1
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
2
|
Luetragoon T, Daowtak K, Thongsri Y, Potup P, Calder PC, Usuwanthim K. Anti-Inflammatory Potential of 3-Hydroxy-β-Ionone from Moringa oleifera: Decreased Transendothelial Migration of Monocytes Through an Inflamed Human Endothelial Cell Monolayer by Inhibiting the IκB-α/NF-κB Signaling Pathway. Molecules 2024; 29:5873. [PMID: 39769962 PMCID: PMC11678794 DOI: 10.3390/molecules29245873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Moringa leaves provide numerous health benefits due to their anti-inflammatory properties. This study presents the first evidence that endothelial cell inflammation can potentially be ameliorated by moringa leaf extract. Here, we established an experimental human blood vessel cell model of inflammation using EA.hy926 cells. TNF-α was added after pre-treating the cells with crude leaf extract from Moringa oleifera Lam., a constituent fraction of the extract, and the bioactive component 3-hydroxy-β-ionone. The extract and the active ingredient significantly decreased the levels of pro-inflammatory mediators such as IL-6, IL-8, and MCP-1; decreased IκB-α and NF-κB p65 phosphorylation; and decreased the expression of VCAM-1, PECAM-1, and ICAM-1, three significant adhesion molecules. Furthermore, they attenuated THP-1 monocyte adhesion to the EA.hy926 monolayer and decreased monocyte transmigration across the monolayer. These findings suggest that 3-hydroxy-β-ionone and moringa leaf extract have anti-inflammatory properties and can be used as therapeutic agents to reduce the progression of diseases involving the inflamed endothelium by decreasing the production of inflammatory cytokines, chemokines, and adhesion molecules. This is promising for conditions such as atherosclerosis and neuroinflammation.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Department of Medical Technology, Faculty of Allied Health Sciences, Nakhon Ratchasima College, Nakhon Ratchasima 30000, Thailand;
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (K.D.); (Y.T.); (P.P.)
| |
Collapse
|
3
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
4
|
Buakaew W, Krobthong S, Yingchutrakul Y, Khamto N, Sutana P, Potup P, Thongsri Y, Daowtak K, Ferrante A, Léon C, Usuwanthim K. In Vitro Investigation of the Anti-Fibrotic Effects of 1-Phenyl-2-Pentanol, Identified from Moringa oleifera Lam., on Hepatic Stellate Cells. Int J Mol Sci 2024; 25:8995. [PMID: 39201682 PMCID: PMC11354330 DOI: 10.3390/ijms25168995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Liver fibrosis, characterized by excessive extracellular matrix deposition, is driven by activated hepatic stellate cells (HSCs). Due to the limited availability of anti-fibrotic drugs, the research on therapeutic agents continues. Here we have investigated Moringa oleifera Lam. (MO), known for its various bioactive properties, for anti-fibrotic effects. This study has focused on 1-phenyl-2-pentanol (1-PHE), a compound derived from MO leaves, and its effects on LX-2 human hepatic stellate cell activation. TGF-β1-stimulated LX-2 cells were treated with MO extract or 1-PHE, and the changes in liver fibrosis markers were assessed at both gene and protein levels. Proteomic analysis and molecular docking were employed to identify potential protein targets and signaling pathways affected by 1-PHE. Treatment with 1-PHE downregulated fibrosis markers, including collagen type I alpha 1 chain (COL1A1), collagen type IV alpha 1 chain (COL4A1), mothers against decapentaplegic homologs 2 and 3 (SMAD2/3), and matrix metalloproteinase-2 (MMP2), and reduced the secretion of matrix metalloproteinase-9 (MMP-9). Proteomic analysis data showed that 1-PHE modulates the Wnt/β-catenin pathway, providing a possible mechanism for its effects. Our results suggest that 1-PHE inhibits the TGF-β1 and Wnt/β-catenin signaling pathways and HSC activation, indicating its potential as an anti-liver-fibrosis agent.
Collapse
Affiliation(s)
- Watunyoo Buakaew
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornsuda Sutana
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Antonio Ferrante
- Department of Immunopathology, South Australia (SA) Pathology, Women's and Children's Hospital, Adelaide, SA 5006, Australia
- The Adelaide Medical School, The School of Biological Science and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Catherine Léon
- INSERM, UMR_S1255, Université de Strasbourg, Etablissement Français du Sang-GEST, 67000 Strasbourg, France
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Hussein J, El-Bana M, Abdel-Latif Y, El-Sayed S, Shaarawy S, Medhat D. Moringa oleifera leaves extract loaded gold nanoparticles offers a promising approach in protecting against experimental nephrotoxicity. Prostaglandins Other Lipid Mediat 2024; 170:106800. [PMID: 38029886 DOI: 10.1016/j.prostaglandins.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt.
| | - Mona El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Samah El-Sayed
- Dairy Science Department, National Research Centre, Dokki 12622, Egypt
| | - Sahar Shaarawy
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki 12622, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki 12622, Egypt
| |
Collapse
|
6
|
Balit T, Thonabulsombat C, Dharmasaroja P. Moringa oleifera leaf extract suppresses TIMM23 and NDUFS3 expression and alleviates oxidative stress induced by Aβ1-42 in neuronal cells via activation of Akt. Res Pharm Sci 2024; 19:105-120. [PMID: 39006971 PMCID: PMC11244708 DOI: 10.4103/1735-5362.394825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 12/04/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Oxidative stress plays an important role in Alzheimer's disease (AD) pathogenesis. Moringa oleifera leaf (MOL) extract has been shown to have antioxidant activities. Here, we studied the antioxidative and anti-apoptotic effects of water-soluble MOL extract in an amyloid beta (Aβ)-induced oxidative stress model of AD. Experimental approach The effect of amyloid beta (Aβ)1-42 and MOL extract on differentiated SH-SY5Y cell viability was assessed by MTT assay. Cells were treated with Aβ1-42, MOL extract, or MOL extract followed by Aβ1-42. The mitochondrial membrane potential (ΔΨm) and the reactive oxygen species (ROS) were evaluated by flow cytometry and dihydroethidium (DHE) assay, respectively. Western blotting was used to assess the expression of mitochondrial proteins TIMM23 and NDUFS3, apoptosis-related proteins Bax, Bcl-2, and cleaved caspase-3 along with fluorescence analysis of caspase-3/7, and Akt phosphorylation. Findings/Results MOL extract pretreatment at 25, 50, and 100 μg/mL prevented ΔΨm reduction. At 100-μg/mL, MOL extract decreased TIMM23 and NDUFS3 proteins and DHE signals in Aβ1-42-treated cells. MOL extract pretreatment (25, 50, and 100 μg/mL) also alleviated the apoptosis indicators, including Bax, caspase-3/7 intensity, and cleaved caspase-3, and increased Bcl-2 levels in Aβ1-42-treated cells, consistent with a reduction in the number of apoptotic cells. The protective effects of MOL extract were possibly mediated through Akt activation, evidenced by increased Akt phosphorylation. Conclusion and implications The neuroprotective effect of MOL extract could be mediated via the activation of Akt, leading to the suppression of oxidative stress and apoptosis in an Aβ1-42 model of AD.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Permphan Dharmasaroja
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| |
Collapse
|
7
|
Amin MF, Ariwibowo T, Putri SA, Kurnia D. Moringa oleifera: A Review of the Pharmacology, Chemical Constituents, and Application for Dental Health. Pharmaceuticals (Basel) 2024; 17:142. [PMID: 38276015 PMCID: PMC10819732 DOI: 10.3390/ph17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Moringa oleifera L., commonly known as Kelor in Indonesia and miracle tree in English, has a rich history of utilization for medicinal, nutritional, and water treatment purposes dating back to ancient times. The plant is renowned for its abundance of vitamins, minerals, and various chemical constituents, making it a valuable resource. Among its notable pharmacological properties are its effectiveness as an anti-diabetic, anti-diarrheal, anti-helmintic, anti-leishmanial, anti-fungal, anti-bacterial, anti-allergic, anti-cancer, anti-inflammatory, and anti-oxidant agent. In this comprehensive review, we delve into the extensive pharmacological applications and phytochemical constituents of M. oleifera and its application in dental health.
Collapse
Affiliation(s)
- Meiny Faudah Amin
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Taufiq Ariwibowo
- Department Conservative Dentistry, Faculty of Dentistry, Universitas Trisakt, Jakarta Barat 11440, Indonesia;
| | - Salsabila Aqila Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.A.P.); (D.K.)
| |
Collapse
|
8
|
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, Fodor A, Sitar-Tăut AV, Cozma A, Orășan OH, Hegheș SC, Vulturar R, Suharoschi R. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2023; 13:20. [PMID: 38202328 PMCID: PMC10780634 DOI: 10.3390/plants13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Moringa oleifera (M. oleifera) is a tropical tree native to Pakistan, India, Bangladesh, and Afghanistan; it is cultivated for its nutritious leaves, pods, and seeds. This scientific study was conducted to outline the anti-inflammatory properties and mechanisms of action of bioactive compounds from M. oleifera. The existing research has found that the plant is used in traditional medicine due to its bioactive compounds, including phytochemicals: flavonoids and polyphenols. The compounds are thought to exert their anti-inflammatory effects due to: (1) inhibition of pro-inflammatory enzymes: quercetin and kaempferol inhibit the pro-inflammatory enzymes (cyclooxygenase and lipoxygenase); (2) regulation of cytokine production: isothiocyanates modulate signaling pathways involved in inflammation, such as the nuclear factor-kappa B (NF-kappa B) pathway; isothiocyanates inhibit the production of pro-inflammatory cytokines such as TNF-α (tumor necrosis factor α) and IL-1β (interleukin-1β); and (3) antioxidant activity: M. oleifera contains flavonoids, polyphenols, known to reduce oxidative stress and inflammation. The review includes M. oleifera's effects on cardiovascular protection, anti-hypertensive activities, type 2 diabetes, inflammatory bowel disease, and non-alcoholic fatty liver disease (NAFLD). This research could prove valuable for exploring the pharmacological potential of M. oleifera and contributing to the prospects of developing effective medicines for the benefit of human health.
Collapse
Affiliation(s)
- Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Paul Aimé Noubissi
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Oana-Lelia Pop
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Carmen Ioana Mureșan
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| | - Michel Archange Fokam Tagne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon;
| | - René Kamgang
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (P.A.N.); (R.K.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adela-Viviana Sitar-Tăut
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Angela Cozma
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Olga Hilda Orășan
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-V.S.-T.); (A.C.); (O.H.O.)
| | - Simona Codruța Hegheș
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur St, 400349 Cluj-Napoca, Romania; (A.C.); (R.V.)
| | - Ramona Suharoschi
- Department of Food Science, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (O.-L.P.); (R.S.)
- Molecular Nutrition and Proteomics Lab, CDS3, Life Science Institute, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Mănăștur, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Pareek A, Pant M, Gupta MM, Kashania P, Ratan Y, Jain V, Pareek A, Chuturgoon AA. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. Int J Mol Sci 2023; 24:ijms24032098. [PMID: 36768420 PMCID: PMC9916933 DOI: 10.3390/ijms24032098] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Moringa oleifera, also known as the "tree of life" or "miracle tree," is classified as an important herbal plant due to its immense medicinal and non-medicinal benefits. Traditionally, the plant is used to cure wounds, pain, ulcers, liver disease, heart disease, cancer, and inflammation. This review aims to compile an analysis of worldwide research, pharmacological activities, phytochemical, toxicological, and ethnomedicinal updates of Moringa oleifera and also provide insight into its commercial and phytopharmaceutical applications with a motive to help further research. The scientific information on this plant was obtained from various sites and search engines such as Scopus, Pub Med, Science Direct, BMC, Google Scholar, and other scientific databases. Articles available in the English language have only been referred for review. The pharmacological studies confirm the hepatoprotective, cardioprotective, and anti-inflammatory potential of the extracts from the various plant parts. It was found that bioactive constituents are present in every part of the plant. So far, more than one hundred compounds from different parts of Moringa oleifera have been characterized, including alkaloids, flavonoids, anthraquinones, vitamins, glycosides, and terpenes. In addition, novel isolates such as muramoside A&B and niazimin A&B have been identified in the plant and have potent antioxidant, anticancer, antihypertensive, hepatoprotective, and nutritional effects. The traditional and nontraditional use of Moringa, its pharmacological effects and their phytopharmaceutical formulations, clinical studies, toxicity profile, and various other uses are recognized in the present review. However, several traditional uses have yet to be scientifically explored. Therefore, further studies are proposed to explore the mechanistic approach of the plant to identify and isolate active or synergistic compounds behind its therapeutic potential.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
- Correspondence: (A.P.); (A.A.C.)
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Pushpa Kashania
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence: (A.P.); (A.A.C.)
| |
Collapse
|
11
|
Azlan UK, Khairul Annuar NA, Mediani A, Aizat WM, Damanhuri HA, Tong X, Yanagisawa D, Tooyama I, Wan Ngah WZ, Jantan I, Hamezah HS. An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of Moringa oleifera. Front Pharmacol 2023; 13:1035220. [PMID: 36686668 PMCID: PMC9849397 DOI: 10.3389/fphar.2022.1035220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are sporadic maladies that affect patients' lives with progressive neurological disabilities and reduced quality of life. Neuroinflammation and oxidative reaction are among the pivotal factors for neurodegenerative conditions, contributing to the progression of NDs, such as Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS) and Huntington's disease (HD). Management of NDs is still less than optimum due to its wide range of causative factors and influences, such as lifestyle, genetic variants, and environmental aspects. The neuroprotective and anti-neuroinflammatory activities of Moringa oleifera have been documented in numerous studies due to its richness of phytochemicals with antioxidant and anti-inflammatory properties. This review highlights up-to-date research findings on the anti-neuroinflammatory and neuroprotective effects of M. oleifera, including mechanisms against NDs. The information was gathered from databases, which include Scopus, Science Direct, Ovid-MEDLINE, Springer, and Elsevier. Neuroprotective effects of M. oleifera were mainly assessed by using the crude extracts in vitro and in vivo experiments. Isolated compounds from M. oleifera such as moringin, astragalin, and isoquercitrin, and identified compounds of M. oleifera such as phenolic acids and flavonoids (chlorogenic acid, gallic acid, ferulic acid, caffeic acid, kaempferol, quercetin, myricetin, (-)-epicatechin, and isoquercitrin) have been reported to have neuropharmacological activities. Therefore, these compounds may potentially contribute to the neuroprotective and anti-neuroinflammatory effects. More in-depth studies using in vivo animal models of neurological-related disorders and extensive preclinical investigations, such as pharmacokinetics, toxicity, and bioavailability studies are necessary before clinical trials can be carried out to develop M. oleifera constituents into neuroprotective agents.
Collapse
Affiliation(s)
- Ummi Kalthum Azlan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | - Ahmed Mediani
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Xiaohui Tong
- 3School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Daijiro Yanagisawa
- 4Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Wan Zurinah Wan Ngah
- 5Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ibrahim Jantan
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- 1Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia,*Correspondence: Hamizah Shahirah Hamezah,
| |
Collapse
|
12
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
13
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
14
|
A Comprehensive Review with Updated Future Perspectives on the Ethnomedicinal and Pharmacological Aspects of Moringa oleifera. Molecules 2022; 27:molecules27185765. [PMID: 36144493 PMCID: PMC9504211 DOI: 10.3390/molecules27185765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Moringa oleifera is an ancient remedy plant, known as the miraculous plant due to its many prominent uses and significant health benefits. It is a nutrient-rich plant, with exceptional bioactive compounds, such as polyphenols that possess several medicinal properties. Many significant studies have been carried out to evaluate the ethnomedicinal and pharmacological properties of M. oleifera in various applications. Therefore, this comprehensive review compiles and summarizes important findings from recent studies on the potential properties of different parts of M. oleifera. The pharmacological properties of M. oleifera have been studied for various potential biological properties, such as cardio-protective, anti-oxidative, antiviral, antibacterial, anti-diabetic and anti-carcinogenic effects. Therefore, the potential of this plant is even more anticipated. This review also highlights the safety and toxicity effects of M. oleifera treatment at various doses, including in vitro, in vivo and clinical trials from human studies.
Collapse
|
15
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
16
|
The First Optimization Process from Cultivation to Flavonoid-Rich Extract from Moringa oleifera Lam. Leaves in Brazil. Foods 2022; 11:foods11101452. [PMID: 35627022 PMCID: PMC9140588 DOI: 10.3390/foods11101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022] Open
Abstract
Flavonoids are significant antioxidant and anti-inflammatory agents and have multiple potential health applications. Moringa oleifera is globally recognized for its nutritional and pharmacological properties, correlated to the high flavonoid content in its leaves. However, the bioactive compounds found in plants may vary according to the cultivation, origin, season, and extraction process used, making it difficult to extract reliable raw material. Hence, this study aimed to standardize the best cultivation and harvest season in Brazil and the best extraction process conditions to obtain a flavonoid-rich extract from M. oleifera as a final product. Firstly, ultrasound-assisted extraction (UAE) was optimized to reach the highest flavonoid content by three-level factorial planning and response surface methodology (RSM). The optimal cultivation condition was mineral soil fertilizer in the drought season, and the optimized extraction was with 80% ethanol and 13.4 min of extraction time. The flavonoid-rich extract was safe and significantly decreased reactive oxygen species (ROS) and nitric oxide (NO) in LPS-treated RAW 264.7 cells. Lastly, the major flavonoids characterized by HPLC-ESI-QTRAP-MS/MS were compounds derived from apigenin, quercetin, and kaempferol glycosides. The results confirmed that it was possible to standardize the flavonoid-rich extract leading to a standardized and reliable raw material extracted from M. oleifera leaves.
Collapse
|
17
|
Effects of Moringa oleifera Lam. Supplementation on Inflammatory and Cardiometabolic Markers in Subjects with Prediabetes. Nutrients 2022; 14:nu14091937. [PMID: 35565903 PMCID: PMC9099674 DOI: 10.3390/nu14091937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Different parts of the Moringa oleifera Lam. (MO) tree are consumed as food or food supplements for their nutritional and medicinal value; however, very few human studies have been published on the topic. The current work was aimed to provide ancillary analysis to the antidiabetic effects previously reported in a double-blind, randomized, placebo-controlled, parallel group intervention conducted in patients with prediabetes. Thus, the effect of MO leaves on blood and fecal inflammatory markers, serum lipid profile, plasma antioxidant capacity and blood pressure was studied in participants who consumed 6 × 400 mg capsule/day of MO dry leaf powder (MO, n = 31) or placebo (PLC, n = 34) over 12 weeks. Differences between groups were assessed using each biomarker’s change score with, adjustment for fat status and the baseline value. In addition, a decision tree analysis was performed to find individual characteristics influencing the glycemic response to MO supplementation. No differences in the biomarker’s change scores were found between the groups; however, the decision tree analysis revealed that plasma TNF-α was a significant predictor of the subject’s HbA1c response (improvement YES/NO; 77% correct classification) in the MO group. In conclusion, TNF-α seems to be a key factor to identify potential respondents to MO leaf powder.
Collapse
|
18
|
Louisa M, Patintingan CGH, Wardhani BWK. Moringa Oleifera Lam. in Cardiometabolic Disorders: A Systematic Review of Recent Studies and Possible Mechanism of Actions. Front Pharmacol 2022; 13:792794. [PMID: 35431967 PMCID: PMC9006177 DOI: 10.3389/fphar.2022.792794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiometabolic disorders (CMD) have become a global emergency and increasing burden on health and economic problems. Due to the increasing need for new drugs for cardiometabolic diseases, many alternative medicines from plants have been considered and studied. Moringa oleifera Lam. (MO), one of the native plants from several Asian countries, has been used empirically by people for various kinds of illnesses. In the present systematic review, we aimed to investigate the recent studies of MO in CMD and its possible mechanism of action. We systematically searched from three databases and summarized the data. This review includes a total of 108 papers in nonclinical studies and clinical trials of MO in cardiometabolic-related disorders. Moringa oleifera, extracts or isolated compound, exerts its effect on CMD through its antioxidative, anti-inflammatory actions resulting in the modulation in glucose and lipid metabolism and the preservation of target organ damage. Several studies supported the beneficial effect of MO in regulating the gut microbiome, which generates the diversity of gut microbiota and reduces the number of harmful bacteria in the caecum. Molecular actions that have been studied include the suppression of NF-kB translocation, upregulation of the Nrf2/Keap1 pathway, stimulation of total antioxidant capacity by reducing PKCζ activation, and inhibiting the Nox4 protein expression and several other proposed mechanisms. The present review found substantial evidence supporting the potential benefits of Moringa oleifera in cardiovascular or metabolic disorders.
Collapse
Affiliation(s)
- Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Bantari W. K. Wardhani
- Department of Pharmacology, Faculty of Military Pharmacy, Indonesia Defense University, West Java, Indonesia
| |
Collapse
|
19
|
Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RPF, Correia PMR, Mehra R, Kumar H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants (Basel) 2022; 11:antiox11020402. [PMID: 35204283 PMCID: PMC8869219 DOI: 10.3390/antiox11020402] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 01/05/2023] Open
Abstract
Based on the availability of many nutrients, Moringa oleifera tree leaves have been widely employed as nutrients and nutraceuticals in recent years. The leaves contain a small amount of anti-nutritional factors and are abundant in innumerable bioactive compounds. Recently, in several in vivo and in vitro investigations, moringa leaves’ bioactive components and functionality are highlighted. Moringa leaves provide several health advantages, including anti-diabetic, antibacterial, anti-cancer, and anti-inflammatory properties. The high content of phytochemicals, carotenoids, and glucosinolates is responsible for the majority of these activities as reported in the literature. Furthermore, there is growing interest in using moringa as a value-added ingredient in the development of functional foods. Despite substantial study into identifying and measuring these beneficial components from moringa leaves, bioaccessibility and bioavailability studies are lacking. This review emphasizes recent scientific evidence on the dietary and bioactive profiles of moringa leaves, bioavailability, health benefits, and applications in various food products. This study highlights new scientific data on the moringa leaves containing nutrient and bioactive profiles, bioavailability, health benefits, and uses in various food items. Moringa has been extensively used as a health-promoting food additive because of its potent protection against various diseases and the widespread presence of environmental toxins. More research is needed for utilization as well as to study medicinal effects and bioaccesibility of these leaves for development of various drugs and functional foods.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144401, India
| | - Shiv Kumar
- Food Science & Technology (Hotel Management), Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Charanjit Singh Riar
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | - Navdeep Jindal
- Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology, Longowal 148106, India; (P.K.); (C.S.R.); (N.J.)
| | | | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| | - Paula M. R. Correia
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal;
| | - Rahul Mehra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Harish Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
- Correspondence: (S.K.); (R.P.F.G.); (H.K.)
| |
Collapse
|
20
|
Ghimire S, Subedi L, Acharya N, Gaire BP. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14358-14371. [PMID: 34843254 DOI: 10.1021/acs.jafc.1c04581] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Moringa oleifera, popularly known as a miracle tree or tree of life, has been extensively used as a functional food and nutritional asset worldwide. Ethnomedicinal and traditional uses of M. oleifera indicate that this plant might have a pleiotropic therapeutic efficacy against most human ailments. In fact, M. oleifera is reported to have several pharmacological activities, including antioxidant, antibacterial, antifungal, antidiabetic, antipyretic, antiulcer, antispasmodic, antihypertensive, antitumor, hepatoprotective, and cardiac stimulant properties. Recently, a few experimental studies reported the neuroprotective effects of M. oleifera against Alzheimer's disease, dementia, Parkinson's disease, stroke, and neurotoxicity-related symptoms. In addition, several neuroprotective phytochemicals have been isolated from M. oleifera, which signifies that it can have promising neuroprotective effects. Therefore, this review aimed to explore the current updates and future prospective of neuroprotective efficacies of M. oleifera.
Collapse
Affiliation(s)
- Saurav Ghimire
- Department of Neuroscience, Institute of Neurodegenerative Diseases (IMN), University of Bordeaux, 33076 Bordeaux, France
| | - Lalita Subedi
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Namrata Acharya
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Bhakta Prasad Gaire
- Department of Anesthesiology and Neurology, Shock Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
21
|
Giuberti G, Rocchetti G, Montesano D, Lucini L. The potential of Moringa oleifera in food formulation: a promising source of functional compounds with health-promoting properties. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Da Silveira AR, Rosa ÉVF, Sari MHM, Sampaio TB, Dos Santos JT, Jardim NS, Müller SG, Oliveira MS, Nogueira CW, Furian AF. Therapeutic potential of beta-caryophyllene against aflatoxin B1-Induced liver toxicity: biochemical and molecular insights in rats. Chem Biol Interact 2021; 348:109635. [PMID: 34506763 DOI: 10.1016/j.cbi.2021.109635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 μg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1β) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.
Collapse
Affiliation(s)
- Alice Rosa Da Silveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Érica Vanessa Furlan Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | - Tuane Bazanella Sampaio
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Jamila Trindade Dos Santos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Natália Silva Jardim
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Sabrina Grendene Müller
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Cristina Wayne Nogueira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
23
|
Xue Y, Zhu MJ. Unraveling enterohemorrhagic Escherichia coli infection: the promising role of dietary compounds and probiotics in bacterial elimination and host innate immunity boosting. Crit Rev Food Sci Nutr 2021; 63:1551-1563. [PMID: 34404306 DOI: 10.1080/10408398.2021.1965538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The innate immune system has developed sophisticated strategies to defense against infections. Host cells utilize the recognition machineries such as toll-like receptors and nucleotide binding and oligomerization domain-like receptors to identify the pathogens and alert immune system. However, some pathogens have developed tactics to evade host defenses, including manipulation of host inflammatory response, interference with cell death pathway, and highjack of phagocytosis signaling for a better survival and colonization in host. Enterohemorrhagic Escherichia coli (EHEC) is a notorious foodborne pathogen that causes severe tissue damages and gastrointestinal diseases, which has been reported to disturb host immune responses. Diverse bioactive compounds such as flavonoids, phenolic acids, alkaloids, saccharides, and terpenoids derived from food varieties and probiotics have been discovered and investigated for their capability of combating bacterial infections. Some of them serve as novel antimicrobial agents and act as immune boosters that harness host immune system. In this review, we will discuss how EHEC, specifically E. coli O157:H7, hijacks the host immune system and interferes with host signaling pathway; and highlight the promising role of food-derived bioactive compounds and probiotics in harnessing host innate immunity and eliminating E. coli O157:H7 infection with multiple strategies.
Collapse
Affiliation(s)
- Yansong Xue
- Key Laboratory of Functional Dairy, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| |
Collapse
|
24
|
Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Somboonjun J, Maichandi N, Suphrom N, Sangouam S, Usuwanthim K. Evaluation of Anti-Inflammatory Effect of Moringa oleifera Lam. and Cyanthillium cinereum (Less) H. Rob. Lozenges in Volunteer Smokers. PLANTS 2021; 10:plants10071336. [PMID: 34208842 PMCID: PMC8309071 DOI: 10.3390/plants10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Smokers have high plaque accumulation that initiates gingival inflammation and progresses to periodontitis. Thus, oral hygiene to control microbial plaque formation is an effective method of preventing gingivitis. Medicinal plants such as Moringa oleifera Lam. (MO) and Cyanthillium cinereum (Less.) H. Rob. (CC) have an anti-inflammatory effect that might improve oral health in smokers. This study evaluated the effect of MO leaf and CC extracts using MO lozenges and a combination of MO + CC lozenges on oral inflammation and gingivitis in volunteer smokers. Lozenges consisting of MO and CC extracts were developed and studied in vivo. The results showed that lozenges significantly reduced oral inflammation and gingivitis in volunteers. The gingival index (GI) of group III (MO + CC lozenges) significantly decreased, while the percentage decrease of oral inflammation in group II (MO lozenges) was significantly higher than the other groups. The percentage decrease of GI values in group II (MO lozenges) and group III (MO + CC lozenges) were significantly higher than the placebo group I. Our findings indicated that MO and MO + CC lozenges reduced oral inflammation and gingivitis and showed potential to improve oral health in smokers.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | | | | | - Nungruthai Suphrom
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supaporn Sangouam
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
25
|
Evaluation of Mouthwash Containing Citrus hystrix DC., Moringa oleifera Lam. and Azadirachta indica A. Juss. Leaf Extracts on Dental Plaque and Gingivitis. PLANTS 2021; 10:plants10061153. [PMID: 34204096 PMCID: PMC8226465 DOI: 10.3390/plants10061153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/03/2022]
Abstract
Oral hygiene and control of microbial plaque biofilm formation are effective methods for preventing gingivitis. Mouthwashes containing leaf extracts of the medicinal plants Citrus hystrix DC. (KL), Moringa oleifera Lam. (MO) and Azadirachta indica A. Juss. (NE) were assessed for oral healthcare and gingivitis adjunctive treatment. Three types of mouthwash were developed; KL, a combination of KL and MO (KL + MO), and a combination of KL, and NE (KL + NE). The mouthwashes were tested in vivo on 47 subjects with gingivitis who were allocated into five groups as (i) placebo, (ii) KL, (iii) KL + MO, (iv) KL + NE, and (v) 0.12% chlorhexidine gluconate (CHX). Participants were instructed to rinse with herbal mouthwash twice daily for two weeks. Gingival index (GI), plaque index (PI), and oral microbial colonies were measured at baseline and 15 days. Results showed that GI and PI of groups (ii)–(iv) significantly decreased over the placebo group, while accumulative reduction percentages of both Staphylococcus spp. and Candida spp. were found in groups (iii) and (iv). Findings indicated that the herbal mouthwashes reduced GI and PI, and showed potential as oral healthcare products.
Collapse
|
26
|
Fazal N, Khawaja H, Naseer N, Khan AJ, Latief N. Daphne mucronata enhances cell proliferation and protects human adipose stem cells against monosodium iodoacetate induced oxidative stress in vitro. Adipocyte 2020; 9:495-508. [PMID: 32867575 PMCID: PMC7714443 DOI: 10.1080/21623945.2020.1812242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are being used to treat many diseases as they exhibit great regenerative potential. However, MSC's transplantation sometimes does not yield the maximum regenerative outcome as they are unable to survive in inflammatory conditions. Several approaches including preconditioning are used to improve the survival rate of mesenchymal stem cells. One such recently reported approach is preconditioning MSCs with plant extracts. The present study was designed to evaluate the effect of Daphne mucronata extract on stressed human adipose-derived mesenchymal stem cells (hADMSCs). Isolated hADMSCs were preconditioned with different concentrations of Daphne muconata extract and the protective, proliferative, antioxidant and anti-inflammatory effect was assessed through various assays and expression analysis of inflammatory markers regulated through NF-κB pathway. Results suggest that preconditioning hADMSCs with Daphne mucronata increased the cell viability, proliferative and protective potential of hADMSCs with a concomitant reduction in LDH, ROS and elevation in SOD activity. Moreover, both the ELISA and gene expression analysis demonstrated down regulations of inflammatory markers (IL1-β, TNF-α, p65, p50, MMP13) in Daphne mucronata preconditioned hADMSCs as compared to stress. This is the first study to report the use of MIA induced oxidative stress against hADMSC's and effect of Daphne mucronata on stressed hADMSCs. Results of these studies provided evidence that Daphne mucronata protects the hADMSCs during stress conditions by down regulating the inflammatory markers and hence increase the viability and proliferative potential of hADMSCs that is crucial for transplantation purposes.
Collapse
Affiliation(s)
- Numan Fazal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamzah Khawaja
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadia Naseer
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Azim Jahangir Khan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
27
|
Mou LY, Wei M, Wu HY, Li JL, Li GP. Chemical constituents from Anemone vitifolia Buch.-Ham. (Ranunculaceae). BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Atraric Acid Exhibits Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated RAW264.7 Cells and Mouse Models. Int J Mol Sci 2020; 21:ijms21197070. [PMID: 32992840 PMCID: PMC7582958 DOI: 10.3390/ijms21197070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lichens, composite organisms resulting from the symbiotic association between the fungi and algae, produce a variety of secondary metabolites that exhibit pharmacological activities. This study aimed to investigate the anti-inflammatory activities of the secondary metabolite atraric acid produced by Heterodermia hypoleuca. The results confirmed that atraric acid could regulate induced pro-inflammatory cytokine, nitric oxide, prostaglandin E2, induced nitric oxide synthase and cyclooxygenase-2 enzyme expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Meanwhile, atraric acid downregulated the expression of phosphorylated IκB, extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NFκB) signaling pathway to exhibit anti-inflammatory effects in LPS-stimulated RAW264.7 cells. Based on these results, the anti-inflammatory effect of atraric acid during LPS-induced endotoxin shock in a mouse model was confirmed. In the atraric acid treated-group, cytokine production was decreased in the peritoneum and serum, and each organ damaged by LPS-stimulation was recovered. These results indicate that atraric acid has an anti-inflammatory effect, which may be the underlying molecular mechanism involved in the inactivation of the ERK/NFκB signaling pathway, demonstrating its potential therapeutic value for treating inflammatory diseases.
Collapse
|
29
|
Adharini WI, Nilamsari RV, Lestari ND, Widodo N, Rifa'i M. Immunomodulatory Effects of Formulation of Channa micropeltes and Moringa oleifera through Anti-Inflammatory Cytokines Regulation in Type 1 Diabetic Mice. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wahyu Isnia Adharini
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Ruri Vivian Nilamsari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Noviana Dwi Lestari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Muhaimin Rifa'i
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| |
Collapse
|
30
|
Luetragoon T, Pankla Sranujit R, Noysang C, Thongsri Y, Potup P, Suphrom N, Nuengchamnong N, Usuwanthim K. Anti-Cancer Effect of 3-Hydroxy-β-Ionone Identified from Moringa oleifera Lam. Leaf on Human Squamous Cell Carcinoma 15 Cell Line. Molecules 2020; 25:molecules25163563. [PMID: 32764438 PMCID: PMC7464402 DOI: 10.3390/molecules25163563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma is the most common type of head and neck cancer worldwide. Radiation and chemotherapy are general treatments for patients; however, these remedies can have adverse side effects and tumours develop drug resistance. Effective treatments still require improvement for cancer patients. Here, we investigated the anti-cancer effect of Moringa oleifera (MO) Lam. leaf extracts and their fractions, 3-hydroxy-β-ionone on SCC15 cell line. SCC15 were treated with and without MO leaf extracts and their fractions. MTT assay was used to determine cell viability on SCC15. Cell cycle and apoptosis were evaluated by the Muse™ Cell Analyser. Colony formation and wound closure analysis of SCC15 were performed in 6-well plates. Apoptosis markers were evaluated by immunoblotting. We found that Moringa extracts and 3-HBI significantly inhibited proliferation of SCC15. Moreover, they induced apoptosis and cell cycle arrest at G2/M phase in SCC15 compared to the untreated control. MO extracts and 3-HBI also inhibited colony formation and cell migration of SCC15. Furthermore, we observed the upregulation of cleaved caspase-3 and Bax with downregulation of anti-apoptotic Bcl-2, indicating the induction of cancer cell apoptosis. Our results revealed that MO extracts and 3-HBI provided anti-cancer properties by inhibiting progression and inducing apoptosis of SCC15.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
31
|
Nova E, Redondo-Useros N, Martínez-García RM, Gómez-Martínez S, Díaz-Prieto LE, Marcos A. Potential of Moringa oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations: A Systematic Review of Animal and Human Studies. Nutrients 2020; 12:nu12072050. [PMID: 32664295 PMCID: PMC7400864 DOI: 10.3390/nu12072050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera (MO) is a multipurpose plant consumed as food and known for its medicinal uses, among others. Leaves, seeds and pods are the main parts used as food or food supplements. Nutritionally rich and with a high polyphenol content in the form of phenolic acids, flavonoids and glucosinolates, MO has been shown to exert numerous in vitro activities and in vivo effects, including hypoglycemic activity. A systematic search was carried out in the PubMed database and reference lists on the effects of MO on glucose metabolism. Thirty-three animal studies and eight human studies were included. Water and organic solvent extracts of leaves and, secondly, seeds, have been extensively assayed in animal models, showing the hypoglycemic effect, both under acute conditions and in long-term administrations and also prevention of other metabolic changes and complications associated to the hyperglycemic status. In humans, clinical trials are scarce, with variable designs and testing mainly dry leaf powder alone or mixed with other foods or MO aqueous preparations. Although the reported results are encouraging, especially those from postprandial studies, more human studies are certainly needed with more stringent inclusion criteria and a sufficient number of diabetic or prediabetic subjects. Moreover, trying to quantify the bioactive substances administered with the experimental material tested would facilitate comparison between studies.
Collapse
Affiliation(s)
- Esther Nova
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Novais 10, 28040 Madrid, Spain; (N.R.-U.); (S.G.-M.); (L.E.D.-P.); (A.M.)
- Correspondence: ; Tel.: +34-915-492-300 (ext. 231209)
| | - Noemí Redondo-Useros
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Novais 10, 28040 Madrid, Spain; (N.R.-U.); (S.G.-M.); (L.E.D.-P.); (A.M.)
| | - Rosa M. Martínez-García
- Department of Nursery, Physiotherapy and Occupational Therapy, Faculty of Nursery, University of Castilla-La Mancha, 160071 Cuenca, Spain;
| | - Sonia Gómez-Martínez
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Novais 10, 28040 Madrid, Spain; (N.R.-U.); (S.G.-M.); (L.E.D.-P.); (A.M.)
| | - Ligia E. Díaz-Prieto
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Novais 10, 28040 Madrid, Spain; (N.R.-U.); (S.G.-M.); (L.E.D.-P.); (A.M.)
| | - Ascensión Marcos
- Immunonutrition Research Group, Department of Metabolism and Nutrition, Institute of Food Science and Technology and Nutrition (ICTAN)—CSIC, C/Jose Antonio Novais 10, 28040 Madrid, Spain; (N.R.-U.); (S.G.-M.); (L.E.D.-P.); (A.M.)
| |
Collapse
|
32
|
Miguel MG. Editorial to Special Issue-Anti-Inflammatory Activity of Natural Products. Molecules 2020; 25:molecules25081926. [PMID: 32326279 PMCID: PMC7221512 DOI: 10.3390/molecules25081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|