1
|
Chen H, Su W, Li T, Wang Y, Li Z, Xiong L, Chen ZS, Zhang C, Wang T. Recent advances in small molecule design strategies against hepatic fibrosis. Eur J Med Chem 2025; 286:117281. [PMID: 39854939 DOI: 10.1016/j.ejmech.2025.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Hepatic fibrosis, a widespread pathological process observed across various liver diseases, is acknowledged as a potentially reversible condition. In recent years, liver fibrosis has garnered extensive research attention, with a primary emphasis on developing drugs that can directly block or reverse this condition. This paper presents a comprehensive review of the design strategies for various anti-hepatic fibrosis agents that have been many efficacious small-molecule drugs. This review encompasses the synthesis and design of nuclear receptor ligands (such as VDR and Nurr7), kinase inhibitors (including ALK5 and JAK1), selective PDE inhibitors, small-molecule monomers derived from natural products, and other small molecules. The aim of this review is to provide promising avenues and valuable insights for the continued development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Heming Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Su
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhuangyu Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA.
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Chen H, Wang S, Chen Q, Yu W, Nie H, Liu L, Zheng B, Gong Q. Aloperine Ameliorates Acetaminophen-Induced Acute Liver Injury through HMGB1/TLR4/NF- κB and NLRP3/Inflammasome Pathway. Mediators Inflamm 2024; 2024:3938136. [PMID: 39381066 PMCID: PMC11461077 DOI: 10.1155/2024/3938136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose Aloperine (ALO), an alkaloid isolated from Sophora alopecuroides L., possesses multiple pharmacological activities and holds a promise potential for the treatment of various clinical conditions, including skin hypersensitivity, cancer, and inflammatory disorders. The purpose of this study was to investigate the role of ALO in acetaminophen (N-acetyl-para-aminophenol (APAP))-induced acute liver injury and its underlying mechanisms. Materials and Methods An animal model of acute liver injury was induced by intraperitoneal injection of APAP (150 mg/kg). Prior to APAP injection, ALO (40 mg/kg) was administered daily for 7 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase levels were then measured using an automated chemical analyzer. Histopathological changes were evaluated using hematoxylin and eosin staining. Oxidative stress levels were measured by detecting superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). Pro-inflammatory cytokines were detected in serum and liver tissues using ELISA and quantitative real-time polymerase chain reaction (q-PCR). The expression of members of the HMGB1/TLR4/NF-κB signaling pathway and NLRP3 inflammasome were determined by Western blot and/or q-PCR. In addition, the expression and location of NLRP3, cleaved caspase-1, high-mobility group box 1 (HMGB1), and phosphorylated p65 (p-p65) were detected by immunofluorescence. Results Pretreatment with ALO significantly protected mice from APAP-induced acute liver injury, with decreased MDA content, and significantly increased GSH and SOD activities. Furthermore, ALO pretreatment reduced the release of pro-inflammatory cytokines (IL-1β and TNF-α) and decreased the expression of caspase-1, cleaved caspase-1, and NLRP3. In addition, ALO pretreatment also inhibited the activation of the HMGB1/TLR4/NF-κB signaling pathway. Conclusion Taken together, ALO can ameliorate APAP-induced acute liver injury by inhibiting oxidative stress, inflammation by inhibiting the HMGB1/TLR4/NF-κB, and NLRP3/inflammasome pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Laboratory Medicine The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shu Wang
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Hubei College of Chinese Medicine, Jingzhou, China
| | - Wen Yu
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
| | - Hao Nie
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology School of Medicine Yangtze University, Jingzhou, China
| | - Bing Zheng
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology School of Medicine Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center School of Medicine Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Wei S, Xiao J, Ju F, Li J, Liu T, Hu Z. Aloperine Attenuates Hepatic Ischemia/Reperfusion-Induced Liver Injury via STAT-3 Signaling in a Murine Model. J Pharmacol Exp Ther 2024; 391:51-63. [PMID: 39164092 DOI: 10.1124/jpet.123.001992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Hepatic ischemia/reperfusion (I/R) damage is one of the most common side effects of liver surgery. This pathophysiological process may lead to excessive hepatic damage. Aloperine is an active ingredient isolated from Sophora alopecuroides Linn and has a variety of therapeutic effects, including organ protection. However, the hepatoprotective effect of aloperine against hepatic I/R damage has not yet been determined. C57BL/6 mice were allocated to the sham-operated (sham), hepatic ischemia/reperfusion (I/R), and aloperine groups. The mice were exposed to 30 min of hepatic hilum occlusion. Then a 3-h reperfusion was performed. Mice in the sham group underwent sham surgery. Hepatic injury was evaluated by plasma aspartate aminotransferase (AST) and transaminase alanine aminotransferase (ALT) levels, histological evaluation, cell apoptosis, the number of activated inflammatory cells, and the expression levels of inflammatory cytokines, including tumor necrosis factor-α and interleukin-6. The protein phosphorylation status of the reperfusion-associated survival pathways was evaluated. Mice with hepatic I/R injury presented increased plasma ALT and AST levels, increased hepatic apoptosis, abnormal histological structure, and elevated inflammatory responses. However, aloperine ameliorated hepatic I/R-induced injury. Moreover, aloperine enhanced the level of signal transducer and activator of transcription (STAT)-3 phosphorylation after I/R. Ag490, an agent that inhibits STAT-3 activity, abolished aloperine-induced STAT-3 phosphorylation and liver protection. Aloperine ameliorates hepatic I/R-induced liver injury via a STAT-3-mediated protective mechanism. Patients with hepatic I/R injury may benefit from aloperine treatment. SIGNIFICANCE STATEMENT: Hepatic I/R can cause excessive liver damage. This study revealed that aloperine, an active component isolated from Sophora alopecuroides Linn, ameliorates hepatic I/R injury and related liver damage in vivo. The underlying protective mechanism may involve the STAT-3 signaling pathway. These findings may lead to the development of a novel approach for treating hepatic I/R damage in clinical practice.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxue Li
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Department of Anesthesiology (S.W., J.X., F.J., J.L.) and Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology (S.W., J.X., F.J., J.L., T.L., Z.H.), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Zhang XF, Wang ZX, Zhang BW, Huang KP, Ren TX, Wang T, Cheng X, Hu P, Xu WH, Li J, Zhang JX, Wang H. TGF-β1-triggered BMI1 and SMAD2 cooperatively regulate miR-191 to modulate bone formation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102164. [PMID: 38549914 PMCID: PMC10973191 DOI: 10.1016/j.omtn.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Transforming growth factor β 1 (TGF-β1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-β1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-β1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-β1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-β1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Zi-Xuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Bo-Wen Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Kun-Peng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Tian-Xing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ting Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin-Xiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
5
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
6
|
Liu C, Li S, Zhang C, Jin CH. Recent Advances in Research on Active Compounds Against Hepatic Fibrosis. Curr Med Chem 2024; 31:2571-2628. [PMID: 37497688 DOI: 10.2174/0929867331666230727102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Almost all chronic liver diseases cause fibrosis, which can lead to cirrhosis and eventually liver cancer. Liver fibrosis is now considered to be a reversible pathophysiological process and suppression of fibrosis is necessary to prevent liver cancer. At present, no specific drugs have been found that have hepatic anti-fibrotic activity. OBJECTIVE The research progress of anti-hepatic fibrosis compounds in recent ten years was reviewed to provide a reference for the design and development of anti-hepatic fibrosis drugs. METHODS According to the structure of the compounds, they are divided into monocyclic compounds, fused-heterocyclic compounds, and acyclic compounds. RESULTS In this article, the natural products and synthetic compounds with anti-fibrotic activity in recent ten years were reviewed, with emphasis on their pharmacological activity and structure-activity relationship (SAR). CONCLUSION Most of these compounds are natural active products and their derivatives, and there are few researches on synthetic compounds and SAR studies on natural product.
Collapse
Affiliation(s)
- Chuang Liu
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Changhao Zhang
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Natural Resources of Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
7
|
Zhang N, Fan T, Zhao L, Li Y, Bao Y, Ma X, Mei Y, Wang Y, Liu Y, Deng H, Li Y, He H, Song D. Discovery and development of palmatine analogues as anti-NASH agents by activating farnesoid X receptor (FXR). Eur J Med Chem 2023; 245:114886. [DOI: 10.1016/j.ejmech.2022.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
8
|
Cheng Y, Rauf A, Pan X. Research Progress on the Natural Product Aloperine and Its Derivatives. Mini Rev Med Chem 2022; 22:729-742. [PMID: 34488611 DOI: 10.2174/1389557521666210831155426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
In this review, an effort towards presenting an all-around account of the recent progress on the natural product, aloperine, is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new structural modifications of aloperine are also given, which might provide brief guidance for further investigations on the natural product aloperine.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK, Pakistan
| | - Xiandao Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
9
|
Zeng QX, Wang K, Zhang X, Shi YL, Dou YY, Guo ZH, Zhang XT, Zhang N, Deng HB, Li YH, Song DQ. Structure-activity relationship and biological evaluation of 12 N-substituted aloperine derivatives as PD-L1 down-regulatory agents through proteasome pathway. Bioorg Chem 2021; 117:105432. [PMID: 34678602 DOI: 10.1016/j.bioorg.2021.105432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Twenty-nine 12 N-substituted aloperine derivatives were synthesized and screened for suppression on PD-L1 expression in H460 cells, as a continuation of our work. Systematic structural modifications led to the identification of compound 6b as the most active PD-L1 modulator. Compound 6b could significantly down-regulate both constitutive and inductive PD-L1 expression in NSCLC cells, and successively enhance the cytotoxicity of co-cultured T cells against tumor cells at the concentration of 20 μM. Also, it exhibited a moderate in vivo anticancer efficacy against Lewis tumor xenograft with a stable PK and safety profile. The mechanism study indicated that 6b mediated the degradation of PD-L1 through a proteasome pathway, rather than a lysosome route. These results provided the powerful information for cancer immunotherapy of aloperine derivatives with unique endocyclic skeleton by targeting PD-L1 to activate immune cells to kill cancer cells.
Collapse
Affiliation(s)
- Qing-Xuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kun Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xin Zhang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, China
| | - Yu-Long Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Ying Dou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhi-Hao Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xin-Tong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong-Bin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ying-Hong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Lei L, Zhao Y, Shi K, Liu Y, Hu Y, Shao H. Phytotoxic Activity of Alkaloids in the Desert Plant Sophora alopecuroides. Toxins (Basel) 2021; 13:toxins13100706. [PMID: 34678999 PMCID: PMC8540331 DOI: 10.3390/toxins13100706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Sophora alopecuroides is known to produce relatively large amounts of alkaloids; however, their ecological consequences remain unclear. In this study, we evaluated the allelopathic potential of the main alkaloids, including aloperine, matrine, oxymatrine, oxysophocarpine, sophocarpine, sophoridine, as well as their mixture both in distilled H2O and in the soil matrix. Our results revealed that all the alkaloids possessed inhibitory activity on four receiver species, i.e., Amaranthus retroflexus, Medicago sativa, Lolium perenne and Setaria viridis. The strength of the phytotoxicity of the alkaloids was in the following order: sophocarpine > aloperine > mixture > sophoridine > matrine > oxysophocarpine > oxymatrine (in Petri dish assays), and matrine > mixture > sophocarpine > oxymatrine > oxysophocarpine > sophoridine > aloperine (in pot experiments). In addition, the mixture of the alkaloids was found to significantly increase the IAA content, MDA content and POD activity of M. sativa seedlings, whereas CTK content, ABA content, SOD activity and CAT activity of M. sativa seedlings decreased markedly. Our results suggest S. alopecuroides might produce allelopathic alkaloids to improve its competitiveness and thus facilitate the establishment of its dominance; the potential value of these alkaloids as environmentally friendly herbicides is also discussed.
Collapse
Affiliation(s)
- Lijing Lei
- Chemistry and Environment Science School, Yili Normal University, Yining 835000, China;
| | - Yu Zhao
- Bioscience and Geosciences School, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.L.)
- Historical Geography and Tourism School, Shangrao Normal University, Jiangxi 334001, China
| | - Kai Shi
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- Bioscience and Geosciences School, Yili Normal University, Yining 835000, China; (Y.Z.); (Y.L.)
- Chemistry and Environment Science School, Shangrao Normal University, Jiangxi 334001, China
| | - Yunxia Hu
- Chemistry and Environment Science School, Yili Normal University, Yining 835000, China;
- Correspondence: (Y.H.); (H.S.); Tel.: +86-991-7823-155 (H.S.)
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.H.); (H.S.); Tel.: +86-991-7823-155 (H.S.)
| |
Collapse
|
11
|
Wang K, Wu JJ, Xin-Zhang, Zeng QX, Zhang N, Huang WJ, Tang S, Wang YX, Kong WJ, Wang YC, Li YH, Song DQ. Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorg Chem 2021; 115:105196. [PMID: 34333425 PMCID: PMC8318836 DOI: 10.1016/j.bioorg.2021.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022]
Abstract
So far, there is still no specific drug against COVID-19. Taking compound 1 with anti-EBOV activity as the lead, fifty-four 12N-substituted aloperine derivatives were synthesized and evaluated for the anti-SARS-CoV-2 activities using pseudotyped virus model. Among them, 8a exhibited the most potential effects against both pseudotyped and authentic SARS-CoV-2, as well as SARS-CoV and MERS-CoV, indicating a broad-spectrum anti-coronavirus profile. The mechanism study disclosed that 8a might block a late stage of viral entry, mainly via inhibiting host cathepsin B activity rather than directly targeting cathepsin B protein. Also, 8a could significantly reduce the release of multiple inflammatory cytokines in a time- and dose-dependent manner, such as IL-6, IL-1β, IL-8 and MCP-1, the major contributors to cytokine storm. Therefore, 8a is a promising agent with the advantages of broad-spectrum anti-coronavirus and anti-cytokine effects, thus worthy of further investigation.
Collapse
Affiliation(s)
- Kun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jia-Jing Wu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Xin-Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qing-Xuan Zeng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Sheng Tang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei-Jia Kong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - You-Chun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Ying-Hong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Bioactive Substance & Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|