1
|
Kitts-Morgan SE, Sams RA, Muir WW. Pharmacokinetics of cannabidiol, (-)- trans-Δ 9-tetrahydrocannabinol, and their oxidative metabolites after intravenous and oral administration of a cannabidiol-dominant full-spectrum hemp product to beagle dogs. Front Vet Sci 2025; 12:1556975. [PMID: 40264990 PMCID: PMC12013723 DOI: 10.3389/fvets.2025.1556975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction This study investigated the pharmacokinetics, safety, and tolerability of a full-spectrum CBD-dominant oil formulated in medium-chain triglycerides (MCT oil) after a single intravenous (IV) administration, a single oral (PO) administration, and multiple oral administrations of CBD at a dose of 2.2 mg/kg in adult male and female beagle dogs. Methods The CBD-dominant extract was administered to adult, intact beagle dogs (male n = 4, female n = 2) once intravenously, once orally, and every 12 h orally for 21 days at a dose of 2.2 mg CBD/kg body weight (BW). Blood samples were collected at predetermined times to measure concentrations of serum CBD, 7-hydroxy-CBD (7-OH-CBD), 7-nor-7-carboxy-CBD (7-COOH-CBD), Δ9-tetrahydrocannabinol (Δ9-THC), 11-hydroxy-THC (11-OH-THC), and 11-carboxy-THC (11-COOH-THC). Serum CBD and Δ9-THC concentrations were analyzed to estimate various pharmacokinetic parameters. Selected physical, behavioral, hematologic, and blood chemical measurements were obtained before and during single and repeated dose administrations. Results Pharmacokinetics of CBD after IV administration indicated a median (range) systemic clearance (CL) of 7.06 (6.14-10.5) mL/min/kg, a steady-state volume of distribution (Vss) of 2.13 (1.10-2.85) L/kg, and a half-life of 291 (183-508) min. The median (range) extent of systemic availability of CBD after a single oral dose was 31.2 (17.7-35.7)%. Pharmacokinetics of Δ9-THC after IV administration were characterized by a CL of 8.85 (6.88-14.4) mL/min/kg, Vss of 1.98 (1.30-2.30) L/kg, and a half-life of 169 (139-476) min. The extent of systemic availability of Δ9-THC after PO administration was 40.9 (20.5-46.2)%. The test article was well tolerated in all dogs during the study. Although serum alkaline phosphatase concentrations increased during the repeated PO dose study, they remained within normal limits. Discussion Both CBD and Δ9-THC were rapidly cleared after IV administration and exhibited extensive volumes of distribution. Comparison of clearance to serum hepatic blood flow estimated the hepatic extraction ratio and extent of first pass metabolism after PO administration, which was confirmed by analyzing the single PO dose pharmacokinetic data. The AUC0-∞ for 7-OH-CBD after single IV compared to single PO dose was not different, suggesting complete absorption of CBD from the formulation in MCT oil when administered with canned dog food.
Collapse
Affiliation(s)
- Susanna E. Kitts-Morgan
- Physiology, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | | | - William W. Muir
- Physiology, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
2
|
Flangea C, Vlad D, Popescu R, Dumitrascu V, Rata AL, Tryfon ME, Balasoiu B, Vlad CS. Cannabis: Zone Aspects of Raw Plant Components in Sport-A Narrative Review. Nutrients 2025; 17:861. [PMID: 40077729 PMCID: PMC11902196 DOI: 10.3390/nu17050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives/Background: The Cannabis genus contain a mixture of cannabinoids and other minor components which have been studied so far. In this narrative review, we highlight the main aspects of the polarized discussion between abuse and toxicity versus the benefits of the compounds found in the Cannabis sativa plant. Methods: We investigated databases such as PubMed, Google Scholar, Web of Science and World Anti-doping Agency (WADA) documents for scientific publications that can elucidate the heated discussion related to the negative aspects of addiction, organ damage and improved sports performance and the medical benefits, particularly in athletes, of some compounds that are promising as nutrients. Results: Scientific arguments bring forward the harmful effects of cannabinoids, ethical and legislative aspects of their usage as doping substances in sports. We present the synthesis and metabolism of the main cannabis compounds along with identification methods for routine anti-doping tests. Numerous other studies attest to the beneficial effects, which could bring a therapeutic advantage to athletes in case of injuries. These benefits recommend Cannabis sativa compounds as nutrients, as well as potential pharmacological agents. Conclusions and Future Perspectives: From the perspective of both athletes and illegal use investigators in sport, there are many interpretations, presented and discussed in this review. Despite many recent studies on cannabis species, there is very little research on the beneficial effects in active athletes, especially on large groups compared to placebo. These studies may complete the current vision of this topic and clarify the hypotheses launched as discussions in this review.
Collapse
Affiliation(s)
- Corina Flangea
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Daliborca Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
| | - Roxana Popescu
- Toxicology and Molecular Biology Department, “Pius Brinzeu” County Emergency Hospital, Liviu Rebreanu Boulevard 156, 300723 Timisoara, Romania;
- Department of Cell and Molecular Biology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Victor Dumitrascu
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| | - Andreea Luciana Rata
- Surgical Emergencies Department, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Maria Erika Tryfon
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Bogdan Balasoiu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.E.T.); (B.B.)
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.F.); (V.D.); (C.S.V.)
| |
Collapse
|
3
|
Alraddadi EA, Aljuhani FF, Alsamiri GY, Hafez SY, Alselami G, Almarghalani DA, Alamri FF. The Effects of Cannabinoids on Ischemic Stroke-Associated Neuroinflammation: A Systematic Review. J Neuroimmune Pharmacol 2025; 20:12. [PMID: 39899062 PMCID: PMC11790784 DOI: 10.1007/s11481-025-10171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Stroke represents a significant burden on global health and the economy, with high mortality rates, disability, and recurrence. Ischemic stroke is a serious condition that occurs when a blood vessel in the brain is interrupted, reducing the blood supply to the affected area. Inflammation is a significant component in stroke pathophysiology. Neuroinflammation is triggered following the acute ischemic ictus, where the blood-brain barrier (BBB) breaks down, causing damage to the endothelial cells. The damage will eventually generate oxidative stress, activate the pathological phenotypes of astrocytes and microglia, and lead to neuronal death in the neurovascular unit. As a result, the brain unleashes a robust neuroinflammatory response, which can further worsen the neurological outcomes. Neuroinflammation is a complex pathological process involved in ischemic damage and repair. Finding new neuroinflammation molecular targets is essential to develop effective and safe novel treatment approaches against ischemic stroke. Accumulating studies have investigated the pharmacological properties of cannabinoids (CBs) for many years, and recent research has shown their potential therapeutic use in treating ischemic stroke in rodent models. These findings revealed promising impacts of CBs in reducing neuroinflammation and cellular death and ameliorating neurological deficits. In this review, we explore the possibility of the therapeutic administration of CBs in mitigating neuroinflammation caused by a stroke. We summarize the results from several preclinical studies evaluating the efficacy of CBs anti-inflammatory interventions in ischemic stroke. Although convincing preclinical evidence implies that CBs targeting neuroinflammation are promising for ischemic stroke, translating these findings into the clinical setting has proven to be challenging. The translation hurdle is due to the essence of the CBs ability to cause anxiety, cognitive deficit, and psychosis. Future studies are warranted to address the dose-beneficial effect of CBs in clinical trials of ischemic stroke-related neuroinflammation treatment.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Faisal F Aljuhani
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghadah Y Alsamiri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Salwa Y Hafez
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ghaida Alselami
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Daniyah A Almarghalani
- Stroke Research Unit, Taif University, Taif, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Faisal F Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Schadich E, Kaczorová D, Béres T, Džubák P, Hajdúch M, Tarkowski P, Ćavar Zeljković S. Secondary metabolite profiles and anti-SARS-CoV-2 activity of ethanolic extracts from nine genotypes of Cannabis sativa L. Arch Pharm (Weinheim) 2025; 358:e2400607. [PMID: 39543317 PMCID: PMC11726160 DOI: 10.1002/ardp.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes. Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes. The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid. On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract's pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.
Collapse
Affiliation(s)
- Ermin Schadich
- Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic
| | - Dominika Kaczorová
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special PlantsCrop Research InstituteOlomoucCzech Republic
- Department of Biochemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Tibor Béres
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and DentistryPalacký UniversityOlomoucCzech Republic
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special PlantsCrop Research InstituteOlomoucCzech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute (CATRIN)Palacký UniversityOlomoucCzech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special PlantsCrop Research InstituteOlomoucCzech Republic
| |
Collapse
|
5
|
Enríquez DJ, Alonso JC, Hille L, Brand S, Holzgrabe U, Vergara D, Montoya G, Ramírez YA. Unveiling Colombia's medicinal Cannabis sativa treasure trove: Phenotypic and Chemotypic diversity in legal cultivation. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:246-260. [PMID: 39169651 DOI: 10.1002/pca.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Cannabis sativa is a highly versatile plant with a long history of cultivation and domestication. It produces multiple compounds that exert distinct and valuable therapeutic effects by modulating diverse biological systems, including the endocannabinoid system (ECS). Access to standardized, metabolically diverse, and reproducible C. sativa chemotypes and chemovars is essential for physicians to optimize individualized patient treatment and for industries to conduct drug-discovery campaigns. OBJECTIVE This study aimed to characterize and assess the phytochemical diversity of C. sativa chemotypes in diverse ecological regions of Colombia, South America. METHODOLOGY Ten cannabinoids and 23 terpenes were measured using liquid and gas chromatography, in addition to other phenotypic traits, in 156 C. sativa plants that were grown in diverse ecological regions in Colombia, a hotspot for global biodiversity. RESULTS Our results reveal significant phytochemical diversity in Colombian-grown C. sativa plants, with four distinct chemotypes based on cannabinoid profile. The significant amount of usually uncommon terpenes suggests that Colombia's environments may have unique capabilities that allow the plant to express these compounds. Colombia's diverse climates offer enormous cultivation potential, making it a key player in both domestic and international medicinal and recreational C. sativa trade. CONCLUSION These findings underscore Colombia's capacity to pioneer global C. sativa production diversification, particularly in South America with new emerging markets.
Collapse
Affiliation(s)
- Diego J Enríquez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Julio C Alonso
- Facultad de Ciencias Administrativas y Económicas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Lucas Hille
- Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Stefan Brand
- Symrise AG, Mühlenfeldstrasse1, Holzminden, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| | - Daniela Vergara
- Harvest New York, Cornell Cooperative Extension, Geneva, New York, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Guillermo Montoya
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yesid A Ramírez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
6
|
Elias A, Rosado C, Costa MDC. Study on knowledge and perceptions on the uptake of non-medicinal cannabis-substances and preparations by Portuguese consumers: Borderline issues. Heliyon 2024; 10:e40827. [PMID: 39720062 PMCID: PMC11665625 DOI: 10.1016/j.heliyon.2024.e40827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Cannabis sativa L.-based food supplement products in pharmacies and para pharmacies in Portugal increased by 84 % between 2021 and 2022, arousing consumers' curiosity. However, information about these products is limited, and consumers are not aware of the restrictions in current European regulations. This study aims to understand Portuguese consumers' perceptions of cannabis products and identify the distribution channels and market strategy. A cross-sectional investigation on the consumption of non-medicinal products derived from cannabis occurred using a survey that aimed to collect data covering four main research questions: consumer information, consumed products, level of satisfaction, and used channels for purchasing products. Applying an original questionnaire aimed at the public via email and social networks, 176 responses were collected, where a high degree of satisfaction with taking cannabis-based products was evident, with sleep disorders and the promotion of well-being as the reasons (48,5 %) that led to the majority of respondents to seek out these products. Health professionals are already recommending cannabis-derived products; however, most respondents are unable to differentiate a food supplement from a medicine. Online purchase was the respondents' favourite choice, and respondents (93 %) were unaware of the properties of food supplements in general. Consumers ignore that the parts of the cannabis plant, whose active ingredients they expect to have a greater capacity to promote well-being, namely cannabinoids, are not authorized by the European Food Safety Authority (EFSA) to be marketed in foods or dietary supplements. Results also show that the influence of media in Portugal is significant in the choice of products, together with the lack of information on cannabis-based supplements and medicines, highlighting the need for a pro-consumer review, and promoting conscious and informed choices. Thus, we propose creating a Community Knowledge on Food Supplements linking academics, stakeholders, and authorities.
Collapse
Affiliation(s)
- Alexandre Elias
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Catarina Rosado
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maria do Céu Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal
- IPLUSO, ERISA-Escola Superior de Saúde Ribeiro Sanches, Rua do Telhal aos Olivais, 8-8, 1900-693, Lisboa, Portugal
| |
Collapse
|
7
|
Laaboudi FZ, Rejdali M, Amhamdi H, Salhi A, Elyoussfi A, Ahari M. In the weeds: A comprehensive review of cannabis; its chemical complexity, biosynthesis, and healing abilities. Toxicol Rep 2024; 13:101685. [PMID: 39056093 PMCID: PMC11269304 DOI: 10.1016/j.toxrep.2024.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
For millennia, various cultures have utilized cannabis for food, textile fiber, ethno-medicines, and pharmacotherapy, owing to its medicinal potential and psychotropic effects. An in-depth exploration of its historical, chemical, and therapeutic dimensions provides context for its contemporary understanding. The criminalization of cannabis in many countries was influenced by the presence of psychoactive cannabinoids; however, scientific advances and growing public awareness have renewed interest in cannabis-related products, especially for medical use. Described as a 'treasure trove,' cannabis produces a diverse array of cannabinoids and non-cannabinoid compounds. Recent research focuses on cannabinoids for treating conditions such as anxiety, depression, chronic pain, Alzheimer's, Parkinson's, and epilepsy. Additionally, secondary metabolites like phenolic compounds, terpenes, and terpenoids are increasingly recognized for their therapeutic effects and their synergistic role with cannabinoids. These compounds show potential in treating neuro and non-neuro disorders, and studies suggest their promise as antitumoral agents. This comprehensive review integrates historical, chemical, and therapeutic perspectives on cannabis, highlighting contemporary research and its vast potential in medicine.
Collapse
Affiliation(s)
- Fatima-Zahrae Laaboudi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Mohamed Rejdali
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Hassan Amhamdi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Amin Salhi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - Abedellah Elyoussfi
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| | - M.’hamed Ahari
- Applied Chemistry Team, Department of Chemistry, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaâdi University, Tetouan, Morocco
| |
Collapse
|
8
|
Farahani M, Robati RM, Rezaei-Tavirani M, Fateminasab F, Shityakov S, Rahmati Roodsari M, Razzaghi Z, Zamanian Azodi M, Saghari S. Integrating protein interaction and pathway crosstalk network reveals a promising therapeutic approach for psoriasis through apoptosis induction. Sci Rep 2024; 14:22103. [PMID: 39333640 PMCID: PMC11436859 DOI: 10.1038/s41598-024-73746-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Psoriasis is a complex inflammatory skin disease manifested by altered proliferation and differentiation of keratinocytes with dysfunctional apoptosis. This study aimed to identify regulatory factors and comprehend the underlying mechanisms of inefficient apoptosis to open up promising therapeutic approaches. Incorporating human protein interactions, apoptosis proteins, and physical relationships of psoriasis-apoptosis proteins helped us to generate a psoriasis-apoptosis interaction (SAI) network. Subsequently, topological and functional analyses of the SAI network revealed effective proteins, functional modules, hub motifs, dysregulated pathways and transcriptional gene regulatory factors. Network pharmacology, molecular docking and molecular dynamics simulation methods identified the potential drug-target interactions. RELA, MAPK1, MAPK3, MMP9, IL1B, AKT1 and STAT1 were revealed as effective proteins. The MAPK1-MAPK3-RELA motif was identified as a hub regulator in the crosstalk between 41 pathways. Among all pathways, "lipid and atherosclerosis" was found to be the predominant pathway. Acetylcysteine, arsenic-trioxide, β-elemene, bortezomib and curcumin were identified as potential drugs to inhibit pathway crosstalk. Experimental verifications were performed using the literature search, GSE13355 and GSE14905 microarray datasets. Drug-protein-pathway interactions associated with apoptosis were deciphered. These findings highlight the role of hub motif-mediated pathway-pathway crosstalk associated with apoptosis in the complexity of psoriasis and suggest crosstalk inhibition as an effective therapeutic approach.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| | - Mohammad Rahmati Roodsari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saviz Saghari
- Department of Internal Medicine, West Anaheim Medical Center, Anaheim, CA, USA
| |
Collapse
|
9
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
10
|
Fleisher-Berkovich S, Sharon N, Ventura Y, Feinshtein V, Gorelick J, Bernstein N, Ben-Shabat S. Selected cannabis cultivars modulate glial activation: in vitro and in vivo studies. J Cannabis Res 2024; 6:25. [PMID: 38778343 PMCID: PMC11110427 DOI: 10.1186/s42238-024-00232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation, demyelination and axonal loss. Cannabis, an immunomodulating agent, is known for its ability to treat MS effectively. However, due to variations in the profile of secondary metabolites, especially cannabinoids, among cannabis cultivars, the effectiveness of cannabis treatment can vary, with significant variability in the effects on different biological parameters. For screening available cultivars, cellular in vitro as well as pre-clinical in vivo assays, are required to evaluate the effectiveness of the wide range of chemical variability that exists in cannabis cultivars. This study evaluated comparatively three chemically diverse cannabis cultivars, CN2, CN4 and CN6, containing different ratios of phytocannabinoids, for their neuroinflammatory activity in MS model. MATERIALS AND METHODS In vitro experiments were performed with lipopolysaccharide (LPS)-activated BV-2 microglia and primary glial cells to evaluate the effect of different cannabis cultivars on nitric oxide (NO) and inflammatory cytokines, as well as inducible nitric oxide synthase (iNOS) protein expression. An in vivo experiment using the experimental autoimmune encephalomyelitis (EAE) MS model was conducted using Myelin oligodendrocyte glycoprotein (MOG) as the activating peptide. The cannabis extracts of the cultivars CN2, CN4, CN6 or vehicle, were intraperitoneally injected with clinical scores given based on observed symptoms over the course of study. At the end of the experiment, the mice were sacrificed, and splenocyte cytokine secretion was measured using ELISA. Lumbar sections from the spinal cord of treated MS mice were evaluated for microglia, astrocytes and CD4+ cells. RESULTS Extracts of the CN2 cultivar contained tetrahydrocannabinolic acid (THCA) and tetrahydrocannabinol (THC) without cannabidiol (CBD), and a number of monoterpenes. CN4 contained cannabidiolic acid (CBDA) and tetrahydrocannabidiolic acid (THCA), with significant amounts of THC: CBD in a 1:1 ratio, as well as sesquiterpenes and some monoterpenes; and CN6 contained primarily CBDA and THCA, as well as THC and CBD in a 2:1 ratio, with some sesquiterpenes and no monoterpenes. All extracts were not cytotoxic in glial cells up to 50 µg/ml. Dose dependent inhibition of LPS-induced BV2 as well as primary microglial NO secretion confirmed the anti-inflammatory and anti-oxidative activity of the three cannabis cultivars. CN2 but not CN4 reduced both astrocytosis and microglial activation in lumbar sections of EAE mice. In contrast, CN4 but not CN2 significantly decreased the secretion of TNFα and Interferon γ (IFNγ) in primary splenocytes extracted from EAE mice. CONCLUSIONS While both cannabis cultivars, CN2 and CN4, significantly reduced the severity of the clinical signs throughout the course of the study, they modulated different inflammatory mediators and pathways, probably due to differences in their phytocannabinoid composition. This demonstrates the differential potential of cannabis cultivars differing in chemotype to regulate neuroinflammation and their potential to treat MS.
Collapse
Affiliation(s)
- Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Nitzan Sharon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yvonne Ventura
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Gorelick
- Eastern Regional Research and Development Center, Judea Center, 90100, Kiryat Arba, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon Lezion, Israel.
| | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
11
|
Zhou S, Ling X, Zhu J, Liang Y, Feng Q, Xie C, Li J, Chen Q, Chen S, Miao J, Zhang M, Li Z, Shen W, Li X, Wu Q, Wang X, Liu R, Wang C, Hou FF, Kong Y, Liu Y, Zhou L. MAGL protects against renal fibrosis through inhibiting tubular cell lipotoxicity. Theranostics 2024; 14:1583-1601. [PMID: 38389852 PMCID: PMC10879875 DOI: 10.7150/thno.92848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/β-catenin signaling. β-catenin knockout blocked 2-AG/CB2-induced fatty acid β-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jielin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Health Care, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ye Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qijian Feng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Xie
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Shuangqin Chen
- Division of Nephrology, Department of medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiru Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- School of Pharmaceutical Sciences and School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Division of Nephrology, Department of medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Johnson AL, Verbitsky R, Hudson J, Dean R, Hamilton TJ. Cannabinoid type-2 receptors modulate terpene induced anxiety-reduction in zebrafish. Biomed Pharmacother 2023; 168:115760. [PMID: 37865998 DOI: 10.1016/j.biopha.2023.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Terpenes are the most extensive and varied group of naturally occurring compounds mostly found in plants, including cannabis, and have an array of potential therapeutic benefits for pathological conditions. The endocannabinoid system can potently modulate anxiety in humans, rodents, and zebrafish. The 'entourage effect' suggests terpenes may target cannabinoid CB1 and CB2 receptors, among others, but this requires further investigation. In this study we first tested for anxiety-altering effects of the predominant 'Super-Class' terpenes, bisabolol (0.001%, 0.0015%, and 0.002%) and terpinolene (TPL; 0.01%, 0.05%, and 0.1%), in zebrafish with the open field test. Bisabolol did not have an effect on zebrafish behaviour or locomotion. However, TPL caused a significant increase in time spent in the inner zone and decrease in time spent in the outer zone of the arena indicating an anxiolytic (anxiety decreasing) effect. Next, we assessed whether CB1 and CB2 receptor antagonists, rimonabant and AM630 (6-Iodopravadoline) respectively, could eliminate or reduce the anxiolytic effects of TPL (0.1%) and β-caryophyllene (BCP; 4%), another super-class terpene previously shown to be anxiolytic in zebrafish. Rimonabant and AM630 were administered prior to terpene exposure and compared to controls and fish exposed to only the terpenes. AM630, but not rimonabant, eliminated the anxiolytic effects of both BCP and TPL. AM630 modulated locomotion on its own, which was potentiated by terpenes. These findings suggest the behavioural effects of TPL and BCP on zebrafish anxiety-like behaviour are mediated by a selective preference for CB2 receptor sites. Furthermore, the CB2 pathways mediating the anxiolytic response are likely different from those altering locomotion.
Collapse
Affiliation(s)
- Andréa L Johnson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan Verbitsky
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - James Hudson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Rachel Dean
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Shan Y, Zhao J, Wei K, Jiang P, Xu L, Chang C, Xu L, Shi Y, Zheng Y, Bian Y, Zhou M, Schrodi SJ, Guo S, He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14:1282610. [PMID: 38027004 PMCID: PMC10646552 DOI: 10.3389/fphar.2023.1282610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Ibrahim EA, Radwan MM, Gul W, Majumdar CG, Hadad GM, Abdel Salam RA, Ibrahim AK, Ahmed SA, Chandra S, Lata H, ElSohly MA, Wanas AS. Quantitative Determination of Cannabis Terpenes Using Gas Chromatography-Flame Ionization Detector. Cannabis Cannabinoid Res 2023; 8:899-910. [PMID: 36322895 PMCID: PMC10589468 DOI: 10.1089/can.2022.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Background: Cannabis has a long history of being credited with centuries of healing powers for millennia. The cannabis plant is a rich source of cannabinoids and terpenes. Each cannabis chemovar exhibits a different flavor and aroma, which are determined by its terpene content. Methods: In this study, a gas chromatography-flame ionization detector method was developed and validated for the determination of the 10 major terpenes in the main three chemovars of Cannabis sativa L. with n-tridecane used as the internal standard following the standard addition method. The 10 major terpenes (monoterpenes and sesquiterpenes) are α-pinene, β-pinene, β-myrcene, limonene, terpinolene, linalool, α-terpineol, β-caryophyllene, α-humulene, and caryophyllene oxide. The method was validated according to Association of Official Analytical Chemists guidelines. Spike recovery studies for all terpenes were carried out on placebo cannabis material and indoor-growing high THC chemovar with authentic standards. Results: The method was linear over the calibration range of 1-100 μg/mL with r2>0.99 for all terpenes. The limit of detection and limit of quantification were calculated to be 0.3 and 1.0 μg/mL, respectively, for all terpenes. The accuracy (%recovery) at all levels ranged from 89% to 104% and 90% to 111% for placebo and indoor-growing high THC chemovar, respectively. The repeatability and intermediate precision of the method were evaluated by the quantification of target terpenes in the three different C. sativa chemovars, resulting in acceptable relative standard deviations (less than 10%). Conclusions: The developed method is simple, sensitive, reproducible, and suitable for the detection and quantification of monoterpenes and sesquiterpenes in C. sativa biomass.
Collapse
Affiliation(s)
- Elsayed A. Ibrahim
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
| | - Chandrani G. Majumdar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Ghada M. Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Randa A. Abdel Salam
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Hemant Lata
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- ElSohly Laboratories, Inc., Oxford, Mississippi, USA
- Department of Pharmaceutical and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Amira S. Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
15
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
16
|
Christensen C, Rose M, Cornett C, Allesø M. Decoding the Postulated Entourage Effect of Medicinal Cannabis: What It Is and What It Isn't. Biomedicines 2023; 11:2323. [PMID: 37626819 PMCID: PMC10452568 DOI: 10.3390/biomedicines11082323] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Collapse
Affiliation(s)
- Catalina Christensen
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Martin Rose
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| | - Claus Cornett
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark;
| | - Morten Allesø
- Tetra Pharm Technologies ApS, Rugmarken 10, DK-3650 Ølstykke, Denmark; (M.R.); (M.A.)
| |
Collapse
|
17
|
Dammann I, Keil C, Hardewig I, Skrzydlewska E, Biernacki M, Haase H. Effects of combined cannabidiol (CBD) and hops (Humulus lupulus) terpene extract treatment on RAW 264.7 macrophage viability and inflammatory markers. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:19. [PMID: 37284961 DOI: 10.1007/s13659-023-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
This study investigates the potential of cannabidiol (CBD), one major cannabinoid of the plant Cannabis sativa, alone and in combination with a terpene-enriched extract from Humulus lupulus ("Hops 1"), on the LPS-response of RAW 264.7 macrophages as an established in vitro model of inflammation. With the present study, we could support earlier findings of the anti-inflammatory potential of CBD, which showed a dose-dependent [0-5 µM] reduction in nitric oxide and tumor necrosis factor-alpha (TNF-α) released by LPS-stimulated RAW 264.7 macrophages. Moreover, we observed an additive anti-inflammatory effect after combined CBD [5 µM] and hops extract [40 µg/mL] treatment. The combination of CBD and Hops 1 showed effects in LPS-stimulated RAW 264.7 cells superior to the single substance treatments and akin to the control hydrocortisone. Furthermore, cellular CBD uptake increased dose-dependently in the presence of terpenes from Hops 1 extract. The anti-inflammatory effect of CBD and its cellular uptake positively correlated with terpene concentration, as indicated by comparison with a hemp extract containing both CBD and terpenes. These findings may contribute to the postulations for the so-called "entourage effect" between cannabinoids and terpenes and support the potential of CBD combined with phytomolecules from a non-cannabinoid source, such as hops, for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Inga Dammann
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany.
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Iris Hardewig
- Sanity Group GmbH, Jägerstraße 28-31, 10117, Berlin, Germany
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
18
|
Alonso C, Satta V, Hernández-Fisac I, Fernández-Ruiz J, Sagredo O. Disease-modifying effects of cannabidiol, β-caryophyllene and their combination in Syn1-Cre/Scn1a WT/A1783V mice, a preclinical model of Dravet syndrome. Neuropharmacology 2023:109602. [PMID: 37290534 DOI: 10.1016/j.neuropharm.2023.109602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Cannabidiol (CBD) has been recently approved as an antiseizure agent in Dravet Syndrome (DS), a pediatric epileptic encephalopathy, but CBD could also be active against associated comorbidities. Such associated comorbidities were also attenuated by the sesquiterpene β-caryophyllene (BCP). Here, we have compared the efficacy of both compounds and further initiated the analysis of a possible additive effect between both compounds in relation with these comorbidities using two experimental approaches. The first experiment was aimed at comparing the benefits of CBD and BCP, including their combination in conditional knock-in Scn1a-A1783V mice, an experimental model of DS, treated since the postnatal day 10th to 24th. As expected, DS mice showed impairment in limb clasping, delay in the appearance of hindlimb grasp reflex and additional behavioural disturbances (e.g., hyperactivity, cognitive deterioration, social interaction deficits). This behavioural impairment was associated with marked astroglial and microglial reactivities in the prefrontal cortex and the hippocampal dentate gyrus. BCP and CBD administered alone were both able to partially attenuate the behavioural disturbances and the glial reactivities, with apparently greater efficacy against glial reactivities obtained with BCP, whereas superior effects in a few specific parameters were obtained when both compounds were combined. In the second experiment, we investigated this additive effect in cultured BV2 cells treated with BCP and/or CBD and stimulated with LPS. As expected, addition of LPS induced a marked increase in several inflammation-related markers (e.g., TLR4, COX-2, iNOS, catalase, TNF-α, IL-1β), as well as elevated Iba-1 immunostaining. Treatment with BCP or CBD attenuated these elevations, but, again and in general, superior results were obtained when both cannabinoids were combined. In conclusion, our results support the interest to continue investigating the combination of BCP and CBD to improve the therapeutic management of DS in relation with their disease-modifying properties.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
19
|
Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154781. [PMID: 37028250 DOI: 10.1016/j.phymed.2023.154781] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Bornyl acetate (BA), as a bicyclic monoterpene, is an active volatile component widely found in plants across the globe. BA can be used as essence and food flavor agent and is widely used in perfumes and food additives. It remains a key component in several proprietary Chinese medicines. PURPOSE This review summarized the pharmacological activity and research prospects of BA, making it the first of its kind to do so. Our aim is to provide a valuable resource for those pursuing research on BA. METHODS Databases including PubMed, Web of Science, and CNKI were used based on search formula "(bornyl acetate) NOT (review)" from 1967 to 2022. For the relevant knowledge of TCM, we quoted Chinese literature. Articles related to agriculture, industry, and economics were excluded. RESULTS BA showed rich pharmacological activities: It inhibits the NF-κB signal pathway via affecting the phosphorylation of IKB and the production of IKKs, inhibits the MAPK signal pathway via inhibiting the phosphorylation of ERK, JNK, and p38, down-regulates pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, up-regulates IL-11, reduces NO production, regulates immune response via up-regulating CD86+, decreases catecholamine secretion, and reduces tau protein phosphorylation. In addition to the pharmacological activities of BA, its toxicity and pharmacokinetics were also discussed in this paper. CONCLUSION BA has promising pharmacological properties, especially anti-inflammatory and immunomodulatory effects. It also has sedative properties and potential for use in aromatherapy. Compared to traditional NSAIDs, it has a more favorable safety profile while maintaining efficacy. BA has potential for developing novel drugs for treating various conditions.
Collapse
Affiliation(s)
- Zhe-Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan-Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Milia EP, Sardellitti L, Eick S. Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases-A Narrative Review. Microorganisms 2023; 11:1378. [PMID: 37374880 DOI: 10.3390/microorganisms11061378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Pistacia lentiscus L. (PlL) has been used for centuries in traditional medicine. The richness in antimicrobial biomolecules of Pll derivates can represent an alternative to chemically formulated agents used against oral infections. This review summarizes the knowledge on the antimicrobial activity of PlL essential oil (EO), extracts, and mastic resin against microorganisms being of relevance in oral biofilm-associated diseases. Results demonstrated that the potential of PlL polyphenol extracts has led to increasing scientific interest. In fact, the extracts are a significantly more effective agent than the other PlL derivates. The positive findings regarding the inhibition of periodontal pathogens and C. albicans, together with the antioxidant activity and the reduction of the inflammatory responses, suggest the use of the extracts in the prevention and/or reversal of intraoral dysbiosis. Toothpaste, mouthwashes, and local delivery devices could be effective in the clinical management of these oral diseases.
Collapse
Affiliation(s)
- Egle Patrizia Milia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Dental Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy
| | - Luigi Sardellitti
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Dental Unit, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
| |
Collapse
|
21
|
Silva-Reis R, Silva AMS, Oliveira PA, Cardoso SM. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023; 13:764. [PMID: 37238634 PMCID: PMC10216468 DOI: 10.3390/biom13050764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Clinical Academic Center of Trás-os-Montes and Alto Douro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| |
Collapse
|
22
|
Siracusa L, Ruberto G, Cristino L. Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules 2023; 28:molecules28083387. [PMID: 37110621 PMCID: PMC10146690 DOI: 10.3390/molecules28083387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Cannabis sativa L. is a plant that humankind has been using for millennia. The basis of its widespread utilization is its adaptability to so many different climatic conditions, with easy cultivability in numerous diverse environments. Because of its variegate phytochemistry, C. sativa has been used in many sectors, although the discovery of the presence in the plant of several psychotropic substances (e.g., Δ9-tetrahydrocannabinol, THC) caused a drastic reduction of its cultivation and use together with its official ban from pharmacopeias. Fortunately, the discovery of Cannabis varieties with low content of THC as well as the biotechnological development of new clones rich in many phytochemical components endorsed with peculiar and many important bioactivities has demanded the reassessment of these species, the study and use of which are currently experiencing new and important developments. In this review we focus our attention on the phytochemistry, new matrices, suitable agronomic techniques, and new biological activities developed in the five last years.
Collapse
Affiliation(s)
- Laura Siracusa
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami, 18, 95126 Catania, CT, Italy
| | - Luigia Cristino
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, NA, Italy
| |
Collapse
|
23
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
24
|
Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals (Basel) 2023; 16:ph16020148. [PMID: 37017445 PMCID: PMC9966761 DOI: 10.3390/ph16020148] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes. Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases. This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB.
Collapse
|
25
|
Chang X, Li Y, Liu J, Wang Y, Guan X, Wu Q, Zhou Y, Zhang X, Chen Y, Huang Y, Liu R. ß-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154502. [PMID: 36274412 DOI: 10.1016/j.phymed.2022.154502] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on β-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by β-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of β-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yutong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
26
|
Afshar S, Abbasinazari M, Amin G, Farrokhian A, Sistanizad M, Afshar F, Khalili S. Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance. Cell Biochem Funct 2022; 40:826-837. [PMID: 36317321 DOI: 10.1002/cbf.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Shima Afshar
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Amin
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Afshar
- Department of internal medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Krüger M, van Eeden T, Beswa D. Cannabis sativa Cannabinoids as Functional Ingredients in Snack Foods-Historical and Developmental Aspects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3330. [PMID: 36501366 PMCID: PMC9739163 DOI: 10.3390/plants11233330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 05/10/2023]
Abstract
The published health benefits of Cannabis sativa has caught the attention of health-conscious consumers and the food industry. Historically, seeds have long been utilized as a food source and currently there is an increasing number of edibles on the market that contain cannabis. Cannabinoids include the psychoactive constituent, delta-9-tetrahydrocannabinol (THC), and the non-psychoactive cannabidiol (CBD) that are both compounds of interest in Cannabis sativa. This paper looks at the distribution of nutrients and phytocannabinoids in low-THC Cannabis sativa, the historical uses of hemp, cannabis edibles, and the possible side-effects and concerns related to cannabis edibles. Several authors have pointed out that even though the use of cannabis edibles is considered safe, it is important to mention their possible side-effects and any concerns related to its consumption that negatively influence consumer acceptance of cannabis edibles. Such risks include unintentional overdose by adults and accidental ingestion by children and adolescents resulting in serious adverse effects. Therefore, cannabis edibles should be specifically packaged and labelled to differentiate them from known similar non-cannabis edibles so that, together with tamperproof packaging, these measures reduce the appeal of these products to children.
Collapse
Affiliation(s)
- Marlize Krüger
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
| | - Tertia van Eeden
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, 28 Pioneer Ave, Florida Park, Roodepoort 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, 25 Louisa St, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
28
|
Silva-Cardoso GK, Leite-Panissi CRA. Chronic Pain and Cannabidiol in Animal Models: Behavioral Pharmacology and Future Perspectives. Cannabis Cannabinoid Res 2022; 8:241-253. [PMID: 36355044 DOI: 10.1089/can.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The incidence of chronic pain is around 8% in the general population, and its impact on quality of life, mood, and sleep exceeds the burden of its causal pathology. Chronic pain is a complex and multifaceted problem with few effective and safe treatment options. It can be associated with neurological diseases, peripheral injuries or central trauma, or some maladaptation to traumatic or emotional events. In this perspective, animal models are used to assess the manifestations of neuropathy, such as allodynia and hyperalgesia, through nociceptive tests, such as von Frey, Hargreaves, hot plate, tail-flick, Randall & Selitto, and others. Cannabidiol (CBD) has been considered a promising strategy for treating chronic pain and diseases that have pain as a consequence of neuropathy. However, despite the growing body of evidence linking the efficacy of CBD on pain management in clinical and basic research, there is a lack of reviews focusing on chronic pain assessments, especially when considering pre-clinical studies, which assess chronic pain as a disease by itself or as a consequence of trauma or peripheral or central disease. Therefore, this review focused only on studies that fit our inclusion criteria: (1) used treatment with CBD extract; (2) used tests to assess mechanical or thermal nociception in at least one of the following most commonly used tests (von Frey, hot plate, acetone, Hargreaves, tail-flick, Randall & Selitto, and others); and (3) studies that assessed pain sensitivity in chronic pain induction models. The current literature points out that CBD is a well-tolerated and safe natural compound that exerts analgesic effects, decreasing hyperalgesia, and mechanical/thermal allodynia in several animal models of pain and patients. In addition, CBD presents several molecular and cellular mechanisms of action involved in its positive effects on chronic pain. In conclusion, using CBD seems to be a promising strategy to overcome the lack of efficacy of conventional treatment for chronic pain.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
29
|
Panchal NK, Swarnalatha P, Prince SE. Trichopus zeylanicus ameliorates ibuprofen inebriated hepatotoxicity and enteropathy: an insight into its modulatory impact on pro/anti-inflammatory cytokines and apoptotic signaling pathways. Inflammopharmacology 2022; 30:2229-2242. [PMID: 36008576 PMCID: PMC9410745 DOI: 10.1007/s10787-022-01052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Ibuprofen is a nonsteroidal anti-inflammatory drug that is commonly used for its analgesic, antipyretic and anti-inflammatory effects worldwide. However ibuprofen comes with serious unavoidable adverse effects on various organs when used for long duration or overdosed. Trichopus zeylanicus is a medicinal plant endemic to India owning various beneficial properties and is been used in treating various ailments. Therefore, the objective of this study was to evaluate the ameliorative effect of aqueous leaves’ extract of Trichopus zeylanicus against ibuprofen-induced hepatic toxicity and enteropathy in rats. Overall in this study 30 male albino rats were used, which were divided into five groups (six in each group). Group-I was normal control, Group-II was ibuprofen (400 mg/kg/day) inebriated group, Group-III was silymarin (25 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), Group-IV was ALETZ (1000 mg/kg/day) pretreated + ibuprofen (400 mg/kg/day), and Group-V was ALETZ alone (1000 mg/kg/day) group. The duration of the administration was for five days, followed by scarifying rats on the sixth day. Later the rats were assessed for liver and intestine enzyme markers, antioxidant parameters along with histopathological changes. In addition the pro-inflammatory markers such as TNF-α, IL-6 and IL-1β as well as anti-inflammatory cytokine IL-10 levels were measured using ELISA. Lastly the expression pattern of apoptotic signaling markers such as caspase-3, caspase-8 and Bcl-2 was evaluated using western blot. The results obtained from this study showed changes in levels of aforesaid parameter which presented the toxic effect of ibuprofen on liver and small intestine. Pre-treatment of ALETZ in ibuprofen-inebriated group was able to normalize the adverse effect caused due to ibuprofen. The conclusion of the study deduces that pre-treatment with ALETZ alleviates by modulating oxidative stress, inflammation, and apoptosis in ibuprofen inebriated rats, indicating its protective mechanism.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - Purushotham Swarnalatha
- Department of Information Security, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India, 632104
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
30
|
Anticonvulsant Action and Long-Term Effects of Chronic Cannabidiol Treatment in the Rat Pentylenetetrazole-Kindling Model of Epilepsy. Biomedicines 2022; 10:biomedicines10081811. [PMID: 36009358 PMCID: PMC9405483 DOI: 10.3390/biomedicines10081811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) showed anticonvulsant action in several preclinical models and is currently approved by regulatory agencies to treat childhood epilepsy syndromes. However, CBD treatment has limited benefits, and its long-term effects on cognition are not fully understood yet. This study aimed to examine the impact of long-term CBD treatment in the pentylenetetrazole (PTZ)-kindling model of epilepsy. Adult male Wistar rats (N = 24) received PTZ (35 mg/kg intraperitoneally) every other day until two consecutive generalized seizures occurred. CBD (60 mg/kg body weight) was administered daily by the oral route until the kindled state was achieved (n = 12). To confirm that the formulation and administration techniques were not of concern, liquid chromatography–mass spectrometry was performed to test the brain penetration of the CBD formula. As a result of CBD treatment, a lower mortality rate and significantly prolonged generalized seizure latency (925.3 ± 120.0 vs. 550.1 ± 69.62 s) were observed, while the frequency and duration of generalized seizures were not influenced. The CBD-treated group showed a significant decrease in vertical exploration in the open field test and a significant decrease in the discrimination index in the novel object recognition (NOR) test (−0.01 ± 0.17 vs. 0.57 ± 0.15, p = 0.04). The observed behavioral characteristics may be connected to the decreased thickness of the stratum pyramidale or the decreased astrogliosis observed in the hippocampus. In conclusion, CBD treatment did not prevent kindling, nor did it affect seizure frequency or duration. However, it did increase the latency to the first seizure and decreased the prolonged status epilepticus-related mortality in PTZ-kindled rats. The cognitive impairment observed in the NOR test may be related to the high dose used in this study, which may warrant further investigation.
Collapse
|
31
|
Acharya PT, Bhavsar ZA, Jethava DJ, Rajani DP, Pithawala E, Patel HD. Synthesis, characterization, biological evaluation and computational study of benzimidazole hybrid thiosemicarbazide derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi T. Acharya
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Zeel A. Bhavsar
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Divya J. Jethava
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat Gujarat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology, Khyati Institute of Science, Palodia Ahmedabad Gujarat India
| | | |
Collapse
|
32
|
Serum Concentrations of the Endocannabinoid, 2-Arachidonoylglycerol, in the Peri-Trauma Period Are Positively Associated with Chronic Pain Months Later. Biomedicines 2022; 10:biomedicines10071599. [PMID: 35884902 PMCID: PMC9313032 DOI: 10.3390/biomedicines10071599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis are activated by trauma and both stress systems regulate the transition from acute to chronic pain. This study aimed to develop a model of relationships among circulating concentrations of cortisol and endocannabinoids (eCBs) immediately after traumatic injury and the presence of chronic pain months later. Pain scores and serum concentrations of eCBs and cortisol were measured during hospitalization and 5–10 months later in 147 traumatically injured individuals. Exploratory correlational analyses and path analysis were completed. The study sample was 50% Black and Latino and primarily male (69%); 34% percent endorsed a pain score of 4 or greater at follow-up and were considered to have chronic pain. Path analysis was used to model relationships among eCB, 2-arachidonolyglycerol (2-AG), cortisol, and pain, adjusting for sex and injury severity (ISS). Serum 2-AG concentrations at the time of injury were associated with chronic pain in 3 ways: a highly significant, independent positive predictor; a mediator of the effect of ISS, and through a positive relationship with cortisol concentrations. These data indicate that 2-AG concentrations at the time of an injury are positively associated with chronic pain and suggest excessive activation of endocannabinoid signaling contributes to risk for chronic pain.
Collapse
|
33
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
34
|
Selim S, Almuhayawi MS, Alharbi MT, Al Jaouni SK, Alharthi A, Abdel-Wahab BA, Ibrahim MAR, Alsuhaibani AM, Warrad M, Rashed K. Insights into the Antimicrobial, Antioxidant, Anti-SARS-CoV-2 and Cytotoxic Activities of Pistacia lentiscus Bark and Phytochemical Profile; In Silico and In Vitro Study. Antioxidants (Basel) 2022; 11:antiox11050930. [PMID: 35624793 PMCID: PMC9138067 DOI: 10.3390/antiox11050930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/19/2022] Open
Abstract
Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-β-glucoside, and Quercetin-3-O-β-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| | - Mohanned T. Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Mervat A. R. Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat 77425, Saudi Arabia;
| | - Khaled Rashed
- Pharmacognosy Department, National Research Centre, 33El Bohouth Str., Dokki, Giza 12622, Egypt
- Correspondence: (S.S.); (M.S.A.); (K.R.)
| |
Collapse
|
35
|
Efficacy of the Nourishing Yin and Clearing Heat Therapy Based on Traditional Chinese Medicine in the Prevention and Treatment of Radiotherapy-Induced Oral Mucositis in Nasopharyngeal Carcinomas: A Systematic Review and Meta-Analysis of Thirty Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4436361. [PMID: 35529930 PMCID: PMC9068295 DOI: 10.1155/2022/4436361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to evaluate the efficacy of nourishing Yin and clearing heat therapy (NYCH therapy) based on traditional Chinese medicine (TCM) in the treatment of radiotherapy-induced oral mucositis (RTOM) in nasopharyngeal carcinomas (NPCs). A total of eight online databases were searched from inception to September 2021 for randomized controlled trials (RCTs). The control group was treated with Western medicine (WM) alone, whereas the experimental group was treated with a combined NYCH and WM therapy. A total of 30 RCTs involving 2562 participants were ultimately included. NYCH therapy combined with conventional WM delayed the onset time (days) of RTOM (MD = 10.80, p < 0.001), and at that time, a higher cumulative radiotherapy dose (Gy) (MD = 5.72, p < 0.001) was completed in the experimental group. The combination regimen also reduced the incidence of severe oral mucositis (Grade III–IV) (RR = 0.25, p < 0.001). In addition, the treatment efficacy of the experimental group was significantly better than that of the control group (RR = 1.31, p < 0.001). Compared with the patients in the control group, the experimental group had lower xerostomia scores (MD = -1.07, p < 0.001) and more saliva (MD = 0.36, p < 0.001). NYCH combined with WM improved the efficacy of treating RTOM in NPC. This study provides a sufficient basis for conducting further large RCTs to prove the efficacy of NYCH.
Collapse
|
36
|
Scyphocephalione A isolated from the stem bark of Scyphocephalium ochocoa (Myristicaceae) attenuate acute and chronic pain through the antiinflammatory activity. Inflammopharmacology 2022; 30:991-1003. [DOI: 10.1007/s10787-022-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/02/2022] [Indexed: 11/05/2022]
|
37
|
Gianfratti B, Tabach R, Sakalem ME, Stessuk T, Maia LO, Carlini EA. Ayahuasca blocks ethanol preference in an animal model of dependence and shows no acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114865. [PMID: 34822961 DOI: 10.1016/j.jep.2021.114865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca, a psychoactive beverage prepared from Banisteriopsis caapi and Psychotria viridis, is originally used by Amazon-based indigenous and mestizo groups for medicinal and ritualistic purposes. Nowadays, ayahuasca is used in religious and shamanic contexts worldwide, and preliminary evidence from preclinical and observational studies suggests therapeutic effects of ayahuasca for the treatment of substance (including alcohol) use disorders. AIM OF THE STUDY To investigate the initial pharmacological profile of ayahuasca and its effects on ethanol rewarding effect using the conditioned place preference (CPP) paradigm in mice. MATERIALS AND METHODS Ayahuasca beverage was prepared using extracts of B. caapi and P. viridis, and the concentration of active compounds was assessed through high performance liquid chromatography (HPLC). The following behavioral tests were performed after ayahuasca administration: general pharmacological screening (13, 130, or 1300 mg/kg - intraperitoneally - i.p., and 65, 130, 1300, or 2600 mg/kg - via oral - v.o.); acute toxicity test with elevated doses (2600 mg/kg - i.p., and 5000 mg/kg - v.o.); motor activity, motor coordination, and hexobarbital-induced sleeping time potentiation (250, 500, or 750 mg/kg ayahuasca or vehicle - v.o.). For the CPP test, the animals received ayahuasca (500 mg/kg - v.o.) prior to ethanol (1.8 g/kg - i.p.) or vehicle (control group - i.p.) during conditioning sessions. RESULTS Ayahuasca treatment presented no significant effect on motor activity, motor coordination, hexobarbital-induced sleeping latency or total sleeping time, and did not evoke signs of severe acute toxicity at elevated oral doses. Ayahuasca pre-treatment successfully inhibited the ethanol-induced CPP and induced CPP when administered alone. CONCLUSIONS Our results indicate that ayahuasca presents a low-risk acute toxicological profile when administered orally, and presents potential pharmacological properties that could contribute to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Bruno Gianfratti
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil.
| | - Ricardo Tabach
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; UNISA - Universidade Santo Amaro, Rua Prof Eneas de Siqueira Neto, 340 - Jardim das Imbuias, CEP 04829-300, São Paulo, SP, Brazil.
| | - Marna Eliana Sakalem
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; Department of Anatomy, State University of Londrina (UEL), Centro de Ciências Biológicas, Campus Universitário s/n, Caixa Postal 10011, CEP 86057-970, Londrina, PR, Brazil.
| | - Talita Stessuk
- Interunits Graduate Program in Biotechnology, University of São Paulo (USP), Avenida Prof. Lineu Prestes, 2415 - Edifício ICB - III Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil; Department of Biotechnology, São Paulo State University (UNESP), Campus Assis, Avenida Dom Antônio 2100, CEP 19806-900, Assis, SP, Brazil.
| | - Lucas Oliveira Maia
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil; Department of Psychobiology, Federal University of Sao Paulo (UNIFESP), Rua Botucatu, 862, Edifício Ciências Biomédicas - 1° Andar, Vila Clementino, CEP 04724-000, Sao Paulo, SP, Brazil; Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo 126, Cidade Universitária Zeferino Vaz, CEP 13083-887, Campinas, SP, Brazil.
| | - Elisaldo Araujo Carlini
- Centro Brasileiro de Informações sobre Drogas Psicotrópicas (CEBRID), Rua Marselhesa, 557, Vila Clementino, CEP 04020-060, São Paulo, SP, Brazil.
| |
Collapse
|
38
|
Grotsch K, Fokin VV. Between Science and Big Business: Tapping Mary Jane's Uncharted Potential. ACS CENTRAL SCIENCE 2022; 8:156-168. [PMID: 35233448 PMCID: PMC8875429 DOI: 10.1021/acscentsci.1c01100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
At the intersection of science and medicine, government policy, and pop culture, cannabis has prompted society since the beginning of recorded history. And yet, there is comparatively little replicable data on the plant, its constituents, and their capacity to modify human physiology. Over the past decades, several findings have pointed toward the importance of the endogenous cannabinoid system in maintaining homeostasis, making it an important target for various diseases. Here, we summarize the current state of knowledge on endogenous- and plant-based cannabinoids, address the issues related to cannabinoid-based drug discovery, and incite efforts to utilize their polypharmacological profile toward tackling diseases with a complex underlying pathophysiology. By fusing modern science and technology with the empirical data that has been gathered over centuries, we propose an outlook that could help us overcome the dearth of innovation for new drugs and synchronously redefine the future of drug discovery. Simultaneously, we call attention to the startling disconnect between the scientific, regulatory, and corporate entities that is becoming increasingly evident in this booming industry.
Collapse
Affiliation(s)
- Katharina Grotsch
- Bridge Institute and Loker
Hydrocarbon Research Institute, University
of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valery V. Fokin
- Bridge Institute and Loker
Hydrocarbon Research Institute, University
of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| |
Collapse
|
39
|
Woodman SE, Antonopoulos SR, Durham PL. Inhibition of Nociception in a Preclinical Episodic Migraine Model by Dietary Supplementation of Grape Seed Extract Involves Activation of Endocannabinoid Receptors. FRONTIERS IN PAIN RESEARCH 2022; 3:809352. [PMID: 35295808 PMCID: PMC8915558 DOI: 10.3389/fpain.2022.809352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 01/15/2023] Open
Abstract
Migraine is associated with peripheral and central sensitization of the trigeminal system and dysfunction of descending pain modulation pathways. Recently, dietary inclusion of grape seed extract (GSE) was shown to inhibit mechanical nociception in a preclinical model of chronic temporomandibular joint disorder, a condition often comorbid with migraine, with the antinociceptive effect mediated, in part, by activation of 5-HT3/7 and GABAB receptors. This study further investigated the mechanisms by which GSE inhibits mechanical nociception in a preclinical model of episodic migraine. Hyperalgesic priming of female and male Sprague Dawley rats was induced by three consecutive daily two-hour episodes of restraint stress. Seven days after the final restraint stress, rats were exposed to pungent odors from an oil extract that contains the compound umbellulone, which stimulates CGRP release and induces migraine-like pain. Some animals received dietary supplementation of GSE in their drinking water beginning one week prior to restraint stress. Changes in mechanical sensitivity in the orofacial region and hindpaw were determined using von Frey filaments. To investigate the role of the endocannabinoid receptors in the effect of GSE, some animals were injected intracisternally with the CB1 antagonist AM 251 or the CB2 antagonist AM 630 prior to odor inhalation. Changes in CGRP expression in the spinal trigeminal nucleus (STN) in response to stress, odor and GSE supplementation were studied using immunohistochemistry. Exposure of stress-primed animals to the odor caused a significant increase in the average number of withdrawal responses to mechanical stimulation in both the orofacial region and hindpaw, and the effect was significantly suppressed by daily supplementation with GSE. The anti-nociceptive effect of GSE was inhibited by intracisternal administration of antagonists of CB1 and CB2 receptors. GSE supplementation inhibited odor-mediated stimulation of CGRP expression in the STN in sensitized animals. These results demonstrate that GSE supplementation inhibits trigeminal pain signaling in an injury-free model of migraine-like pain via activation of endocannabinoid receptors and repression of CGRP expression centrally. Hence, we propose that GSE may be beneficial as a complementary migraine therapeutic.
Collapse
Affiliation(s)
| | | | - Paul L. Durham
- Department of Biology, Missouri State University, Jordan Valley Innovation Center-Center for Biomedical and Life Sciences, Springfield, MO, United States
| |
Collapse
|
40
|
Vago R, Fiorio F, Trevisani F, Salonia A, Montorsi F, Bettiga A. The Mediterranean Diet as a Source of Bioactive Molecules with Cannabinomimetic Activity in Prevention and Therapy Strategy. Nutrients 2022; 14:468. [PMID: 35276827 PMCID: PMC8839035 DOI: 10.3390/nu14030468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid system is a complex lipid signaling network that has evolved to be a key regulator of pro-homeostatic pathways for the organism. Its involvement in numerous processes has rendered it a very suitable target for pharmacological studies regarding metabolic syndrome, obesity and other lifestyle-related diseases. Cannabinomimetic molecules have been found in a large variety of foods, most of which are normally present in the Mediterranean diet. The majority of these compounds belong to the terpene and polyphenol classes. While it is known that they do not necessarily act directly on the cannabinoid receptors CB1 and CB2, their ability to regulate their expression levels has already been shown in some disease-related models, as well as their ability to modulate the activity of other components of the system. In this review, evidence was gathered to support the idea that phytocannabinoid dietary intake may indeed be a viable strategy for disease prevention and may be helpful in maintaining the health status. In an era where personalized nutrition is becoming more and more a reality, having new therapeutic targets could become an important resource.
Collapse
Affiliation(s)
- Riccardo Vago
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Fiorio
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Francesco Trevisani
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| | - Andrea Salonia
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Arianna Bettiga
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (F.F.); (F.T.); (A.S.); (F.M.); (A.B.)
| |
Collapse
|
41
|
Alonso C, Satta V, Díez-Gutiérrez P, Fernández-Ruiz J, Sagredo O. Preclinical investigation of β-caryophyllene as a therapeutic agent in an experimental murine model of Dravet syndrome. Neuropharmacology 2021; 205:108914. [PMID: 34875285 DOI: 10.1016/j.neuropharm.2021.108914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Dravet Syndrome (DS) is caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which results in febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved for the management of seizures in DS patients, but it appears to be also active against associated comorbidities. In this new study, we have investigated β-caryophyllene (BCP), a cannabinoid with terpene structure that appears to also have a broad-spectrum profile, as a useful therapy against both seizuring activity and progression of associated comorbidities. This has been studied in heterozygous conditional knock-in mice carrying a missense mutation (A1783V) in Scn1a gene expressed exclusively in neurons of the Central Nervous System (Syn-Cre/Scn1aWT/A1783V), using two experimental approaches. In the first approach, an acute treatment with BCP was effective against seizuring activity induced by pentylenetetrazole (PTZ) in wildtype (Scn1aWT/WT) and also in Syn-Cre/Scn1aWT/A1783V mice, with these last animals having a greater susceptibility to PTZ. Such benefits were paralleled by a BCP-induced reduction in PTZ-induced reactive astrogliosis (labelled with GFAP) and microgliosis (labelled with Iba-1) in the prefrontal cortex and the hippocampal dentate gyrus, which were visible in both wildtype (Scn1aWT/WT) and Syn-Cre/Scn1aWT/A1783V mice. In the second approach, both genotypes were treated repeatedly with BCP to investigate its effects on several DS comorbidities. Thus, BCP corrected important behavioural abnormalities of Syn-Cre/Scn1aWT/A1783V mice (e.g. delayed appearance of hindlimb grasp reflex, induction of clasping response, motor hyperactivity, altered social interaction and memory impairment), attenuated weight loss, and slightly delayed premature mortality. Again, these benefits were paralleled by a BCP-induced reduction in reactive astrogliosis and microgliosis in the prefrontal cortex and the hippocampal dentate gyrus typical of Syn-Cre/Scn1aWT/A1783V mice. In conclusion, BCP was active in Syn-Cre/Scn1aWT/A1783V mice against seizuring activity (acute treatment) and against several comorbidities (repeated treatment), in both cases in association with its capability to reduce glial reactivity in areas related to these behavioural abnormalities. This situates BCP in a promising position for further preclinical evaluation towards a close translation to DS patients.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Díez-Gutiérrez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
42
|
Datta S, Ramamurthy PC, Anand U, Singh S, Singh A, Dhanjal DS, Dhaka V, Kumar S, Kapoor D, Nandy S, Kumar M, Koshy EP, Dey A, Proćków J, Singh J. Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi J Biol Sci 2021; 28:7290-7313. [PMID: 34867033 PMCID: PMC8626265 DOI: 10.1016/j.sjbs.2021.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa, widely known as 'Marijuana' poses a dilemma for being a blend of both good and bad medicinal effects. The historical use of Cannabis for both medicinal and recreational purposes suggests it to be a friendly plant. However, whether the misuse of Cannabis and the cannabinoids derived from it can hamper normal body physiology is a focus of ongoing research. On the one hand, there is enough evidence to suggest that misuse of marijuana can cause deleterious effects on various organs like the lungs, immune system, cardiovascular system, etc. and also influence fertility and cause teratogenic effects. However, on the other hand, marijuana has been found to offer a magical cure for anorexia, chronic pain, muscle spasticity, nausea, and disturbed sleep. Indeed, most recently, the United Nations has given its verdict in favour of Cannabis declaring it as a non-dangerous narcotic. This review provides insights into the various health effects of Cannabis and its specialized metabolites and indicates how wise steps can be taken to promote good use and prevent misuse of the metabolites derived from this plant.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab 144001, India
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore 560012, Karnataka, India
| | - Amritpal Singh
- Department of Oral and Maxillofacial Surgery, Indira Gandhi Government Dental College and Hospital, Amphala, Jammu 180012, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vaishali Dhaka
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Manoj Kumar
- Department of Life Sciences, School of Natural Science, Central University of Jharkhand, Brambe, Ratu-Lohardaga Road Ranchi, Jharkhand 835205, India
| | - Eapen P. Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Joginder Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
43
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
44
|
Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 2021; 147:2507-2534. [PMID: 34259916 PMCID: PMC8310855 DOI: 10.1007/s00432-021-03710-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties. METHOD A database search of peer reviewed articles published in English as full texts between January 1970 and April 2021 in Google Scholar, MEDLINE, PubMed and Web of Science was undertaken. References of relevant literature were searched to identify additional studies to construct a narrative literature review of oncological effects of cannabinoids in pre-clinical and clinical studies in various cancer types. RESULTS Phyto-, endogenous and synthetic cannabinoids demonstrated antitumour effects both in vitro and in vivo. However, these effects are dependent on cancer type, the concentration and preparation of the cannabinoid and the abundance of receptor targets. The mechanism of action of synthetic cannabinoids, (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has mainly been described via the traditional cannabinoid receptors; CB1 and CB2, but reports have also indicated evidence of activity through GPR55, TRPM8 and other ion channels including TRPA1, TRPV1 and TRPV2. CONCLUSION Cannabinoids have shown to be efficacious both as a single agent and in combination with antineoplastic drugs. These effects have occurred through various receptors and ligands and modulation of signalling pathways involved in hallmarks of cancer pathology. There is a need for further studies to characterise its mode of action at the molecular level and to delineate efficacious dosage and route of administration in addition to synergistic regimes.
Collapse
Affiliation(s)
- Nagina Mangal
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Nagy Habib
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Vikash Reebye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK.
| |
Collapse
|
45
|
Lillo J, Lillo A, Zafra DA, Miralpeix C, Rivas-Santisteban R, Casals N, Navarro G, Franco R. Identification of the Ghrelin and Cannabinoid CB 2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. Int J Mol Sci 2021; 22:ijms22168928. [PMID: 34445634 PMCID: PMC8396234 DOI: 10.3390/ijms22168928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called “hunger” hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.
Collapse
Affiliation(s)
- Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - David A. Zafra
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos, 3, 28029 Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
- Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08035 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| |
Collapse
|
46
|
Giorgi V, Marotto D, Batticciotto A, Atzeni F, Bongiovanni S, Sarzi-Puttini P. Cannabis and Autoimmunity: Possible Mechanisms of Action. Immunotargets Ther 2021; 10:261-271. [PMID: 34322454 PMCID: PMC8313508 DOI: 10.2147/itt.s267905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Medical cannabis (MC) describes the usually inhaled or ingested use of a cannabis plant or cannabis extract for medicinal purposes. The action of whole cannabis plants is extremely complex because their large number of active compounds not only bind to a plethora of different receptors but also interact with each other both synergistically and otherwise. Renewed interest in the medicinal properties of cannabis has led to increasing research into the practical uses of cannabis derivatives, and it has been found that the endocannabinoid system (particularly CB2 receptor activation) is a possible target for the treatment of inflammatory and the autoimmune diseases related to immune cell activation. However, in vivo findings still lack, creating difficulties in applying translational cannabinoid research to human immune functions. In this review, we summarized the main mechanisms of action of medical cannabis plant especially regarding the immune system and the endocannabinoid system, looking at preliminary clinical data in three most important autoimmune diseases of three different specialities: rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Valeria Giorgi
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Daniela Marotto
- Rheumatology Unit, ATS Sardegna, P. Dettori Hospital, Tempio Pausania, Italy
| | - Alberto Batticciotto
- Rheumatology Unit, Internal Medicine Department, ASST Settelaghi, Ospedale Di Circolo - Fondazione Macchi, Varese, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sara Bongiovanni
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Piercarlo Sarzi-Puttini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| |
Collapse
|
47
|
Khakpour Taleghani B, Ghaderi B, Rostampour M, Fekjur EM, Hasannejad F, Ansar MM. Involvement of opioidergic and GABAergic systems in the anti-nociceptive activity of the methanolic extract of Cuscuta Epithymum Murr. in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113826. [PMID: 33465443 DOI: 10.1016/j.jep.2021.113826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuscuta epithymum Murr. (CE) is a parasitic plant used as a traditional medicine to treat various diseases such as muscle and joint pains and headache different parts of the world, Europe in the north, Asia in the east. AIM OF THE STUDY In this study, we aimed to investigate the anti-nociceptive effect of the methanolic extract of the aerial parts of CE and its probable mechanism(s) in mice. MATERIALS AND METHODS The anti-nociceptive activity of different doses of CE methanolic extract (2.5, 5, 10, 25, 50 and 100 mg/kg, i.p.) was assessed using tail flick, formalin and writhing tests. Morphine (5 mg/kg, s.c.) was used as positive control drug. The possible mechanisms were evaluated by using naloxone (4 mg/kg, i.p.), ondansetron (4 mg/kg, i.p.), picrotoxin (0.6 mg/kg, i.p.) and MK-801 (0.03 mg/kg, i.p.). RESULTS GC-MS analysis indicated that one of the main components of CE extract was terpenoid compounds. The CE extract (25-100 mg/kg), like morphine, reduced tail flick latency and nociceptive response in both phases of the formalin test. We also observed that the extract significantly decreased the number of abdominal contractions dose-dependently from 5 to 100 mg/kg. The results of tail flick and the first phase of formalin test proved that unlike ondansetron and MK-801, naloxone and picotroxin were able to reverse the anti-nociceptive effect of CE extract. CONCLUSION Our observations showed the anti-nociceptive potential of the CE extract, which may be mediated by opioidergic and GABAergic systems.
Collapse
Affiliation(s)
- Behrooz Khakpour Taleghani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Behnaz Ghaderi
- MSc in Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad Rostampour
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Edris Mahdavi Fekjur
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Farkhonde Hasannejad
- Center of Applied Cell Science and Tissue Engineering, Semnan University of Medical Sciences, Semnan, Iran.
| | - Malek Moien Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
48
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
49
|
Milia E, Bullitta SM, Mastandrea G, Szotáková B, Schoubben A, Langhansová L, Quartu M, Bortone A, Eick S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics (Basel) 2021; 10:antibiotics10040425. [PMID: 33921406 PMCID: PMC8069618 DOI: 10.3390/antibiotics10040425] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Collapse
Affiliation(s)
- Egle Milia
- Department of Medicine, Surgery and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| | - Simonetta Maria Bullitta
- C.N.R., Institute for Animal Production System in Mediterranean Environment (ISPAAM), Traversa La Crucca 3, Località Baldinca, 07100 Sassari, Italy;
| | - Giorgio Mastandrea
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/C, 07100 Sassari, Italy;
| | - Barbora Szotáková
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic;
| | - Aurélie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 48-06123 Perugia, Italy;
| | - Lenka Langhansová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic;
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari, Italy;
| | - Antonella Bortone
- Dental Unite, Azienda Ospedaliero-Universitaria di Sassari, 07100 Sassari, Italy;
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Correspondence: (E.M.); (S.E.); Tel.: +39-79-228437 (E.M.); +41-31-632-25-42 (S.E.)
| |
Collapse
|
50
|
The endocannabinoid system. Essays Biochem 2021; 64:485-499. [PMID: 32648908 DOI: 10.1042/ebc20190086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived 'phyto'cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.
Collapse
|