1
|
Subramanian G, Ponnusamy V, Murugesan J, Vedagiri H, Panneerselvan P, Vasanthakumar K, Krishnan V, Subramaniam S. Structure-function relationships between the human bitter taste receptor TAS2R38 and propylthiouracil: An in-silico investigation. IUBMB Life 2025; 77:e70008. [PMID: 39970077 DOI: 10.1002/iub.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Taster categorisation uses bitter thiourea compounds like propylthiouracil (PROP) and phenylthiocarbamide (PTC), which are frequently associated with amino acid alterations at positions 49, 262 and 296 in human taste 2 receptor member 38 (hTAS2R38). Since the hTAS2R38 protein lacked a crystallographic structure, it was modelled using contact-guided iterative threading assembly refinement, its residues were mutated and refined, and the binding pocket area and volume were assessed using CASTp. Bitter thiourea molecules were docked using the ligand extra precision module and the receptor-ligand complex was manually positioned in a fully hydrated, equilibrated 1-palmitoyl-2-oleoylphosphatidylcholine bilayer using the CHARMM GUI membrane constructor, a 100 ns simulation was carried out using the Desmond program. Analysis revealed that the PROP binds to the allosteric hydrophobic pocket of hTAS2R38 and forms a hydrogen bond with ASN190. The native structure (hTAS2R38PAV) has a higher glide energy (-24.164 kcal/mol) and docking score (-7.212 kcal/mol) than mutants, corroborating our taste preference study. In contrast, PTC lacks hydrogen bonds in the binding pocket but exhibits pi-pi stacking interactions with the native structure. Structures with mutations at the 49th or 296th position showed the largest root mean square deviations and fluctuations. A triple mutation increases surface area and volume, making the 262nd position critical to the binding pocket. These results highlight the functional roles of these three residues in hTAS2R38.
Collapse
Affiliation(s)
- Gowtham Subramanian
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Vinithra Ponnusamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Janaranjani Murugesan
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Hemamalini Vedagiri
- Medical Genomics Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Behrens M. International Union of Basic and Clinical Pharmacology. CXVII: Taste 2 receptors-Structures, functions, activators, and blockers. Pharmacol Rev 2025; 77:100001. [PMID: 39952694 DOI: 10.1124/pharmrev.123.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
For most vertebrates, bitter perception plays a critical role in the detection of potentially harmful substances in food items. The detection of bitter compounds is facilitated by specialized receptors located in the taste buds of the oral cavity. This work focuses on these receptors, including their sensitivities, structure-function relationships, agonists, and antagonists. The existence of numerous bitter taste receptor variants in the human population and the fact that several of them profoundly affect individual perceptions of bitter tastes are discussed as well. Moreover, the identification of bitter taste receptors in numerous tissues outside the oral cavity and their multiple proposed roles in these tissues are described briefly. Although this work is mainly focused on human bitter taste receptors, it is imperative to compare human bitter taste with bitter taste of other animals to understand which forces might have shaped the evolution of bitter taste receptors and their functions and to distinguish apparently typical human features from rather general ones. For readers who are not very familiar with the gustatory system, short descriptions of taste anatomy, signal transduction, and oral bitter taste receptor expression are included in the beginning of this article. SIGNIFICANCE STATEMENT: Apart from their role as sensors for potentially harmful substances in the oral cavity, the numerous additional roles of bitter taste receptors in tissues outside the gustatory system have recently received much attention. For careful assessment of their functions inside and outside the taste system, a solid knowledge of the specific and general pharmacological features of these receptors and the growing toolbox available for studying them is imperative and provided in this work.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Cannariato M, Fanunza R, Zizzi EA, Miceli M, Di Benedetto G, Deriu MA, Pallante L. Exploring TAS2R46 biomechanics through molecular dynamics and network analysis. Front Mol Biosci 2024; 11:1473675. [PMID: 39687570 PMCID: PMC11646861 DOI: 10.3389/fmolb.2024.1473675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food. Beyond taste, TAS2Rs function is associated with many diseases as they are expressed in several extra-oral tissues. Given that the precise functioning mechanisms of TAS2R remain poorly understood, this study employed molecular dynamics simulations combined with network-based analysis to investigate local conformational changes and global structural correlations in different states of the receptor. The focus was on the human TAS2R46 bitter taste receptor, recently resolved experimentally, both in the presence and absence of strychnine, a known bitter agonist. The results showed that the ligand-bound state of the receptor exhibited more correlated dynamics compared to the apo state, and the presence of the agonist mediated the allosteric network between two helices (TM3 and TM6) which mainly convey the signal transferring from the extracellular to the intracellular region. By elucidating the hallmarks of the conformational changes and allosteric network of TAS2R46 under varying conditions, this study has enabled the identification of the unique structural and dynamics features of this receptor, thereby establishing a foundation for a more profound characterisation of this intriguing class of receptors.
Collapse
Affiliation(s)
- Marco Cannariato
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Riccardo Fanunza
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Eric A. Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcello Miceli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Marco A. Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Lorenzo Pallante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
4
|
Mohammadpour Z, Heshmati E, Heilbronn LK, Hendrie GA, Brooker PG, Page AJ. The effect of post-oral bitter compound interventions on the postprandial glycemia response: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr 2024; 43:31-45. [PMID: 39317085 DOI: 10.1016/j.clnu.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND & AIMS The post-oral sensing of bitter compounds by a family of bitter taste receptors (TAS2Rs) is suggested to regulate postprandial glycemia in humans. However, reports are inconsistent. This systematic review used meta-analysis to synthesise the impact of bitter compound interventions on the postprandial glycaemic response in humans. METHODS Electronic databases (Medline, PubMed, and Web of Science) were systematically searched from inception to April 2024 to identify randomised controlled trials reporting the effect of interventions utilising post-oral bitter compounds vs. placebo on postprandial plasma glucose levels at t = 2 h (2 h-PPG), and area under the curve (AUC) of glucose, insulin, and c-peptide. The random-effect and subgroup analysis were performed to calculate pooled weighted mean differences (WMD), overall and by predefined criteria. RESULTS Forty-six studies (within 34 articles) were identified; 29 and 17 studies described chronic and acute interventions, respectively. The chronic interventions reduced 2 h-PPG (n = 21, WMD = -0.35 mmol/L, 95%CIs = -0.58, -0.11) but not AUC for glucose or insulin. Subgroup analysis showed the former was particularly evident in individuals with impaired glycemia, interventions longer than three months, or quinine family administration. The acute interventions did not improve the postprandial glycemia response, but subgroup analysis revealed a decrease in AUC-glucose after quinine family administration (n = 4 WMD = -90.40 (nmol × time/L), 95%CIs = -132.70, -48.10). CONCLUSION Chronic bitter compound interventions, particularly those from the quinine family, may have therapeutic potential in those with glycemia dysregulation. Acute intervention of the quinine family may also improve postprandial glucose. Given the very low quality of the evidence, further investigations with more rigorous methods are still required.
Collapse
Affiliation(s)
- Zinat Mohammadpour
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; College of Medicine and Dentistry, James Cook University, Cairns, QLD 4878, Australia
| | - Elaheh Heshmati
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Leonie K Heilbronn
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Gilly A Hendrie
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Paige G Brooker
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Amanda J Page
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia.
| |
Collapse
|
5
|
Cai L, Li L, Zhao X, Wang L, Cheng Y, Gao W, Cui C. Molecular simulation screening and sensory evaluation unearth a novel kokumi compound with bitter-masking effect: N-lauroyl-L-tryptophan. Food Chem 2024; 454:139718. [PMID: 38795620 DOI: 10.1016/j.foodchem.2024.139718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
N-lauroyl-L-tryptophan (LT), which has the strongest potential flavor-presenting activity, was skillfully screened from numerous N-Lau-AAs docked to different taste receptors by molecular simulation techniques. Subsequently, LT was synthesized employing food-grade commercial enzymes and structurally characterized, the optimized yields of LT could reach 69.08%, 76.16%, and 50.40%, respectively. Sensory and E-tongue evaluations showed that LT at 1 mg/L significantly benefited the performance of different taste sensations and exhibited different bitter taste masking effects: L-Ile (68.42%), L-Trp (68.18%), D-salicylic acid (48.48%) and quinine (35.00%). The molecular docking results illustrated that LT had a high affinity for various taste receptors, dominated by hydrogen bonding and hydrophobic interactions. This work provided a rare systematic elucidation of the potential and mechanism of enzymatically synthesized LT in enhancing taste properties. It provides novel insights into the directions and strategies for the excavation and innovation of flavor enhancers and food flavors.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Liyu Li
- Jiangxi Synergy Pharmaceutical Co., Ltd, Yichun 330700, Jiangxi, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Lu Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuqin Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Wenxiang Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
6
|
An JP, Liu X, Wang Y. Discovery of bitter masking compounds from Allspice ( Pimenta dioica) using sensory guided isolation. Food Chem X 2024; 22:101426. [PMID: 38736983 PMCID: PMC11087956 DOI: 10.1016/j.fochx.2024.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Bitter substances in functional foods and beverages can act as nutraceuticals, offering potential health benefits. However, their unpleasant sensory impact reduces the consumption of these foods. Consequently, the discovery of bitter masking compounds is crucial for enhancing the intake of bioactive compounds in functional foods and beverages. Bitter taste is mediated by TAS2Rs, a sub-family of G-protein-coupled receptors. TAS2R14 is especially pivotal in the perception of bitterness, as it is one of the most broadly tuned bitter receptors. In this study, allspice was extracted and purified to yield five single compounds based on sensory guided fractionation. The structures of each compound were determined based on nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HR-MS). In a sensory evaluation, compound 1 exhibited bitter masking activity against quinine. Molecular docking analysis revealed that compound 1 could act as an antagonist of the TAS2R14 bitter receptor.
Collapse
Affiliation(s)
- Jin-Pyo An
- Department of Food Science and Human Nutrition, Citrus Research & Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Xin Liu
- Department of Food Science and Human Nutrition, Citrus Research & Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research & Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
7
|
Chu X, Zhu W, Li X, Su E, Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res Int 2024; 183:114234. [PMID: 38760147 DOI: 10.1016/j.foodres.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.
Collapse
Affiliation(s)
- Xinyu Chu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wangsheng Zhu
- Engineering Technology Research Center for Plant Cell of Anhui Province, West Anhui University, Anhui 237012, China
| | - Xue Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahong Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Procession of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Yu Y, Liu S, Zhang X, Yu W, Pei X, Liu L, Jin Y. Identification and prediction of milk-derived bitter taste peptides based on peptidomics technology and machine learning method. Food Chem 2024; 433:137288. [PMID: 37683467 DOI: 10.1016/j.foodchem.2023.137288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Bitter taste peptides (BPs) are vital for drug and nutrition research, but large-scale screening of them is still time-consuming and costly. This study developed a complete workflow for screening BPs based on peptidomics technology and machine learning method. Using an expanded dataset and a new combination of BPs' characteristic factors, a novel classification prediction model (CPM-BP) based on the Light Gradient Boosting Machine algorithm was constructed with an accuracy of 90.3 % for predicting BPs. Among 724 significantly different peptides between spoiled and fresh UHT milk, 180 potential BPs were predicted using CPM-BP and eleven of them were previously reported. One known BP (FALPQYLK) and three predicted potential BPs (FALPQYL, FFVAPFPEVFGKE, EMPFPKYP) were verified by determination of calcium mobilization of HEK293T cells expressing human bitter taste receptor T2R4 (hT2R4). Three potential BPs could activate the hT2R4 and are demonstrated to be BPs, which proved the effectiveness of CPM-BP.
Collapse
Affiliation(s)
- Yang Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengchi Liu
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xinchen Zhang
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wenhao Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xiaoyan Pei
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Li Liu
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Yan Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
9
|
Rojas C, Ballabio D, Consonni V, Suárez-Estrella D, Todeschini R. Classification-based machine learning approaches to predict the taste of molecules: A review. Food Res Int 2023; 171:113036. [PMID: 37330849 DOI: 10.1016/j.foodres.2023.113036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
The capacity to discriminate safe from dangerous compounds has played an important role in the evolution of species, including human beings. Highly evolved senses such as taste receptors allow humans to navigate and survive in the environment through information that arrives to the brain through electrical pulses. Specifically, taste receptors provide multiple bits of information about the substances that are introduced orally. These substances could be pleasant or not according to the taste responses that they trigger. Tastes have been classified into basic (sweet, bitter, umami, sour and salty) or non-basic (astringent, chilling, cooling, heating, pungent), while some compounds are considered as multitastes, taste modifiers or tasteless. Classification-based machine learning approaches are useful tools to develop predictive mathematical relationships in such a way as to predict the taste class of new molecules based on their chemical structure. This work reviews the history of multicriteria quantitative structure-taste relationship modelling, starting from the first ligand-based (LB) classifier proposed in 1980 by Lemont B. Kier and concluding with the most recent studies published in 2022.
Collapse
Affiliation(s)
- Cristian Rojas
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca 010107, Ecuador.
| | - Davide Ballabio
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.za della Scienza 1-20126, Milano, Italy
| | - Viviana Consonni
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.za della Scienza 1-20126, Milano, Italy
| | - Diego Suárez-Estrella
- Grupo de Investigación en Quimiometría y QSAR, Facultad de Ciencia y Tecnología, Universidad del Azuay, Av. 24 de Mayo 7-77 y Hernán Malo, Cuenca 010107, Ecuador
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, Department of Earth and Environmental Sciences, University of Milano-Bicocca, P.za della Scienza 1-20126, Milano, Italy
| |
Collapse
|
10
|
Ziegler F, Steuer A, Di Pizio A, Behrens M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun Biol 2023; 6:612. [PMID: 37286811 DOI: 10.1038/s42003-023-04971-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
11
|
Pavanello S, Moretto A, La Vecchia C, Alicandro G. Non-sugar sweeteners and cancer: Toxicological and epidemiological evidence. Regul Toxicol Pharmacol 2023; 139:105369. [PMID: 36870410 DOI: 10.1016/j.yrtph.2023.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Several toxicological and epidemiological studies were published during the last five decades on non-sugar sweeteners (NSS) and cancer. Despite the large amount of research, the issue still continues to be of interest. In this review, we provided a comprehensive quantitative review of the toxicological and epidemiological evidence on the possible relation between NSS and cancer. The toxicological section includes the evaluation of genotoxicity and carcinogenicity data for acesulfame K, advantame, aspartame, cyclamates, saccharin, steviol glycosides and sucralose. The epidemiological section includes the results of a systematic search of cohort and case-control studies. The majority of the 22 cohort studies and 46 case-control studies showed no associations. Some risks for bladder, pancreas and hematopoietic cancers found in a few studies were not confirmed in other studies. Based on the review of both the experimental data on genotoxicity or carcinogenicity of the specific NSS evaluated, and the epidemiological studies it can be concluded that there is no evidence of cancer risk associated to NSS consumption.
Collapse
Affiliation(s)
- Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Università degli Studi di Padova, Padua, Italy; University Hospital of Padova, Padua, Italy
| | - Angelo Moretto
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Università degli Studi di Padova, Padua, Italy; University Hospital of Padova, Padua, Italy.
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Alicandro
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
A Cell Co-Culture Taste Sensor Using Different Proportions of Caco-2 and SH-SY5Y Cells for Bitterness Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bitter taste receptors (T2Rs) are involved in bitter taste perception, which is one of the five basic taste modalities in mammals. In this study, a cell co-culture taste sensor using different proportions of Caco-2 cells and SH-SY5Y cells was proposed. Caco-2 cells, which endogenously expressed the human T2R38 receptor, and SH-SY5Y cells, which endogenously expressed the human T2R16 receptor, were co-cultured. Using Caco-2 cells and SH-SY5Y cells at a constant total concentration of 40 K/mL, we designed seven mixtures with [Caco-2]/([Caco-2] + [SH-SY5Y]) ratios of 0, 20, 40, 50, 60, 80, and 100%. These mixtures were then seeded on the 16 E-plates of the electric cell-substrate impedance sensor (ECIS) for bitterness detection. Theoretically, after T2R38 ligands activation, continuous evolution profiles (CEP), with [Caco-2]/([Caco-2] + [SH-SY5Y]) ratios as the x-axis and ΔCI (Max) as the y-axis, would exhibit positive correlation property. After T2R16 ligands activation, the CEP would show negative correlation property. However, when stimulated with compounds that could activate both T2R16 and T2R38, it would show different response patterns.
Collapse
|
13
|
Witkamp RF. Bioactive Components in Traditional Foods Aimed at Health Promotion: A Route to Novel Mechanistic Insights and Lead Molecules? Annu Rev Food Sci Technol 2022; 13:315-336. [PMID: 35041794 DOI: 10.1146/annurev-food-052720-092845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional foods and diets can provide health benefits beyond their nutrient composition because of the presence of bioactive compounds. In various traditional healthcare systems, diet-based approaches have always played an important role, which has often survived until today. Therefore, investigating traditional foods aimed at health promotion could render not only novel bioactive substances but also mechanistic insights. However, compared to pharmacologically focused research on natural products, investigating such nutrition-based interventions is even more complicated owing to interacting compounds, less potent and relatively subtle effects, the food matrix, and variations in composition and intake. At the same time, technical advances in 'omics' technologies, cheminformatics, and big data analysis create new opportunities, further strengthened by increasing insights into the biology of health and homeostatic resilience. These are to be combined with state-of-the-art ethnobotanical research, which is key to obtaining reliable and reproducible data. Unfortunately, socioeconomic developments and climate change threaten traditional use and knowledge as well as biodiversity. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Renger F Witkamp
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands;
| |
Collapse
|
14
|
Jalševac F, Terra X, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Pinent M, Ardévol A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front Endocrinol (Lausanne) 2022; 13:854718. [PMID: 35345470 PMCID: PMC8957101 DOI: 10.3389/fendo.2022.854718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.
Collapse
|
15
|
Topin J, Bouysset C, Pacalon J, Kim Y, Rhyu MR, Fiorucci S, Golebiowski J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell Mol Life Sci 2021; 78:7605-7615. [PMID: 34687318 PMCID: PMC11073308 DOI: 10.1007/s00018-021-03968-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.
Collapse
Affiliation(s)
- Jérémie Topin
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Cédric Bouysset
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Jody Pacalon
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Yiseul Kim
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sébastien Fiorucci
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, 711-873, Republic of Korea
| |
Collapse
|
16
|
Bayer S, Mayer AI, Borgonovo G, Morini G, Di Pizio A, Bassoli A. Chemoinformatics View on Bitter Taste Receptor Agonists in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13916-13924. [PMID: 34762411 PMCID: PMC8630789 DOI: 10.1021/acs.jafc.1c05057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Food compounds with a bitter taste have a role in human health, both for their capability to influence food choice and preferences and for their possible systemic effect due to the modulation of extra-oral bitter taste receptors (TAS2Rs). Investigating the interaction of bitter food compounds with TAS2Rs is a key step to unravel their complex effects on health and to pave the way to rationally design new additives for food formulation or drugs. Here, we propose a collection of food bitter compounds, for which in vitro activity data against TAS2Rs are available. The patterns of TAS2R subtype-specific agonists were analyzed using scaffold decomposition and chemical space analysis, providing a detailed characterization of the associations between food bitter tastants and TAS2Rs.
Collapse
Affiliation(s)
- Sebastian Bayer
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- Faculty
of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Ariane Isabell Mayer
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gigliola Borgonovo
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
| | - Gabriella Morini
- University
of Gastronomic Sciences, piazza Vittorio Emanuele 9, 12042 Pollenzo, (Bra, CN), Italy
| | - Antonella Di Pizio
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner Str. 34, D-85354 Freising, Germany
- . Phone: +49(0)8161716516
| | - Angela Bassoli
- Department
of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, via Celoria 2, 20147 Milano, Italy
- . Phone: +39(0)250316815
| |
Collapse
|
17
|
Sung WW, Tu JH, Yu JS, Ulfa MZ, Chang JH, Cheng HL. Bacillus amyloliquefaciens exopolysaccharide preparation induces glucagon-like peptide 1 secretion through the activation of bitter taste receptors. Int J Biol Macromol 2021; 185:562-571. [PMID: 34216658 DOI: 10.1016/j.ijbiomac.2021.06.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
The exopolysaccharide preparation of Bacillus amyloliquefaciens amy-1 (EPS) regulates glycemic levels and promotes glucagon-like peptide 1 (GLP-1) secretion in vivo and in vitro. This study aimed to identify the molecular mechanism underlying EPS-induced GLP-1 secretion. HEK293T cells stably expressing human Gα-gustducin were used as a heterologous system for expressing the genes of human bitter taste receptor (T2R) 10, 14, 30, 38 (PAV), 38 (AVI), 43, and 46, which were expressed as recombinant proteins with an N-terminal tag composed of a Lucy peptide and a human somatostatin receptor subtype 3 fragment for membrane targeting and a C-terminal red fluorescent protein for expression monitoring. EPS induced a dose-dependent calcium response from the human NCI-H716 enteroendocrine cell line revealed by fluorescent calcium imaging, but inhibitors of the G protein-coupled receptor pathway suppressed the response. EPS activated heterologously expressed T2R14 and T2R38 (PAV). shRNAs of T2R14 effectively inhibited EPS-induced calcium response and GLP-1 secretion in NCI-H716 cells, suggesting the involvement of T2R14 in these effects. The involvement of T2R38 was not characterized because NCI-H716 cells express T2R38 (AVI). In conclusion, the activation of T2Rs mediates EPS-induced GLP-1 secretion from enteroendocrine cells, and T2R14 is a critical target activated by EPS in these cells.
Collapse
Affiliation(s)
- Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jyun-Sian Yu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Marisa Zakiya Ulfa
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan; Department of Agroindustrial Biotechnology, Brawijaya University, Jalan Veteran, Malang 65145, Indonesia
| | - Jia-Hong Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan.
| |
Collapse
|
18
|
Abstract
To understand human taste requires not only physiological studies ranging from receptor mechanisms to brain circuitry, but also psychophysical studies that quantitatively describe the perceptual output of the system. As obvious as this requirement is, differences in research approaches, methodologies, and objectives complicate the ability to meet it. Discussed here is an example of how the discovery two decades ago of a perceptual taste illusion (thermal taste) has led to physiological and psychophysical research on both peripheral and central mechanisms of taste, including most recently a psychophysical study of the heat sensitivity of the human sweet taste receptor TAS1R2/T1R3, and an fMRI study of a possible central gain mechanism that may underlie, in part, differences in human taste sensitivity. In addition to the new data and hypotheses these studies have generated, they illustrate instances of research on taste motivated by evidence derived from different approaches and levels of analysis.
Collapse
Affiliation(s)
- Barry G Green
- The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA 06519
- Department of Surgery (Otolaryngology), Yale School of Medicine, 333 Cedar Street, New Haven, CT, USA 06511
| |
Collapse
|