml.
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| | - Vesna Postružnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment, and Food, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
7
|
Silva WMF, Bona NP, Pedra NS, Cunha KFD, Fiorentini AM, Stefanello FM, Zavareze ER, Dias ARG. Risk assessment of in vitro cytotoxicity, antioxidant and antimicrobial activities of Mentha piperita L. essential oil. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:230-242. [PMID: 34781835 DOI: 10.1080/15287394.2021.1999875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The objective of this study was to determine the chemical composition as well as antioxidant, antibacterial, and cytotoxic properties of the essential oil of Mentha piperita L. (peppermint). Fifteen chemical constituents were identified in the essential oil, for a total of 99.99% of the compounds. The essential oil exhibited antimicrobial activity against two Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes. The minimum inhibitory concentration (MIC) of essential oil of Mentha piperita L. for Staphylococcus aureus and Listeria monocytogenes was 1.84 μg/ml, whereas the minimum bactericidal concentration (MBC) values were 3.7 and 7.43 μg/ml, respectively. The oil displayed potent antioxidant activity inhibiting up to approximately73% of 2,2'-azinothiobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals. In the cytotoxicity assay, the highest essential oil concentration (100 μg/ml) resulted in viability of approximately 90% human epidermal keratinocyte (HaCaT) cells. With respect to antitumor activity in C6 rat glioma cells, there was significant reduction in cell viability: 56-74% in 24 hr, and 71-77% in 48 hr. Data suggest that in presence of the essential oil of Mentha piperita L. antioxidant, antibacterial, antitumor and non-cytotoxic properties were noted.
Collapse
Affiliation(s)
- W M F Silva
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - N P Bona
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - N S Pedra
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - K F Da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - A M Fiorentini
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - F M Stefanello
- Postgraduate Program in Biochemistry and Bioprospecting - Laboratory of Neurochemistry, Inflammation and Cancer, Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, University Campus S/n, Pelotas, Brazil
| | - E R Zavareze
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| | - A R G Dias
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Campus Capão Do Leão, Pelotas, Brazil
| |
Collapse
|
8
|
Chemical Characteristics and Antioxidant Activity of Arctostaphylos uva-ursi L. Spreng. at the Southern Border of the Geographical Range of the Species in Europe. Molecules 2021; 26:molecules26247692. [PMID: 34946773 PMCID: PMC8707569 DOI: 10.3390/molecules26247692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
The bearberry (Arctostaphylos uva-ursi L. Spreng.) is a source of herbal material—bearberry leaf (Uvae ursi folium), which is highly valued and sought by pharmaceutical and cosmetic industries. For many years, leaves of this plant have been used in traditional medicine as a diuretic, antimicrobial, and anti-inflammatory agent for various diseases of the urogenital tract. The bearberry has also been proposed as a natural antioxidant additive due to the high contents of phenolic compounds in its leaves. The study was focused on characterization of the basic phytochemical composition and antioxidant activity of extracts derived from bearberry leaves collected from plants located at the southern border of the geographical range of the species in Europe. The investigated herbal material is characterized by a different chemical profile compared to the chemical profiles of bearberry found in other parts of the continent. Bearberry extracts from plants growing in two different habitat types—heathlands and pine forests showed a wide range of variation, especially in the concentration of hyperoside, corilagin, and methylartutin and the total flavonoid contents. In addition to arbutin, bearberry can be a valuable source of phenolic compounds, which are mainly responsible for the antioxidant properties of extracts. The high content of phenols and high values of antioxidant parameters indicate a high potential of bearberry leaves to be used as a powerful natural source of antioxidants in herbal preparations. Therefore, the A. uva-ursi populations can be a source of plant material for pharmaceutical, cosmetic, and food industries.
Collapse
|
9
|
Fusani P, Aiello N, Shachter A, Dudai N. Volatile Composition Variability of Arnica montana Wild Populations of Trentino-Alto Adige, Italy, Determined by Headspace-Solid Phase Microextraction. Chem Biodivers 2021; 19:e202100593. [PMID: 34755931 DOI: 10.1002/cbdv.202100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Arnica montana is a plant distributed in most of Europe, including the Alpine arc and Apennines in Italy, and traditionally used worldwide for medicinal properties. Twelve natural populations of the species from Trentino-Alto Adige, Italy, were characterized using Headspace-Solid Phase Microextraction analysis for their volatile profile. Fifty-one compounds were detected in flower heads, the most abundant being (E)-Caryophyllene (23.4 %), 2,2,4,6,6-Pentamethylheptane (8.3 %), α- trans-Bergamotene (7.2 %), Germacrene D (5.7 %), and Hexanal (5.3 %). A multivariate analysis performed on the ten most abundant compounds grouped these investigated accessions into five main clusters. Three clusters, comprising together five accessions, were linked to the geographical origin of two collection sites. This work is a complete characterization of volatiles of the species by SPME analysis reported to date. Furthermore, results suggest that the species' volatile profile can be linked to the geographical origin of the natural populations and, therefore, represent a tool for evaluating biodiversity within the species.
Collapse
Affiliation(s)
- Pietro Fusani
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Nicola Aiello
- Council for Agricultural Research and Economics, Research Centre for Forestry and Wood, piazza Nicolini 6, 38123, Trento, Italy
| | - Alona Shachter
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| | - Nativ Dudai
- Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay, IL-30095, Israel
| |
Collapse
|
10
|
Nieto-Trujillo A, Cruz-Sosa F, Luria-Pérez R, Gutiérrez-Rebolledo GA, Román-Guerrero A, Burrola-Aguilar C, Zepeda-Gómez C, Estrada-Zúñiga ME. Arnica montana Cell Culture Establishment, and Assessment of Its Cytotoxic, Antibacterial, α-Amylase Inhibitor, and Antioxidant In Vitro Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112300. [PMID: 34834662 PMCID: PMC8624820 DOI: 10.3390/plants10112300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/12/2023]
Abstract
Arnica montana cell suspension culture could be a sustainable source of a vegetal material producer of secondary metabolites (SMs) possessing biological effects. Different plant growth regulator concentrations (0-5 mg/L) were tested in foliar explants to induce a callus that was used to establish a cell suspension culture. Growth kinetics was carried out for 30 days. A methanolic extract obtained from biomass harvested at 30 days of growth kinetics was fractionated, and three fractions were tested for bioactivities. We induced a callus with 1 mg/L of picloram and 0.5 mg/L of kinetin in foliar explants, which allowed for the establishment of a cell suspension culture, and the latter had the highest total SMs contents at day 30. Three fractions showed differences in total SMs contents, with the highest values per gram as follows: 270 mg gallic acid equivalent for total phenolic content, 200 mg quercetin equivalent for total flavonoid content, 83 mg verbascoside equivalent for total phenolic acid content, and 396 mg parthenolide equivalent for total sesquiterpene lactone content. The best bioactivities were 2-6 µg/mL for the 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical, 30% cellular viability of lymphoma cells at 40 µg/mL, 17% inhibition against Escherichia coli and Staphylococcus aureus at 8 µg/disk, and α-amylase inhibition at 12% with 10 µg/mL. The total SMs contents were correlated with bioactivities.
Collapse
Affiliation(s)
- Aurelio Nieto-Trujillo
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 162, Col. Doctores, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Gabriel Alfonso Gutiérrez-Rebolledo
- Laboratorio de Toxicología Productos Naturales, Academia de Toxicología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-Unidad Zacatenco, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Cristina Burrola-Aguilar
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Carmen Zepeda-Gómez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, Toluca 50200, Mexico;
| | - María Elena Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| |
Collapse
|
11
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
12
|
Cai J, Yan R, Shi J, Chen J, Long M, Wu W, Kuca K. Antifungal and mycotoxin detoxification ability of essential oils: A review. Phytother Res 2021; 36:62-72. [PMID: 34528300 DOI: 10.1002/ptr.7281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
With increased popular awareness of food safety and environmental protection, plant essential oil has attracted interest due to the absence of residue, its high efficiency, antioxidant, immune regulation, antibacterial, insecticidal, and other advantages. Their application in degradation and elimination of mycotoxin toxicity has attracted increasing attention. This paper reviews the structure, antibacterial activity, antibacterial mechanism, and toxic effects of essential oils. The inhibitory effects of various essential oils on different mycotoxins were studied. The research progress on the inhibitory effects of plant essential oils on fungi and mycotoxins in recent years was summarized to provide reference for the application of plant essential oils.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rong Yan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jichao Shi
- Liaoning Service Development Center, Shenyang, China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|
14
|
Garcia-Oliveira P, Barral M, Carpena M, Gullón P, Fraga-Corral M, Otero P, Prieto MA, Simal-Gandara J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct 2021; 12:2850-2873. [PMID: 33683253 DOI: 10.1039/d0fo03433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional plants have been used in the treatment of disease and pain due to their beneficial properties such as antioxidant, antiinflammation, analgesic, and antibiotic activities. The Asteraceae family is one of the most common groups of plants used in folk medicine. The species Achillea millefolium, Arnica montana, Bellis perennis, Calendula officinalis, Chamaemelum nobile, Eupatorium cannabinum, Helichrysum stoechas, and Taraxacum officinale have been used in different remedies in Northwest Spain. Besides health benefits, some of them like C. nobile and H. stoechas are already employed in cooking and culinary uses, including cocktails, desserts, and savory dishes. This study aimed to review the current information on nutritive and beneficial properties and bioactive compounds of these plants, which are not mainly used as foods but are possible candidates for this purpose. The report highlights their current uses and suitability for the development of new functional food industrial applications. Phenolic compounds, essential oils, and sesquiterpene lactones are some of the most important compounds, being related to different bioactivities. Hence, they could be interesting for the development of new functional foods.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wajs-Bonikowska A, Malarz J, Szoka Ł, Kwiatkowski P, Stojakowska A. Composition of Essential Oils from Roots and Aerial Parts of Carpesium cernuum and Their Antibacterial and Cytotoxic Activities. Molecules 2021; 26:molecules26071883. [PMID: 33810440 PMCID: PMC8038092 DOI: 10.3390/molecules26071883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Carpesium cernuum L., one of the two Carpesium species occurring in Europe, in the Far East and India, found use as a vegetable and a traditional medicinal remedy for several ailments. In the present study, compositions of essential oils distilled from roots and shoots of C. cernuum plants, cultivated in the open field, have been studied by GC-MS-FID supported by NMR spectroscopy. The analyses led to the identification of 120 compounds in total, of which 115 were found in aerial parts and 37 in roots of the plants. The major constituents found in the oil from shoots were: α-pinene (35%) and 2,5-dimethoxy-p-cymene (thymohydroquinone dimethyl ether, 12%), whereas 2,5-dimethoxy-p-cymene (55%), thymyl isobutyrate (9%) and thymol methyl ether (8%) predominated in the essential oil obtained from the roots. Antibacterial and cytotoxic activities of the essential oils distilled from C. cernuum were also tested. The essential oil from aerial parts of the plant demonstrated good inhibitory activity against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 (MIC: 15.6 μL/mL).
Collapse
Affiliation(s)
- Anna Wajs-Bonikowska
- Institute of General Food Chemistry, Faculty of Biotechnology and Food Sciences, Łódź University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland;
| | - Janusz Malarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza Street 2D, 15-222 Białystok, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Street 72, 70-111 Szczecin, Poland;
| | - Anna Stojakowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland;
- Correspondence: ; Tel.: +481-26-623-254
| |
Collapse
|
16
|
Mun H, Townley HE. Nanoencapsulation of Plant Volatile Organic Compounds to Improve Their Biological Activities. PLANTA MEDICA 2021; 87:236-251. [PMID: 33176380 DOI: 10.1055/a-1289-4505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant volatile organic compounds (volatiles) are secondary plant metabolites that play crucial roles in the reproduction, defence, and interactions with other vegetation. They have been shown to exhibit a broad range of biological properties and have been investigated for antimicrobial and anticancer activities. In addition, they are thought be more environmentally friendly than many other synthetic chemicals 1. Despite these facts, their applications in the medical, food, and agricultural fields are considerably restricted due to their volatilities, instabilities, and aqueous insolubilities. Nanoparticle encapsulation of plant volatile organic compounds is regarded as one of the best strategies that could lead to the enhancement of the bioavailability and biological activity of the volatile compounds by overcoming their physical limitations and promoting their controlled release and cellular absorption. In this review, we will discuss the biosynthesis and analysis of plant volatile organic compounds, their biological activities, and limitations. Furthermore, different types of nanoparticle platforms used to encapsulate the volatiles and the biological efficacies of nanoencapsulated volatile organic compounds will be covered.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Helen E Townley
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Abdalla AN, Shaheen U, Abdallah QMA, Flamini G, Bkhaitan MM, Abdelhady MIS, Ascrizzi R, Bader A. Proapoptotic Activity of Achillea membranacea Essential Oil and Its Major Constituent 1,8-Cineole against A2780 Ovarian Cancer Cells. Molecules 2020; 25:E1582. [PMID: 32235558 PMCID: PMC7180961 DOI: 10.3390/molecules25071582] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022] Open
Abstract
Among the hundreds of reported Achillea species, A. membranacea (Labill.) DC. is one of the six that grow in Jordan. Many species of this genus are used in folk medicine to treat a variety of ailments and several biological and pharmacological activities have been ascribed to their essential oil (EO). For this study, the EO obtained from a specimen of A. membranacea grown in Jordan was analyzed by GC-MS. Ninety-six compounds were detected, of which oxygenated monoterpenes was the predominant class (47.9%), followed by non-terpene derivatives (27.9%), while sesquiterpenes represented 14.2% of the total composition. The most abundant compound in the EO was 1,8-cineole (21.7%). The cytotoxic activity of the EO was evaluated against three cancer cell lines (MCF7, A2780 and HT29), and one normal fibroblast cell line (MRC5) by MTT assay. Significant growth inhibition was observed in EO-exposed A2780 and HT29 cells (IC50 = 12.99 and 14.02 μg/mL, respectively), while MCF7 and MRC5 were less susceptible. The EO induced apoptosis and increased the preG1 events in A2780 cells. 1,8-Cineole, the major constituent of the EO, exhibited submicromolar cytotoxicity against A2780 cells, and was 42 times more selective against MRC5 cells. Its cytotoxicity against A2780 cells was comparable with that of doxorubicin, but 1,8-cineole was more selective for MRC5 normal cells. Interestingly, 1,8-cineole enhanced apoptosis in A2780, and caused a remarkable dose-dependent increase in preG1 events. Thus, 1,8-cineole has demonstrated promising cytotoxic and proapoptotic properties.
Collapse
Affiliation(s)
- Ashraf N. Abdalla
- Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (U.S.); (M.M.B.); (M.I.S.A.)
| | - Usama Shaheen
- Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (U.S.); (M.M.B.); (M.I.S.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Qasem M. A. Abdallah
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Makkah 21974, Saudi Arabia;
- Department of Pharmacology & Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Majdi M. Bkhaitan
- Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (U.S.); (M.M.B.); (M.I.S.A.)
- Basic Medical Sciences Unit, Arab American University, Jenin 240, Palestine
| | - Mohamed I. S. Abdelhady
- Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (U.S.); (M.M.B.); (M.I.S.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo 11651, Egypt
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Ammar Bader
- Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.N.A.); (U.S.); (M.M.B.); (M.I.S.A.)
| |
Collapse
|
18
|
Sugier P, Jakubowicz-Gil J, Sugier D, Kowalski R, Gawlik-Dziki U, Kołodziej B, Dziki D. Chemical Characteristics and Anticancer Activity of Essential Oil from Arnica Montana L. Rhizomes and Roots. Molecules 2020; 25:molecules25061284. [PMID: 32178275 PMCID: PMC7143959 DOI: 10.3390/molecules25061284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Arnica montana L. is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are mainly related to the concentration and chemical composition of essential oils (EOs). Therefore, the objective of this study was to characterize the chemical composition of EOs derived from A. montana rhizomes and roots taking into account the age of the plants and to investigate the effect of the analyzed EOs on induction of apoptosis, necrosis, and autophagy in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines. Rhizomes and roots of mountain arnica were harvested at the end of the third and fourth vegetation periods. The chemical composition of essential oils was determined with the GC–MS technique. Among the 37 components of the essential oil of A. montana, 2,5-dimethoxy-p-cymene (46.47%–60.31%), 2,6-diisopropylanisole (14.48%–23.10%), thymol methyl ether (5.31%–17.79%), p-methoxyheptanophenone (5.07%–9.65%), and α-isocomene (0.68%–2.87%), were detected in the rhizomes and roots of the three-year-old plants and in the rhizomes and roots of the four-year-old plants. The plant part (rhizome, root) and plant age can be determinants of the essential oil composition and, consequently, their biological activity. The induction of apoptosis (but not autophagy nor necrosis) at a level of 28.5%–32.3% is a promising result, for which 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, thymol methyl ether, and p-methoxyheptanophenone are probably mainly responsible. The present study is the first report on the anticancer activities of essential oils from A. montana rhizomes and roots.
Collapse
Affiliation(s)
- Piotr Sugier
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Danuta Sugier
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (D.S.); (B.K.)
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences, Głęboka 31, 20-612 Lublin, Poland;
| |
Collapse
|