1
|
Aslam M, Fatima B, Batool R, Imran M, Hussain D, Najam-Ul-Haq M, Mehmood R. Saponin Gallate-Loaded Gd-Doped Zinc-Gallium Layered Double Hydroxides (Zn/Ga@Gd-LDH) Nanocarrier for Attenuating NF-κB-Mediated Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26263-26281. [PMID: 40272238 DOI: 10.1021/acsami.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This work describes a drug delivery system (DDS) based on the therapeutic anti-inflammatory efficacy of saponin gallate (SG), a combination of gallic acid and saponin, chemically conjugated via an ester linkage. This formulation was loaded onto a biocompatible gadolinium-doped zinc-gallium-layered double hydroxide (Zn/Ga@Gd-LDH) nanocarrier. FT-IR, XRD, SEM, and HPLC were used to characterize the synthesized materials. UV-visible spectroscopy was employed to investigate the drug release from SG-Zn/Ga@Gd-LDH at an optimized temperature (45 °C) and pH (5). The kinetic release behavior of SG-Zn/Ga@Gd-LDH nanoparticles suggested that the first-order kinetic model was the most appropriate for the release profile. The regression value (R2) of 0.96614 indicated an optimal and controlled release for therapeutic effectiveness and minimal adverse effects over 54 h. The in vitro and in vivo models confirmed that drug-loaded nanocarriers exhibited antioxidant, anti-inflammatory, and anticancer properties. Western blotting analysis suggested that SG-Zn/Ga@Gd-LDH abrogates the anti-inflammatory properties by halting the phosphorylation of pro-inflammatory proteins p-p65 and decreasing CRP levels involved in the NF-κB pathway. SG-Zn/Ga@Gd-LDH exhibited an anti-inflammatory effect by reducing the secretion of proinflammatory cytokines. SG-Zn/Ga@Gd-LDH treatment against an acute CCl4-induced liver injury model showed anti-inflammatory potential in histological parameters' study. Radiolabeling of the drug saponin gallate with 99mTc was carried out to determine its in vivo biodistribution. The chromatographic results indicated promising radiolabeling of up to 90% percentages. SPECT-CT imaging and ex vivo gamma counting in Wistar rats revealed different clearance rates of nanoparticles, aiding in the evaluation of the drug delivery nanosystem. The designed system also demonstrated antioxidant potential due to the SG compound having IC50 127.45 μg/mL free radical scavenging activity. Ga@Gd-LDH showed a tumor-suppressing ability of 79.89 ± 3.91% for viable cells against breast cancer MCF-7 cells. The developed formulation could thus be a conducive strategy against inflammatory diseases.
Collapse
Affiliation(s)
- Momna Aslam
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Rafia Batool
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Imran
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | |
Collapse
|
2
|
Mfengwana PMAH. Phytochemical constituents, ferric reducing and radical scavenging activities of helichrysm caespititium. Nat Prod Res 2025; 39:2526-2531. [PMID: 38194283 DOI: 10.1080/14786419.2023.2301486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Helichrysm caespititium is used for the treatment of viral infections and respiratory ailments. This study aimed to determine the phytochemical constituents and antioxidants (using ABTS, DPPH and FRAP) of H. caespititium water and methanol extracts. The phytochemical analysis revealed the presence of flavonoids, phytosterols, tannins, glycosides etc. Whilst the alkaloids were absent. Quantitative analysis of total phenols using both methanol and water extracts yielded high values of (839,1 and 531) GA/mg indicating rich phytochemical constituents from this plant. Whilst flavonoids from methanol and water extracts yielded (324 and 58) mg GA/mg, respectively. Results obtained from FRAP water and methanol extracts were 20,42% and 2,36% respectively; DPPH water and methanol extracts results were 92,62% and 80,56% respectively; and ABTS water and methanol extracts were 93,64% and 97,68%, respectively. These findings support the potential of H. caespititium as the potential source for the development of antioxidant-based therapies and health-promoting products.
Collapse
|
3
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
El-Sofany WI, Alanezi TD, Latif S, Abdelhedi O, Hamden K. Prodigiosin As N-heterocyclic compound: Production optimization, bioactivity evaluation, and in-silico docking against key enzymes related to inflammation, obesity, diabetes, and the insulin signaling pathway. Enzyme Microb Technol 2025; 188:110639. [PMID: 40187164 DOI: 10.1016/j.enzmictec.2025.110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Diabetes is known to cause severe pancreatic inflammation and reduce insulin levels, leading us to investigate the effects of prodigiosin (PG), a red, heterocyclic bacterial compound extracted from Serratia marcescens. The physicochemical and nutritional conditions, along with the extraction solvents for PG, have been optimized for efficient production. PG was produced through bacterial culture, purified by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC), characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectroscopy. In vitro, PG effectively inhibited key inflammatory enzymes, such as phospholipase A2 (PLA2) and elastase (ELA), in a dose-dependent manner, achieving maximum inhibition rates of 85.3 and 91.4 % at concentrations of 320 µg/mL, with IC₅₀ values of 63 µg/mL and 54.7 µg/mL, respectively. PG also exhibited a maximum inhibition of 82.4 % for myeloperoxidase (MPO) at a concentration of 160 µg/mL, with an IC₅₀ value of 25.9 µg/mL. This indicates that PG is a good candidate for treating these two metabolic diseases. Moreover, PG shows a significant ability to activate insulin signaling through its capacity to stimulate protein tyrosine phosphatase 1B (PTP1B) and inhibit dipeptidyl peptidase-4 (DPP-4), with IC₅₀ values of 67 and 28 µg/mL, respectively, compared to the specific inhibitors CLM and STG (with IC₅₀ values of 19 and 27 µg/mL, respectively). These powerful affinities, stability, and the durability of PG inhibition of these enzymes are confirmed by the determination of binding energy, ligand efficiency, and estimated inhibition constant (Ki). Conclusion: PG benefits from sustainable, cost-effective biological production and exhibits potent anti-inflammatory, antioxidant, and anti-diabetic properties, positioning it as a promising candidate for pharmaceutical and food applications.
Collapse
Affiliation(s)
- Walaa I El-Sofany
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Tahani D Alanezi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Ola Abdelhedi
- Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia; Higher School of Health Sciences and Technology of Sfax, Sfax university, Tunisia.
| |
Collapse
|
5
|
Subudhi L, Thatoi H, Banerjee A. Anti-inflammatory activity of essential oil from medicinal plants: An insight into molecular mechanism, in-silico studies and signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156364. [PMID: 39862791 DOI: 10.1016/j.phymed.2025.156364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation. This study revisits these ancient remedies to further explore their efficacy and mechanisms in the modern context. FOCUS AREA This review focuses on identifying and analysing the primary phytochemical in medicinal plants that exhibit anti-inflammatory properties. The chemical classes of interest include alkaloids, polyphenols, terpenoids, flavonoids, saponins, and tannins, which are prevalent in the essential oils derived from therapeutic plants. By understanding their role in modulating molecular pathways, this study aims to highlight their potential in the treatment of inflammatory diseases. METHODS The study employs in silico techniques such as molecular modelling and docking to examine the pharmacokinetics and toxicity profiles of selected phytochemical. This approach facilitates a deeper understanding of how these natural compounds interact at the molecular level, either as activators or inhibitors, which can influence various biochemical pathways related to inflammation. RESULTS Preliminary findings suggest that specific phytochemical significantly modulate inflammatory pathways, offering potential therapeutic targets. The analysis reveals that these natural substances can effectively reduce inflammation without the adverse side effects commonly associated with synthetic drugs. The study provides a detailed characterization of the active components within essential oils and their respective anti-inflammatory actions. CONCLUSION The review underscores the immense potential for medicinal plants as a source for developing new and safer pharmaceuticals aimed at treating inflammatory conditions. By harnessing the power of natural phytochemical, there is a promising avenue for creating innovative drug therapies. This study encourages further research into the utilization of natural plant products, promoting a broader application in medicinal treatments and a return to nature-centric solutions in healthcare.
Collapse
Affiliation(s)
- Lopamudra Subudhi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India
| | - Amrita Banerjee
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan Deemed to be University, Campus 2, Kalinganagar, Bhubaneswar-751003, Odisha, India.
| |
Collapse
|
6
|
Manikanta K, NaveenKumar SK, Hemshekhar M, Thushara RM, Mugesh G, Kemparaju K, Girish KS. Quercetin inhibits platelet activation and ER-stress mediated autophagy in response to extracellular histone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156386. [PMID: 39842372 DOI: 10.1016/j.phymed.2025.156386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Cellular histones are DNA-binding nuclear proteins involved in chromatin remodelling and regulation of gene expression. However, extracellular histones act as damage-associated molecular patterns (DAMPs) and contribute to multiorgan damage in conditions with sepsis and diseases with acute critical illnesses. Alongside, histones are associated with thrombocytopenia due to dysfunctional platelets that regulate hemostasis and thrombosis. There is no drug available to prevent histone-induced platelet toxicity. Therefore, we for the first time examined quercetin (QUE) as a novel therapeutic to protect histone-induced platelet toxicity. PURPOSE To delineate how histones induce platelet toxicity and investigate the protective efficacy of quercetin (QUE), a natural dietary phytochemical. STUDY DESIGN/METHOD Histone-treated platelets were evaluated for platelet aggregation/activation markers, various autophagy-related signaling proteins, and cytotoxicity in vitro. For the inhibition study, QUE and other standard inhibitors were pre-treated before stimulation with histones. Further, we injected histones into mice in the presence or absence of QUE and evaluated the tail bleeding, lung toxicity, and circulatory platelet stress markers. Additionally, QUE-treated mice were challenged for histone-primed Collagen-epinephrine-induced pulmonary thromboembolism. RESULT Extracellular histones induce platelet activation and aggregation by interacting with sialic acid in TLR1/2 or TLR4. Also, we have demonstrated for the first time that histones induce ER stress-mediated autophagy in platelets. QUE inhibited histone-induced platelet activation, aggregation, and ER-stress-mediated autophagy in response to histone treatment. Ex vivo experiments indicate that oral administration of QUE can safeguard platelets while concurrently mitigating their response to histone stimulation. In addition, quercetin increased the survival rates of histone-primed, collagen-epinephrine-induced acute pulmonary thromboembolism in mice. CONCLUSION In summary, this study demonstrated the beneficial effect of QUE in protecting platelets with possible implications for addressing histone-accelerated pathologies.
Collapse
Affiliation(s)
- Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Somanathapura K NaveenKumar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Mahadevappa Hemshekhar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Ram M Thushara
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572103, India.
| |
Collapse
|
7
|
Ansari P, Reberio AD, Ansari NJ, Kumar S, Khan JT, Chowdhury S, Abd El-Mordy FM, Hannan JMA, Flatt PR, Abdel-Wahab YHA, Seidel V. Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines 2025; 13:454. [PMID: 40002867 PMCID: PMC11853317 DOI: 10.3390/biomedicines13020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Conditions like diabetes mellitus (DM), cancer, infections, inflammation, cardiovascular diseases (CVDs), and gastrointestinal (GI) disorders continue to have a major global impact on mortality and morbidity. Medicinal plants have been used since ancient times in ethnomedicine (e.g., Ayurveda, Unani, Traditional Chinese Medicine, and European Traditional Medicine) for the treatment of a wide range of disorders. Plants are a rich source of diverse phytoconstituents with antidiabetic, anticancer, antimicrobial, antihypertensive, antioxidant, antihyperlipidemic, cardioprotective, immunomodulatory, and/or anti-inflammatory activities. This review focuses on the 35 plants most commonly reported for the treatment of these major disorders, with a particular emphasis on their traditional uses, phytoconstituent contents, pharmacological properties, and modes of action. Active phytomolecules with therapeutic potential include cucurbitane triterpenoids, diosgenin, and limonoids (azadiradione and gedunin), which exhibit antidiabetic properties, with cucurbitane triterpenoids specifically activating Glucose Transporter Type 4 (GLUT4) translocation. Capsaicin and curcumin demonstrate anticancer activity by deactivating NF-κB and arresting the cell cycle in the G2 phase. Antimicrobial activities have been observed for piperine, reserpine, berberine, dictamnine, chelerythrine, and allitridin, with the latter two triggering bacterial cell lysis. Quercetin, catechin, and genistein exhibit anti-inflammatory properties, with genistein specifically suppressing CD8+ cytotoxic T cell function. Ginsenoside Rg1 and ginsenoside Rg3 demonstrate potential for treating cardiovascular diseases, with ginsenoside Rg1 activating PPARα promoter, and the PI3K/Akt pathway. In contrast, ternatin, tannins, and quercitrin exhibit potential in gastrointestinal disorders, with quercitrin regulating arachidonic acid metabolism by suppressing cyclooxygenase (COX) and lipoxygenase activity. Further studies are warranted to fully investigate the clinical therapeutic benefits of these plants and their phytoconstituents, as well as to elucidate their underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Alexa D. Reberio
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Nushrat J. Ansari
- Department of Radiology, National Medical College and Teaching Hospital, Parsa, Birgunj 44300, Nepal;
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Department of Genetics, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA;
| | - Joyeeta T. Khan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt;
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh (J.M.A.H.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (P.R.F.); (Y.H.A.A.-W.)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
8
|
Rohmawaty E, Wiraswati HL, Zahra TA, Amalina SN, Ramadhanti J, Rosdianto AM, Laelalugina A, Nasution GTD, Kamisah Y. Antioxidant and Anti-Inflammatory Potential of Cymbopogon nardus Ethanol Extract on 3T3-L1 Cells. J Inflamm Res 2025; 18:2125-2136. [PMID: 39963686 PMCID: PMC11830573 DOI: 10.2147/jir.s506189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose Cymbopogon nardus (L). Rendle has traditionally been recognized for its medicinal properties. Recent studies have suggested that its bioactive constituents possess antioxidant and anti-inflammatory properties. However, there is limited scientific evidence of its cellular effects. Given that the pathogenesis of many diseases involves oxidative stress and inflammation, this study aimed to evaluate the potential antioxidant and anti-inflammatory effects of the plant extracts in 3T3-L1 cells. Methods Phytochemical screening of C. nardus extracts was performed to identify bioactive compounds. Antioxidant activity of the extract was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide dismutase (SOD) assays. Toxicity was evaluated using the MTT assay. Additionally, the effects of the extract on the gene expression of hypoxia-inducible factor 1α (HIF-1α) in menadione-induced 3T3-L1 cells, as well as interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced 3T3-L1 cells, were investigated. Results Phytochemical screening revealed the presence of phenolics, tannins, alkaloids, and flavonoids in the ethanolic extracts. The extract demonstrated antioxidant activity, with IC50 values of 178.06 ppm for DPPH and 220 ppm for SOD. It did not affect the viability of 3T3-L1 cells at concentrations of up to 500 ppm. At 100 ppm, the extract increased cell viability (p<0.05) and reduced HIF-1α expression in the menadione-treated cells (p<0.05). Additionally, it decreased the expression of IL-6 and COX-2 in LPS-induced cells (p<0.05). Conclusion The ethanol extract of C. nardus demonstrated promising potential as an antioxidant and anti-inflammatory agent in 3T3-L1 cells. Further analysis is recommended to confirm the potential.
Collapse
Affiliation(s)
- Enny Rohmawaty
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Tamara Aliya Zahra
- Undergraduate Program Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Shabrina Nur Amalina
- Undergraduate Program Medical Doctor, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | | | - Amila Laelalugina
- Oncology and Stem Cell Working Group, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Gita Tiara Dewi Nasution
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, 40161, Indonesia
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 53000, Malaysia
| |
Collapse
|
9
|
Patel M, Wahezi S, Mavrocordatos P, Abd-Elsayed A. The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients 2025; 17:633. [PMID: 40004962 PMCID: PMC11858770 DOI: 10.3390/nu17040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Phytochemicals can be an essential treatment for chronic pain. This narrative review will summarize and critically analyze the evidence surrounding these substances in pain management. We will introduce phytochemicals, discuss their associated mechanisms, and comment on their viability for potential treatment. There have been decades of research on phytochemical therapies for pain management, but the authors limited the scope of the investigation to the last 25 years. This literature review will serve as a foundation for the pain practitioner to understand where these treatments fit in the paradigm for chronic pain treatment. Assess the integration of phytochemicals within pain management fully.
Collapse
Affiliation(s)
- Milan Patel
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Sayed Wahezi
- Department of Pain Managment, Montefiore Medical Center, Bronx, NY 10461, USA
| | | | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| |
Collapse
|
10
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Ojo OA, Ogunlakin AD, Gyebi GA, Ayokunle DI, Odugbemi AI, Babatunde DE, Akintunde EA, Ezea SC, Asogwa NT, Asaleye RM, Ojo AB. Profiling the antidiabetic potential of GC-MS compounds identified from the methanolic extract of Spilanthes filicaulis: experimental and computational insight. J Biomol Struct Dyn 2025; 43:1392-1413. [PMID: 38084747 DOI: 10.1080/07391102.2023.2291828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 01/04/2025]
Abstract
This study examines the nutritional composition, phytochemical profiling, and antioxidant, antidiabetic, and anti-inflammatory potential of a methanolic extract of Spilanthes filicaulis leaves (MESFL) via in vitro, ex vivo, and in silico studies. In vitro antioxidant, antidiabetic, and anti-inflammatory activities were examined. In the ex vivo study, liver tissues were subjected to FeSO4-induced oxidative damage and treated with varying concentrations of MESFL. MESFL contains a reasonable amount of nitrogen-free extract, moisture, ash content, crude protein, and fat, with a lesser amount of crude fiber. According to GC-MS analysis, MESFL contains ten compounds, the most abundant of which are 13-octadecenal and Ar-tumerone. In this study, MESFL demonstrated anti-inflammatory activities via membrane stabilizing properties, proteinase inhibition, and inhibition of protein denaturation (IC50 = 72.75 ± 11.06 µg/mL). MESFL also strongly inhibited both α-amylase (IC50 = 307.02 ± 4.25 µg/mL) and α-glucosidase (IC50 = 215.51 ± 0.47 µg/mL) activities. Our findings also showed that FeSO4-induced tissue damage decreased the levels of GSH, SOD, and CAT activities while increasing the levels of MDA. In contrast, treatment with MESFL helped to restore these parameters to near-normal levels, which signifies that MESFL has great potential to address complications from oxidative stress. Furthermore, the in silico interaction of the GCMS-identified phytochemicals with the active sites of α-amylase and α-glucosidase via molecular and ensembled-based docking displayed strong binding affinities of Ar-tumerone and 4-hydroxy-3-methylacetophenone to α-amylase and α-glucosidase, respectively. Taken together, the biological activities of MESFL might be a result of the effects of these secondary metabolites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Samson Chukwuemeka Ezea
- Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Nigeria
| | | | | | | |
Collapse
|
12
|
Chen Q, Xu Y, Tang P. Competitive Antagonism of Xylazine on α7 Nicotinic Acetylcholine Receptors and Reversal by Curcuminoids. ACS Chem Neurosci 2025; 16:232-240. [PMID: 39720886 PMCID: PMC11741004 DOI: 10.1021/acschemneuro.4c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs. Here, we report the discovery of α7 nicotinic acetylcholine receptors (α7 nAChRs) as targets of xylazine. In Xenopus oocytes expressing α7 nAChRs, xylazine competitively antagonizes channel currents elicited by the agonist acetylcholine. In PC12 cells, xylazine suppresses choline-stimulated intracellular calcium ([Ca2+]in) transients that are mediated by endogenously expressed α7 nAChRs. Furthermore, we find that curcuminoids, ivermectin, and the α7-specific positive allosteric modulator PNU120596 can effectively offset the xylazine inhibition of α7 nAChRs. Considering the prominent role of α7 nAChRs in the cholinergic anti-inflammatory pathway and wide expression in the human body, our findings present a potential new strategy to reverse xylazine-caused damage using curcuminoids or repurposing ivermectin. This α7 nAChR-focused strategy may offer an immediate deployment that is likely effective in improving xylazine-related treatment outcomes.
Collapse
Affiliation(s)
- Qiang Chen
- Department
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Department
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Department
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Kannan G, Paul BM, Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: a comprehensive review. Inflammopharmacology 2025; 33:145-162. [PMID: 39776026 DOI: 10.1007/s10787-024-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Nuclear factor kappa B (NF-kB) is a kind of transcription factor which resides in cytoplasm of each cell and on activation, it translocates to the nucleus. It is activated by a many inducible agents including endotoxins, inflammatory stimuli, carcinogens, pathogens, nicotine, and tumour promoters, etc. NF-kB is activated by canonical and non-canonical signalling pathways which has different signalling compounds and its biological functions. It controls the expression of 400 different genes including various enzymes, cytokines, viral proteins, regulatory molecules involved in the cell cycle etc. This pathway is linked with various ailments including respiratory diseases, inflammatory diseases, auto immune diseases, cancer and diabetes. NF-kB factor and signalling pathway are the mainstream of the innate and adaptive immune responses. Human subjects have been able to curb inflammation through inflammaging with the help of the phytomolecules interacting with the NF-κB pathway by adjusting the inflammation processes and alleviating aging stresses in cells. They successfully inhibit the activation of NF-κB, thereby curtailing chronic low-grade inflammation underlying both ageing and age-related disease processes. These phytocompounds discussed herewith not only down-regulate NF-κB-dependent pro-inflammatory pathways but also help build resilience at cellular levels, therefore, offering enhanced healthspan with late commencement of inflammaging pathogenesis. This review describes what stimulation and regulation of the Nuclear Factor kappa B (NF-kB) Pathway and its roles in the pathogenesis of human age related diseases. We also review the recent progress in attenuating the molecular mechanisms of the NF-kB Pathway by phytochemicals, which may open up novel therapeutic avenues.
Collapse
Affiliation(s)
- Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
14
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
15
|
Archibong EA, Beshel JA, Okon IA, Ikum GA, Anaba SC, Owu DU. Cardioprotective Effect of Peperomia pellucida against Doxorubicin-Induced Cardiotoxicity in Wistar Rats via Modulation of Electrocardiographic and Cardiac Biomarkers. J Pharmacopuncture 2024; 27:297-307. [PMID: 39741574 PMCID: PMC11656054 DOI: 10.3831/kpi.2024.27.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Objectives This study assessed the electrocardiographic pattern and cardiac inflammatory response of doxorubicin-induced myocardial injury in Wistar rats treated with Peperomia pellucida ethanol extract. Methods Female Wistar rats (190-200 g) were assigned into five groups of seven rats each. The Group 1 (Control group) was given rat chow and drinking water while the Group 2 (doxorubicin group) received intraperitoneal administration of doxorubicin (2 mg/kg) once weekly for three weeks. The Group 3 (Peperomia pellucida group) received 200 mg/kg of ethanolic extract of Peperomia pellucida daily. Group 4 (Doxorubicin + P. pellucida group) received doxorubicin in addition to Peperomia pellucida. Group 5 (Captopril (50 mg/kg) was administered to another group in addition to P. pellucida while the doxorubicin + captopril group was administered captopril in addition to doxorubicin. Electrical recording and cardiac markers were evaluated. Results The results revealed a significant (p < 0.01) elevation of T-wave and altered electrocardiographic parameters in the doxorubicin group than the control, P. pellucida, and other experimental groups. The heart rate, cardiac troponin level, lactate dehydrogenase, creatine kinase, angiotensin-converting enzyme activities, and inflammatory biomarkers were significantly (p < 0.01) higher while nitric oxide level was significantly (p < 0.05) reduced in the doxorubicin-only group compared to the control. Cardiac cell hypertrophy and inflammatory cell infiltration were observed due to doxorubicin administration. Treatment with P. pellucida extract and captopril reversed these trends and improved the antioxidants and inflammatory activities. Conclusion Peperomia pellucida extract improves electrocardiographic pattern, has cardioprotective ability, and prevents doxorubicin-induced myocardial injury probably due to its phytochemical constituents and anti-inflammatory properties.
Collapse
Affiliation(s)
| | | | - Idara Asuquo Okon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Glory Aidam Ikum
- College of Korean Medicine, Woosuk University, Wanju, Republic of Korea
| | | | - Daniel Udofia Owu
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Montanari M, Mercuri NB, Martella G. Exceeding the Limits with Nutraceuticals: Looking Towards Parkinson's Disease and Frailty. Int J Mol Sci 2024; 26:122. [PMID: 39795979 PMCID: PMC11719863 DOI: 10.3390/ijms26010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
One of the most pressing challenges facing society today is the rising prevalence of physical and cognitive frailty. This geriatric condition makes older adults more vulnerable to disability, illness, and a heightened risk of mortality. In this scenario, Parkinson's disease (PD) and geriatric frailty, which share several common characteristics, are becoming increasingly prevalent worldwide, underscoring the urgent need for innovative strategies. Nutraceuticals are naturally occurring bioactive compounds contained in foods, offering health benefits over and above essential nutrition. By examining the literature from the past decade, this review highlights how nutraceuticals can act as complementary therapies, addressing key processes, such as oxidative stress, inflammation, and neuroprotection. Notably, the antioxidant action of nutraceuticals appears particularly beneficial in regard to PD and geriatric frailty. For instance, antioxidant-rich nutraceuticals may mitigate the oxidative damage linked to levodopa therapy in PD, potentially reducing the side effects and enhancing treatment sustainability. Similarly, the antioxidant effects of nutraceuticals may amplify the benefits of physical activity, enhancing muscle function, cognitive health, and resilience, thereby reducing the risk of frailty. This review proposes a holistic approach integrating nutraceuticals with exercise, pharmacotherapy, and lifestyle adjustments. It promises to transform the management of ARD, prolong life, and improve the quality of life and well-being of older people.
Collapse
Affiliation(s)
- Martina Montanari
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Wellbeing, Nutrition and Sport, Faculty of Humanities Educations and Sports, Pegaso Telematics University, 80145 Naples, Italy
| |
Collapse
|
17
|
Wang A, Xie M, Wu L. Spectroscopic and Molecular Docking Studies on the Influence of Inulin on the Interaction of Sophoricoside with Whey Protein Concentrate. Foods 2024; 13:3601. [PMID: 39594016 PMCID: PMC11593304 DOI: 10.3390/foods13223601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/13/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The influence of inulin on the interaction of sophoricoside (Sop) with whey protein concentrate (WPC) was investigated using various spectroscopic methods, including fluorescence spectroscopy (intrinsic fluorescence, synchronous fluorescence, and three-dimensional fluorescence), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular docking. Sop was found to quench the intrinsic fluorescence of WPC by a static mechanism, both with and without the addition of inulin, and to enhance the antioxidant capacity of the protein. The addition of inulin slightly increased the binding distance between WPC and Sop, while reducing the number of binding sites from two to one. Non-covalent interactions, predominantly van der Waals forces and hydrogen bonding, were maintained between Sop and the protein. Synchronous fluorescence spectroscopy revealed that Sop prevents the exposure of hydrophobic groups on tryptophan residues, leading to increased surface hydrophilicity of the WPC complex. This aligns with the decreased protein surface hydrophobicity measured by 8-Anilino-1-naphthalenesulfonic acid (ANS) binding assays. With inulin, the overall hydrophobicity of the protein was lower than in the system without inulin, suggesting that both inulin and Sop improve the solubility of WPC. Three-dimensional fluorescence spectral analysis showed a reduction in fluorescence intensity and a red shift in the presence of both Sop and inulin. FTIR spectroscopy indicated a slight increase in the secondary structure ordering of WPC following the addition of both Sop and inulin, suggesting structural stabilization under heating conditions. Molecular docking highlighted the potential for hydrogen bond formation between Sop and WPC.
Collapse
Affiliation(s)
- Anna Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China
| | - Mengyang Xie
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| | - Ligen Wu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; (A.W.); (M.X.)
| |
Collapse
|
18
|
Lv Y, Xu Y, Liu S, Zeng X, Yang B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem Biophys 2024:10.1007/s12013-024-01595-0. [PMID: 39499389 DOI: 10.1007/s12013-024-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Psoriasis is a long-term inflammatory skin condition marked by an overabundance of keratinocytes and the release of pro-inflammatory cytokines in the outer layer of skin. For the comprehensive management of intermediate to advanced psoriasis, innovative biological treatments have been developed. Products for the superficial therapy of mild to moderate psoriasis are still necessary, though. Trifolium pratense contains the isoflavone biochanin A (BCA), which exhibits antiviral, antioxidant, anti-carcinogenic, and anti-inflammatory properties, and helps protect the integrity and function of the endothelium. Although investigations have not shown that BCA is effective in treating psoriasis, it has been shown to slow down the breakdown of the skin barrier by regulating keratinocyte growth. We sought to clarify the basic mechanisms behind BCA's impact on psoriasis in vitro and in vivo using experimental research via regulating Nrf2/HO-1 signaling pathway. By subjecting human primary keratinocytes to psoriasis-related cytokines, psoriasis-like keratinocytes were produced. The CCK8 test was used in this investigation to assess cell viability. BCA reduced keratinocyte growth and inflammatory cascade stimulation produced by TNF-α and IL-6, according to in vitro investigations conducted on HaCaT cells. The in vivo findings showed that six days of BCA therapy significantly decreased the skin, hematological indicators, levels of NO, TBARS, histopathological, and pro-inflammatory factors of COX-2, iNOS, NF-κB pathway. It additionally influenced the protein content of pro-inflammatory cytokines such as IL-17, IL-23, IL-1β in the epidermis along with IL-6, TNF-α among the epidermis and serum. In addition, in contrast to the IMQ group, BCA improved the skin's level of Nrf2/HO-1 protein, anti-inflammatory cytokine IL-10, and antioxidant indicators like SOD, CAT, GST, GSH, GR, and Vit-C. Ultimately, our research shows that BCA was effective in treating psoriasis in pre-clinical animal models by activating the Nrf2/HO-1 pathway, leading to an increase in antioxidant and anti-inflammatory markers.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Dermatology and Venereology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| | - Yingsheng Xu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Songchun Liu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Xianjing Zeng
- General Practice Medicine, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China
| | - Bin Yang
- Department of Dermatology, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China, Jinggangshan University, Ji 'an, Jiangxi, 343009, China.
| |
Collapse
|
19
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
20
|
Endalew SA, Abebaw BT. Exploring the Anti-Inflammatory Potential of Ajuga integrifolia Leaves Extract: In Vitro Dual Inhibition of Cyclooxygenase and Lipoxygenase Enzymes. Adv Pharmacol Pharm Sci 2024; 2024:2938314. [PMID: 39502576 PMCID: PMC11535186 DOI: 10.1155/2024/2938314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the anti-inflammatory properties of Ajuga integrifolia, an herbal preparation. Qualitative and quantitative phytochemical analyses were conducted to identify active compounds in the preparation. The researchers also assessed its ability to inhibit the production of pro-inflammatory enzymes, cyclooxygenases (COX-1, COX-2), and lipoxygenase (5-LOX) in vitro. The extracts demonstrated dose-dependent inhibition of these enzymes, with some extracts showing IC50 values comparable to standard anti-inflammatory drugs. The ethanol extract exhibited significant inhibition of 5-LOX (52.99 μg/mL), compared to the standard drug zileuton (32.41 μg/mL), while the inhibition of COX-1 (66.00 μg/mL) and COX-2 (71.62 μg/mL) was comparable to the standard drug indomethacin (40.57 and 54.39 μg/mL, respectively). These findings suggest that A. integrifolia has the potential to be used as a herbal remedy for treating inflammatory conditions. By inhibiting pro-inflammatory enzymes, the extracts may effectively reduce inflammation and promote tissue healing or repair. The inhibition potential of extract of this plant can be taken as a good candidate of anti-inflammatory agent.
Collapse
Affiliation(s)
- Sisay Awoke Endalew
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Belete Tesfaw Abebaw
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| |
Collapse
|
21
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
22
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
23
|
Zhou K, Peng L, Jing Y, Luo Y, Yan Y, Zhang G, Guo Q, Yang B. Comparison of the difference in the anti-inflammatory activity of two different color types of Farfarae Flos based on in vitro, in vivo experiments and untargeted metabolomics. Front Pharmacol 2024; 15:1463864. [PMID: 39380909 PMCID: PMC11459686 DOI: 10.3389/fphar.2024.1463864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Due to its remarkable anti-inflammatory pharmacological activity, Farfarae Flos has gained extensive usage in the treatment of various inflammatory diseases such as bronchitis, pneumonia, prostatitis and colitis. And Farfarae Flos come in two color types depending on the color of the flowers: yellowish-white (YW), and purplish-red (PR). However, the difference in anti-inflammatory activity and metabolic profiles between the two flower colors remains unexplored. Methods This study aims to explore the difference in the anti-inflammatory potential between YW and PR variants of Farfarae Flos and unravel the mechanisms responsible for the observed differences in anti-inflammatory activity through an integrated approach encompassing untargeted metabolomics and in vivo/vitro experimental studies. Initially, we verified the contrasting effects of YW and PR on the inhibition of the inflammatory factors interleukin-6 (IL-6) and nitric oxide (NO) by utilizing an in vitro RAW 264.7 cell inflammation model. Subsequently, a comprehensive evaluation of the systemic inhibitory capacity of YW and PR on IL-6, Interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) was conducted using a validated whole-body mouse model, followed by the analysis of inflammatory factors and histological examination of collected serum, liver, and spleen after 7 days. Furthermore, non-targeted metabolomics profiling was employed to analyze the metabolite profiles of Farfarae Flos with different colors, and quantitative analysis was conducted to identify differential metabolites between YW and PR. The correlation between the anti-inflammatory activities of differentially accumulated metabolites (DAMs) and Farfarae Flos was investigated, resulting in the identification of 48 compounds exhibiting significant anti-inflammatory activity. Additionally, KEGG pathway enrichment analysis was performed to elucidate the underlying mechanisms. Results Our findings demonstrate that both YW and PR possess anti-inflammatory abilities, with PR exhibiting significantly superior efficacy. The integration of in vivo/vitro experiments and non-targeted metabolomics confirmed the exceptional anti-inflammatory potential of PR and solidified its classification as the "purplish-red better" of Farfarae Flos. Discussion This study provides valuable insights into the breeding and medical transformation of Farfarae Flos varieties, along with a scientific basis for the establishment of quality standards and the development of new drugs utilizing Farfarae Flos.
Collapse
Affiliation(s)
- Kexin Zhou
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Liang Peng
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Yiyao Jing
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Yao Luo
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Yonggang Yan
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Gang Zhang
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Qi Guo
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| | - Bingyue Yang
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, China
- Key Laboratory for Research of “Qin Medicine” of Shaanxi Administration of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
24
|
Park SH. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation. Antioxidants (Basel) 2024; 13:1099. [PMID: 39334758 PMCID: PMC11428386 DOI: 10.3390/antiox13091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
There have been many studies reporting that the regular consumption of fruits and vegetables is associated with reduced risks of cancer and age-related chronic diseases. Recent studies have demonstrated that reducing reactive oxygen species and inflammation by phytochemicals derived from natural sources can extend lifespans in a range of model organisms. Phytochemicals derived from fruits and vegetables have been known to display both preventative and suppressive activities against various types of cancer via in vitro and in vivo research by interfering with cellular processes critical for tumor development. The current challenge lies in creating tailored supplements containing specific phytochemicals for individual needs. Achieving this goal requires a deeper understanding of the molecular mechanisms through which phytochemicals affect human health. In this review, we examine recently (from 2010 to 2024) reported plant extracts and phytochemicals with established anti-aging and anti-cancer effects via the activation of FOXO3 transcriptional factor. Additionally, we provide an overview of the cellular and molecular mechanisms by which these molecules exert their anti-aging and anti-cancer effects in specific model systems. Lastly, we discuss the limitations of the current research approach and outline for potential future directions in this field.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
25
|
Mayakrishnan V, Thirupathi A, Ramamoorthy K, Annadurai K, Prakasam R, Gu Y, Kim CY, Ramasamy M, Karimpanchola H, Kannappan P, Vijayakumar N, Venkatesan Kumari B, Singaravelu A. Chemical Composition Analysis and Assessment of Antioxidant and Anti-Inflammatory Activities of Crude Extract of Flueggea leucopyrus on Carrageenan-Induced Paw Edema in Wistar Albino Rats. Antioxidants (Basel) 2024; 13:976. [PMID: 39199223 PMCID: PMC11351626 DOI: 10.3390/antiox13080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
A member of the Phyllanthaceae family, Flueggea leucopyrus is a well-known plant in the tribal areas of Sri Lanka, India's Shaurastra region, Australia, and Malaysia. This study provides information about Flueggea leucopyrus, a plant with a wide range of therapeutic uses in India. Different extracts from the leaves and roots of Flueggea leucopyrus were evaluated for their physical and chemical properties, preliminary phytochemical parameters, and pharmacological activities in the current study, followed by their fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS), antioxidant, and anti-inflammatory properties. The aqueous extract of Flueggea leucopyrus leaves and roots have more different phytochemical elements than other solvent extracts, according to physico-chemical tests and phytochemical screening. As a result, the FT-IR, GC-MS, antioxidant, and anti-inflammatory activities of an aqueous extract were tested. Studies on hind paw edemas caused by carrageenan in albino rats examined the mean increase in paw volume and the percentage inhibition in paw volume at various time points following the injection of carrageenan (1% w/v). In comparison to the norm, these inhibitions were statistically significant (p < 0.001). The aqueous extract of Flueggea leucopyrus leaves and roots have both antioxidative and anti-inflammatory activities, indicating that it has the potential to be used in the formulation of antioxidant and anti-inflammatory medications in the future.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Kavitha Ramamoorthy
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India;
| | - Kaliappan Annadurai
- Department of Biotechnology, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri 635 205, Tamil Nadu, India;
| | - Radha Prakasam
- Siddha Medicinal Plants Garden, (Central Council for Research in Siddha, Ministry of Ayush, Government of India), Mettur Dam, Salem 636 401, Tamil Nadu, India; (R.P.); (H.K.)
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo 315010, China; (V.M.); (A.T.); (Y.G.)
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Mahadevi Ramasamy
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India;
| | - Habeebmon Karimpanchola
- Siddha Medicinal Plants Garden, (Central Council for Research in Siddha, Ministry of Ayush, Government of India), Mettur Dam, Salem 636 401, Tamil Nadu, India; (R.P.); (H.K.)
| | - Priya Kannappan
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Affiliated to Bharathiar University, Coimbatore 641014, Tamil Nadu, India;
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (B.V.K.)
| | - Bhuvaneshwari Venkatesan Kumari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (B.V.K.)
| | - Anand Singaravelu
- Department of Chemistry, Saveetha Engineering College (Autonomous), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India;
| |
Collapse
|
26
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
27
|
Walvekar KP, Tirunavalli SK, Eedara AC, Chandra Y, Kuncha M, B R Kumar A, Sistla R, Andugulapati SB, Chilaka S. Biochanin A Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice by Modulating the NF-κB and MAPK Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02103-5. [PMID: 39017810 DOI: 10.1007/s10753-024-02103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Psoriasis is a chronic skin inflammatory disorder characterized by the hyper-activation of the immune system and the over-proliferation of epidermal keratinocytes. This study aimed to investigate the anti-psoriatic activity of Biochanin A (BCA), a phytomolecule with known anti-inflammatory and anti-cancer properties, using the IMQ-induced psoriasis-like mouse model. Network pharmacology analysis was performed to investigate the targetability of Biochanin A (BCA) against psoriasis. Psoriasis-like skin inflammation was established using BALB/c mice by topical application of IMQ (5%). BCA cream (0.3%, 1%, 3%) was applied on the skin regions every day for 6 days. The skin phenotypes-erythema and scaling were scored every day. On the 7th day, skin tissues were collected for gene expression analysis, histopathological analysis, cytokine levels determination, and western blot analysis for signaling mechanisms. The network pharmacology analysis has identified 57 common targets between psoriasis and BCA. The topical application of IMQ induced a typical psoriasis-like skin phenotype including redness, skin thickening, and plaque formation. Upon BCA treatment, the psoriasis-like symptoms were significantly reduced in a dose-dependent manner. The targets identified by the network pharmacology (MMP9, EGFR, and PTGS2) and the pro-inflammatory cytokine gene expression were found to be significantly elevated in IMQ controls, and upon BCA treatment they were found significantly reduced. The release of cytokines linked to psoriasis (IL-17A and IL-23) were significantly reduced upon BCA treatment. Furthermore, our findings demonstrated that BCA treatment alleviated the psoriasis-like symptoms via modulating NF-κB and MAPK signaling pathways. Our results demonstrate the therapeutic potential of BCA against IMQ-induced psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Komal Paresh Walvekar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Abhisheik Chowdary Eedara
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ashwin B R Kumar
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| | - Sabarinadh Chilaka
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
28
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
29
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
30
|
Yang X, Hu R, Yao L, Zhang W, Shi M, Gong J, Yuan X, Li Y, Yan J, Wang Y, Zhang Q, He Z, Hou DX, Fan Z, Zhang H, Chen L, He X, He J, Wu S. The role of uterus mitochondrial function in high-fat diet-related adverse pregnancy outcomes and protection by resveratrol. Food Funct 2024; 15:4852-4861. [PMID: 38573228 DOI: 10.1039/d4fo00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.
Collapse
Affiliation(s)
- Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Liping Yao
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Wentao Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jiatai Gong
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Xupeng Yuan
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Yanli Li
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jiahao Yan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Ziyu He
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Zhiyong Fan
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
31
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
32
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
33
|
Pantalos G, Vaou N, Papachristidou S, Stavropoulou E, Tsigalou C, Voidarou C, Bezirtzoglou E. Antioxidant and Anti-Inflammatory Phytochemicals for the Treatment of Inflammatory Bowel Disease: A Systematic Review. APPLIED SCIENCES 2024; 14:2177. [DOI: 10.3390/app14052177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Inflammatory bowel disease (IBD) remains a burden for patients with increasing prevalence in industrialized countries. Phytochemicals are non-nutrient plant derived bioactive substances with antioxidant and anti-inflammatory effects that may prove beneficial to IBD patients. This review aims to overview current evidence on the application and impact of isolated phytochemicals or phytochemicals contained in plant extracts and essential oils on patients suffering from IBD. A systematic literature search was conducted for studies relating to the use of phytochemicals for the treatment of IBD. Ultimately, 37 human clinical trials and 3 systematic reviews providing human IBD patient data relevant to phytochemicals as therapeutic agents were included. Phytochemicals in the form of curcumin, Plantago ovata seeds, polyphenon E, silymarin, resveratrol supplements or an herbal preparation of myrrh, chamomile and coffee charcoal have evidence from human clinical trials supporting their safety and beneficial effects. Cannabinoids improve quality of life but not IBD outcomes. The addition of probiotics like B. longum to fructo-oligosaccharides promote healthy composition of the gut microbiome. Phytochemicals like mastiha, anthocyanins, berberine, tormentil, T2, ecabet sodium and Pycnogenol need more well-designed trials. Systematic research on phytochemicals can lead to the discovery of useful therapeutics. These secondary metabolites can be incorporated in current IBD treatment strategies to limit side effects, promote mucosal healing and provide higher quality of life to patients.
Collapse
Affiliation(s)
- George Pantalos
- Pediatric Surgery Department, Penteli General Children’s Hospital, 15236 Athens, Greece
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Smaragda Papachristidou
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, P.&A. Kyriakou Children’s Hospital, 11527 Athens, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Chrysa Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| |
Collapse
|
34
|
Panda AA, Behera JP, Ramani YR, Panda A, Kar PP, Panigrahy SR. Antiarthritic potential of ethanolic extract of Ixora coccinea leaves on complete Freund's adjuvant-induced arthritis in animal model. Indian J Pharmacol 2024; 56:112-119. [PMID: 38687315 PMCID: PMC11161007 DOI: 10.4103/ijp.ijp_210_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
CONTEXT Ixora coccinea leaves possess antioxidant, anti-inflammatory, antinociceptive, antimutagenic, and gastroprotective properties. On this background, its antiarthritic potential was evaluated. AIMS The objective is to evaluate the effect of Ethanolic extract of Ixora coccinea leaves (EEICL) on complete Freund's adjuvant-induced arthritis in rats. SETTINGS AND STUDY DESIGN PG research laboratory, Pharmacology Department, MKCG Medical College, Berhampur, Odisha. SUBJECTS AND METHODS Thirty-six Wistar albino rats were randomly distributed into sixgroups (n = 6) as follows: Gr 1 (normal control)-DW p.o, Gr-2 (disease control [DC] - Tween 80 p.o), Gr-3 (piroxicam 0.9 mg/kg p.o), Gr-4 (EEICL-1 g/kg, p.o, Gr 4-EEICL-1.5 g/kg p.o, Gr 5-ED50 (0.82 g/kg) + piroxicam (0.45 mg/kg) p.o. After induction of arthritis, drugs, and vehicles were administered daily from 5th to 25th day. On 0, 5th, 10th, 15th, and 25th day, parameters like body weight, rotarod fall time, paw volume displacement, and arthritis index were measured. On the last day, Erythrocyte sedimentation rate (ESR), tissue malondialdehyde (MDA), and histopathological analysis were done. STATISTICAL ANALYSIS USED Analysis of parametric data was done by one-way ANOVA and nonparametric data by Kruskal-Wallis test using graph pad prism 7.0. P < 0.05 was considered statistically significant. RESULTS EEICL (1.5 mg/kg) showed anti-arthritic effect compared with DC. Rotarod fall-off time 137.5 ± 2.5 sec and body weight (139 ± 12.74 g) were increased significantly. The percentage inhibition of paw volume was increased(52%) whereas arthritic score(0.33), ESR(3.51mm/hr), synovial tissue MDA level (0.62±0.13µmol/gm) and Mankin score(2) were reduced significantly as compared to disease control. CONCLUSIONS EEICL has anti-arthritic potential in rat model.
Collapse
|
35
|
Jayakumar R, Dash MK, Gulati S, Pandey A, Trigun SK, Joshi N. Preliminary data on cytotoxicity and functional group assessment of a herb-mineral combination against colorectal carcinoma cell line. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:61-70. [PMID: 38016708 DOI: 10.1515/jcim-2023-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES The invasive screening methods and the late stage diagnosis of colorectal carcinoma (CRC) are contributing for the devastative prognosis. The gradual shift of the disease pattern among younger generations requires the implementation of phytochemicals and traditional medicines. Arkeshwara rasa (AR) is a herb-mineral combination of Tamra bhasma/incinerated copper ashes and Dwigun Kajjali/mercury sulphide levigated with Calotropis procera leaf juice, Plumbago zeylanica root decoction and the decoction of three myrobalans (Terminalia chebula, Terminalia bellerica, Emblica Officinalis decoction)/Triphala decoction. METHODS The SW-480 cell line was checked for the cytotoxicity and the cell viability criteria with MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. The acridine orange/ethidium bromide (AO/EtBr) assay revealed the depth of apoptosis affected cells in the fluorescent images. The FTIR analysis exhibited the graphical spectrum of functional groups within the compound AR. RESULTS The IC50 from the 10-7 to 10-3 concentrations against SW-480 cells was 40.4 μg/mL. The staining of AO/EtBr was performed to visualize live and dead cells and it is evident from the result that number of apoptotic cells increases at increasing concentration of AR. The single bond with stretch vibrations of O-H and N-H are more concentrated in the 2,500-3,200 cm-1 and 3,700-4,000 cm-1 of the spectra whereas, the finger print region carries the O-H and S=O type peaks. CONCLUSIONS The AR shows strong cyto-toxicity against the SW-480 cells by inducing apoptosis. It also modulates cellular metabolism with the involvement of functional groups which antagonizes the strong acids. Moreover, these effects need to be analyzed further based in the in vivo and various in vitro models.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasa Shastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, India
| | - Manoj Kumar Dash
- Department of Rasa Shastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, Chhattisgarh, India
| | - Saumya Gulati
- Department of Rasa Shastra and Bhaishajya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Namrata Joshi
- Department of Rasa Shastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, India
| |
Collapse
|
36
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2024; 63:425-433. [PMID: 37971692 DOI: 10.1007/s00394-023-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1β slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Rehman IU, Saleem M, Raza SA, Bashir S, Muhammad T, Asghar S, Qamar MU, Shah TA, Bin Jardan YA, Mekonnen AB, Bourhia M. Anti-ulcerative colitis effects of chemically characterized extracts from C alliandra haematocephala in acetic acid-induced ulcerative colitis. Front Chem 2024; 12:1291230. [PMID: 38476652 PMCID: PMC10927971 DOI: 10.3389/fchem.2024.1291230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background: Ulcerative colitis is a chronic immune-mediated inflammatory bowel disease that involves inflammation and ulcers of the colon and rectum. To date, no definite cure for this disease is available. Objective: The objective of the current study was to assess the effect of Calliandra haematocephala on inflammatory mediators and oxidative stress markers for the exploration of its anti-ulcerative colitis activity in rat models of acetic acid-induced ulcerative colitis. Methods: Methanolic and n-hexane extracts of areal parts of the plant were prepared by cold extraction method. Phytochemical analysis of both extracts was performed by qualitative analysis, quantitative methods, and high-performance liquid chromatography (HPLC). Prednisone at 2 mg/kg dose and plant extracts at 250, 500, and 750 mg/kg doses were given to Wistar rats for 11 days, which were given acetic acid on 8th day through the trans-rectal route for the induction of ulcerative colitis. A comparison of treatment groups was done with a normal control group and a colitis control group. To evaluate the anti-ulcerative colitis activity of Calliandra haematocephala, different parameters such as colon macroscopic damage, ulcer index, oxidative stress markers, histopathological examination, and mRNA expression of pro and anti-inflammatory mediators were evaluated. mRNA expression analysis was carried out by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Results: The phytochemical evaluation revealed polyphenols, flavonoids, tannins, alkaloids, and sterols in both extracts of the plant. Results of the present study exhibited that both extracts attenuated the large bowel inflammation and prevented colon ulceration at all tested doses. Macroscopic damage and ulcer scoreswere significantly decreased by both extracts. Malondialdehyde (MDA) levels and nitrite/nitrate concentrations in colon tissues were returned to normal levels while superoxide dismutase (SOD) activity was significantly improved by all doses. Histopathological examination exhibited that both extracts prevented the inflammatory changes, cellular infiltration, and colon thickening. Gene expression analysis by RT-qPCR revealed the downregulation of pro-inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) whereas the anti-inflammatory cytokines including Interleukin-4 (IL-4) and Interleukin-10 (IL-10) were found to be upregulated in treated rats. Conclusion: It was concluded based on study outcomes that methanolic and n-hexane extracts of Calliandra haematocephala exhibited anti-ulcerative colitis activity through modulation of antioxidant defense mechanisms and the immune system. In this context, C. haematocephala can be considered as a potential therapeutic approach for cure of ulcerative colitis after bioassay-directed isolation of bioactive phytochemicals and clinical evaluation.
Collapse
Affiliation(s)
- Inaam Ur Rehman
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Saher Bashir
- Department of Chemistry, Faculty of Sciences, University of the Punjab, Lahore, Pakistan
| | - Taha Muhammad
- Shalamar Medical and Dental College, Lahore, Pakistan
| | - Shahzad Asghar
- Department of Pharmacy, University of South Asia, Lahore, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
38
|
Baron G, Altomare A, Della Vedova L, Gado F, Quagliano O, Casati S, Tosi N, Bresciani L, Del Rio D, Roda G, D'Amato A, Lammi C, Macorano A, Vittorio S, Vistoli G, Fumagalli L, Carini M, Leone A, Marino M, Del Bo' C, Miotto G, Ursini F, Morazzoni P, Aldini G. Unraveling the parahormetic mechanism underlying the health-protecting effects of grapeseed procyanidins. Redox Biol 2024; 69:102981. [PMID: 38104483 PMCID: PMC10770607 DOI: 10.1016/j.redox.2023.102981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Proanthocyanidins (PACs), the predominant constituents within Grape Seed Extract (GSE), are intricate compounds composed of interconnected flavan-3-ol units. Renowned for their health-affirming properties, PACs offer a shield against a spectrum of inflammation associated diseases, such as diabetes, obesity, degenerations and possibly cancer. While monomeric and dimeric PACs undergo some absorption within the gastrointestinal tract, their larger oligomeric and polymeric counterparts are not bioavailable. However, higher molecular weight PACs engage with the colonic microbiota, fostering the production of bioavailable metabolites that undergo metabolic processes, culminating in the emergence of bioactive agents capable of modulating physiological processes. Within this investigation, a GSE enriched with polymeric PACs was employed to explore in detail their impact. Through comprehensive analysis, the present study unequivocally verified the gastrointestinal-mediated transformation of medium to high molecular weight polymeric PACs, thereby establishing the bioaccessibility of a principal catabolite termed 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL). Notably, our findings, encompassing cell biology, chemistry and proteomics, converge to the proposal of the notion of the capacity of VL to activate, upon oxidation to the corresponding quinone, the nuclear factor E2-related factor 2 (Nrf2) pathway-an intricate process that incites cellular defenses and mitigates stress-induced responses, such as a challenge brought by TNFα. This mechanistic paradigm seamlessly aligns with the concept of para-hormesis, ultimately orchestrating the resilience to stress and the preservation of cellular redox equilibrium and homeostasis as benchmarks of health.
Collapse
Affiliation(s)
- G Baron
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Della Vedova
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - F Gado
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - O Quagliano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Casati
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | - N Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - L Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - D Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - G Roda
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - C Lammi
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Macorano
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - S Vittorio
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - G Vistoli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - L Fumagalli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - M Carini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - A Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Via Sandro Botticelli 21, 20133, Milan, Italy; Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - M Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - C Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133, Milan, Italy
| | - G Miotto
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - F Ursini
- Department of Molecular Medicine, Viale G. Colombo, 3, University of Padova, 35121, Padova, Italy
| | - P Morazzoni
- Divisione Nutraceutica, Distillerie Umberto Bonollo S.p.A, 35035, Mestrino, Italy
| | - G Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
39
|
Rajasekar N, Gandhi D, Sivanantham A, Ravikumar V, Raj D, Paramasivam SG, Mukhopadhyay S, Rajasekaran S. Dietary tannic acid attenuates elastase-induced pulmonary inflammation and emphysema in mice. Inflammopharmacology 2024; 32:747-761. [PMID: 37947914 DOI: 10.1007/s10787-023-01381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Emphysema is one of the major components of chronic obstructive pulmonary disease (COPD), which is characterised by the destruction and enlargement of air spaces, leading to airflow limitation and dyspnoea, finally progressing to oxygen dependency. The alveolar wall destruction is due to chronic inflammation, oxidative stress, apoptosis, and proteinase/anti-proteinase imbalance. So far, there has been no effective therapy for patients with COPD. We evaluated the therapeutic efficacy of tannic acid (TA), a naturally occurring plant-derived polyphenol in the murine emphysema model. In C57BL/6 J mice, we established emphysema by intratracheal instillation of elastase (EL). Then, mice were treated with TA and evaluated 1 and 21 days post-EL instillation. After 24 h, TA treatment significantly reduced EL-induced histopathological alterations, infiltrating leukocytes, and gene expression of markers of inflammation and apoptosis. Similarly, after 21 days, TA treatment suppressed the mean linear intercept, gene expression of proteinases, and increased elastic fiber contents in the lungs when compared to the EL-alone group. Furthermore, EL induced the activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) p65 pathways in the lungs was suppressed by TA treatment. In summary, TA has the potential to mitigate EL-induced inflammation, apoptosis, proteinase/anti-proteinase imbalance, and subsequent emphysema in mice.
Collapse
Affiliation(s)
- Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Deepa Gandhi
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, 02118, USA
| | - Vilwanathan Ravikumar
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Dharma Raj
- Division of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh 462030, India
| | | | - Sramana Mukhopadhyay
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462026, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
40
|
Fofie Tedongmo AD, Mvondo MA. Allium ampeloprasum var. Porrum (Alliaceae) Improves Metabolic and Reproductive Disorders Associated with Polycystic Ovary Syndrome in Wistar Rats. Biochem Res Int 2024; 2024:8364343. [PMID: 38283184 PMCID: PMC10817811 DOI: 10.1155/2024/8364343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
To provide scientific evidence of the efficacy of Allium ampeloprasum against female infertility, the effects of the aqueous extract of the said plant (AE) were evaluated in rats with letrozole-induced polycystic ovary syndrome (PCOS). AE was administered orally to PCOS rats at doses of 192, 384, and 768 mg/kg. The positive control was co-treated with clomiphene citrate (1 mg/kg) and metformin (200 mg/kg). Normal and negative controls received distilled water. The vaginal contents of rats were examined daily under a microscope before (7 days) and during treatment. Treatments were administered orally for 15 days, and then, 6 rats from each group were sacrificed for biochemical and histological analyses. The remaining rats were mated with males of proven fertility for 5 days. The daily examination of vaginal smears allowed the evaluation of fertility index. After parturition, additional fertility parameters were determined. Results showed that in PCOS rats, AE decreased body weight (p < 0.001), abdominal fat weight (p < 0.001), serum levels of LH (p < 0.001), testosterone (p < 0.001), total cholesterol (p < 0.05), and LDL cholesterol (p < 0.01). HDL cholesterol increased and atherogenic indices decreased (p < 0.001). The number of Graafian follicles and corpora lutea increased, while cystic (p < 0.001) and atretic (p < 0.05) follicles decreased. AE also decreased oxidative stress in the ovaries, restored the estrous cycle, induced uterine epithelial cell hypertrophy, and improved fertility. These effects were attributed to phenols, flavonoids, terpenoids, and anthocyanins present in AE. The overall results justify the traditional use of A. ampeloprasum against female infertility and suggest its potential use as a dietary supplement for PCOS patients.
Collapse
Affiliation(s)
| | - Marie Alfrede Mvondo
- Research Unit of Animal Physiology and Phytopharmacology, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
41
|
Yu X, Wu Q, Ren Z, Chen B, Wang D, Yuan T, Ding H, Wang Y, Yuan G, Wang Y, Zhang L, Zhao J, Sun Z. Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117019. [PMID: 37574017 DOI: 10.1016/j.jep.2023.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wear particle-induced inflammatory osteoclast activation is a master contributor to periprosthetic osteolysis, which can cause pathological bone loss and destruction. Hence, inhibiting inflammation and osteoclastogenesis is an important strategy for preventing wear particle-induced osteolysis. To date, there are no FDA-approved non-surgical pharmacotherapies for arresting periprosthetic osteolysis. Kaempferol (KAE), a natural flavonol abundant in many traditional Chinese herbal medicines, has been shown to have protective effects against inflammatory bone diseases such as rheumatoid arthritis, but no previous study has evaluated the effects of KAE on wear particle-induced osteolysis. AIM OF THE STUDY The study aimed to investigate the effects of KAE on wear particle-induced inflammatory osteolysis and osteoclast activation, and further explore the underlying mechanisms. MATERIALS AND METHODS TiAl6V4 metal particles (TiPs) were retrieved from the prosthesis of patients who underwent revision hip arthroplasty due to aseptic loosening. A mouse calvarial osteolysis model was used to investigate the effects of KAE on wear particle-induced inflammatory osteolysis in vivo. Primary bone marrow-derived macrophages (BMMs) were used to explore the effects of KAE on osteoclast differentiation and bone-resorbing activity as well as the underlying mechanisms in vitro. RESULTS In the present study, we found that KAE alleviated wear particle-induced inflammatory bone loss in vivo and inhibited osteoclast differentiation and function in vitro. Furthermore, we revealed that KAE exerted anti-osteoclastogenic effects by downregulating JNK and p38-MAPK signaling as well as the downstream NFATc1 expression. CONCLUSIONS KAE is an alternative therapeutic agent for preventing and treating periprosthetic osteolysis and aseptic loosening.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Guodong Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxiang Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing, 210002, China.
| |
Collapse
|
42
|
Lamenza FF, Upadhaya P, Roth P, Shrestha S, Jagadeesha S, Horn N, Pracha H, Oghumu S. Berries vs. Disease: Revenge of the Phytochemicals. Pharmaceuticals (Basel) 2024; 17:84. [PMID: 38256917 PMCID: PMC10818490 DOI: 10.3390/ph17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Secondary metabolites and phytochemicals in plant-based diets are known to possess properties that inhibit the development of several diseases including a variety of cancers of the aerodigestive tract. Berries are currently of high interest to researchers due to their high dietary source of phytochemicals. Black raspberries (BRB), Rubus occidentalis, are of special interest due to their rich and diverse composition of phytochemicals. In this review, we present the most up-to-date preclinical and clinical data involving berries and their phytochemicals in the chemoprevention of a variety of cancers and diseases. BRBs possess a variety of health benefits including anti-proliferative properties, anti-inflammatory activity, activation of pro-cell-death pathways, modulation of the immune response, microbiome modulation, reduction in oxidative stress, and many more. However, little has been done in both preclinical and clinical settings on the effects of BRB administration in combination with other cancer therapies currently available for patients. With the high potential for BRBs as chemopreventive agents, there is a need to investigate their potential in combination with other treatments to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Natalie Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| |
Collapse
|
43
|
Al-Naemi HA, Alasmar RM, Al-Ghanim K. Alcoholic extracts of Teucrium polium exhibit remarkable anti-inflammatory activity: In vivo study. BIOMOLECULES & BIOMEDICINE 2024; 24:82-88. [PMID: 37289437 PMCID: PMC10787626 DOI: 10.17305/bb.2023.9239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Teucrium polium (germander, Lamiaceae) is a local plant in Qatar that has been used in folk medicine to treat numerous illnesses. It is known for its antioxidant, analgesic, anticancer, and antibacterial activities. This study aimed to evaluate the anti-inflammatory activity of Teucrium polium (TP) extract by α-carrageen-induced paw edema in adult Sprague Dawley rats. The animals were randomly grouped into control, acute inflammation, and plant extract groups. Acute inflammation was induced by a sub-plantar injection of 100 µL of 1% α-carrageenan into the rat's right hind paw. Three different doses of the ethanolic extract of TP were tested at different time periods (1, 3, and 5 hours). All doses of the TP ethanolic extract showed significant inhibition of α-carrageenan-induced rat paw edema in a dose-dependent manner in both early and late phases of edema formation. The size of the α-carrageen induced paw edema was significantly reduced one, three, and five hours after TP extract injection compared to the acute inflammation group. This inhibition was accompanied by high expression of interleukin 10 (IL-10) and low expression of monocyte chemoattractant protein 1 (MCP-1), IL-1β and tumor necrosis factor alpha (TNF-α). The results indicated that the ethanolic extracts of TP possess significant anti-inflammatory and potential pharmaceutical properties.
Collapse
Affiliation(s)
- Hamda A Al-Naemi
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | | | - Kaltham Al-Ghanim
- Social and Economic Survey Research Institute (SESRI), Qatar University, Doha, Qatar
| |
Collapse
|
44
|
Sarasati A, Jonarta AL. Potential targets of phytochemical immunomodulatory therapy in periodontitis immunopathogenesis: A narrative review. Saudi Dent J 2023; 35:920-928. [PMID: 38107043 PMCID: PMC10724349 DOI: 10.1016/j.sdentj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Periodontitis is one of the most prevalent diseases occurring worldwide, and is caused by an imbalance of host immunological defenses and microbiome profile which occurs in the oral cavity. This imbalance leads to irregularity and uncontrolled activities of immune cells, resulting in over-reactivity of periodontopathogens and tissue destruction. To alleviate periodontitis, exact targeting of specific events involving particular cells could be a potential application of immunomodulatory agents. Phytochemical drug development targeting specific immunopathogenesis events could be a promising complementary, alternative approach to periodontal therapy. Objectives This review aimed to explore various events involving a variety of cells in the immunopathogenesis of periodontitis in order to determine potential specific immunomodulation targets for future development of effective phytochemical drugs. Results Immunopathogenesis of periodontitis contributes significantly to the disease onset and resolution. Various events occur during the disease development, which involve a variety of immune cells and mediators. Among these, neutrophils, cytokines and lymphocytes, especially Th17 cells, were reported to be the most relevant components in the disease pathogenesis. These components affect the initial responses to periodontopathogens, inhibit oxidative stress formation, control intercellular communication to enhance inflammation, and promote effector cells' migration to induce alveolar bone resorption. Several phytochemical drugs were developed to cure periodontitis, however, the development of phytochemical immunomodulatory drugs to target specific events has not been realized. Conclusion This review concluded that development of phytochemical immunomodulatory drugs to target particular events generated by neutrophils, pro-inflammatory cytokines and lymphocytes has tremendous potential to regulate and modulate the immunopathogenesis of periodontitis.
Collapse
Affiliation(s)
- Andari Sarasati
- Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alma Linggar Jonarta
- Oral Biology Department, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
45
|
Uçar K, Göktaş Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr Res 2023; 119:43-55. [PMID: 37738874 DOI: 10.1016/j.nutres.2023.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Naringenin (4',5,7-trihydroxyflavonone) is a phytochemical mainly found in citrus fruits. It is a promising phytochemical for human health because of its beneficial effects. This review aims to present comprehensive information on naringenin biological activities along with its action mechanisms and explain the pharmacokinetic properties of naringenin. This study involves a comprehensive literature review of in vitro and in vivo studies examining the effects of naringenin. Naringenin has antidiabetic, anticancer, antimicrobial, antiobesity, gastroprotective, immunomodulator, cardioprotective, nephroprotective, and neuroprotective properties. These properties are primarily attributed to its antioxidant and anti-inflammatory activities. The most important antioxidant activities of naringenin including free radical scavenging and preventing lipid peroxidation. Naringenin can increase the concentration of antioxidant enzymes and inhibit metal chelation and various pro-oxidant enzymes. Anti-inflammatory activities of naringenin are associated with decreased mitogen-activated protein kinase activities and nuclear factor kappa B by modulating the expression and release of proinflammatory cytokine and enzymes. In vitro and in vivo studies show that naringenin has promising biological activities for a variety of diseases. More research must be conducted on the bioactivities of naringenin, and to determine its optimum dose. In addition, the efficiency of naringenin must be examined with enhanced bioavailability methods to be able to increase its therapeutic effect.
Collapse
Affiliation(s)
- Kübra Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
46
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
47
|
Stelling-Férez J, López-Miranda S, Gabaldón JA, Nicolás FJ. Oleanolic Acid Complexation with Cyclodextrins Improves Its Cell Bio-Availability and Biological Activities for Cell Migration. Int J Mol Sci 2023; 24:14860. [PMID: 37834307 PMCID: PMC10573973 DOI: 10.3390/ijms241914860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Wound healing is a complex process to restore skin. Plant-derived bioactive compounds might be a source of substances for the treatment of wounds stalled in a non-resolving stage of wound healing. Oleanolic acid (OA), a pentacyclic triterpene, has shown favorable wound healing properties both in vitro and in vivo. Unfortunately, OA cannot be solubilized in aqueous media, and it needs to be helped by the use of dimethyl sulfoxide (DMSO). In this paper, we have shown that cyclodextrins (CDs) are a good alternative to DMSO as agents to deliver OA to cells, providing better features than DMSO. Cyclodextrins are natural macromolecules that show a unique tridimensional structure that can encapsulate a wide variety of hydrophobic compounds. We have studied the cyclodextrin-encapsulated form of OA with OA/DMSO, comparing their stability, biological properties for cell migration, and cell viability. In addition, detailed parameters related to cell migration and cytoskeletal reorganization have been measured and compared. Our results show that OA-encapsulateds compound exhibit several advantages when compared to non-encapsulated OA in terms of chemical stability, migration enhancement, and preservation of cell viability.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Santiago López-Miranda
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de San Antonio Murcia (UCAM), Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain; (J.S.-F.); (S.L.-M.); (J.A.G.)
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-β, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
48
|
Upadhaya P, Lamenza FF, Shrestha S, Roth P, Jagadeesha S, Pracha H, Horn NA, Oghumu S. Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants (Basel) 2023; 12:1667. [PMID: 37759970 PMCID: PMC10525528 DOI: 10.3390/antiox12091667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Berries have gained widespread recognition for their abundant natural antioxidant, anti-inflammatory, and immunomodulatory properties. However, there has been limited research conducted thus far to investigate the role of the active constituents of berries in alleviating contact hypersensitivity (CHS), the most prevalent occupational dermatological disease. Our study involved an ex vivo investigation aimed at evaluating the impact of black raspberry extract (BRB-E) and various natural compounds found in berries, such as protocatechuic acid (PCA), proanthocyanidins (PANT), ellagic acid (EA), and kaempferol (KMP), on mitigating the pathogenicity of CHS. We examined the efficacy of these natural compounds on the activation of dendritic cells (DCs) triggered by 2,4-dinitrofluorobenzene (DNFB) and lipopolysaccharide (LPS). Specifically, we measured the expression of activation markers CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines, including Interleukin (IL)-12, IL-6, TNF-α, and IL-10, to gain further insights. Potential mechanisms through which these phytochemicals could alleviate CHS were also investigated by investigating the role of phospho-ERK. Subsequently, DCs were co-cultured with T-cells specific to the OVA323-339 peptide to examine the specific T-cell effector responses resulting from these interactions. Our findings demonstrated that BRB-E, PCA, PANT, and EA, but not KMP, inhibited phosphorylation of ERK in LPS-activated DCs. At higher doses, EA significantly reduced expression of all the activation markers studied in DNFB- and LPS-stimulated DCs. All compounds tested reduced the level of IL-6 in DNFB-stimulated DCs in Flt3L as well as in GM-CSF-derived DCs. However, levels of IL-12 were reduced by all the tested compounds in LPS-stimulated Flt3L-derived BMDCs. PCA, PANT, EA, and KMP inhibited the activated DC-mediated Interferon (IFN)-γ and IL-17 production by T-cells. Interestingly, PANT, EA, and KMP significantly reduced T-cell proliferation and the associated IL-2 production. Our study provides evidence for differential effects of berry extracts and natural compounds on DNFB and LPS-activated DCs revealing potential novel approaches for mitigating CHS.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Natalie A. Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| |
Collapse
|
49
|
Wiciński M, Erdmann J, Nowacka A, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023; 15:3578. [PMID: 37630770 PMCID: PMC10459499 DOI: 10.3390/nu15163578] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuins are a family of proteins with enzymatic activity. There are seven mammalian sirtuins (SIRT1-SIRT7) that are found in different cellular compartments. They are a part of crucial cellular pathways and are regulated by many factors, such as chemicals, environmental stress, and phytochemicals. Several in vitro and in vivo studies have presented their involvement in anti-inflammatory, antioxidant, and antiapoptotic processes. Recent findings imply that phytochemicals such as resveratrol, curcumin, quercetin, fisetin, berberine, and kaempferol may regulate the activity of sirtuins. Resveratrol mainly activates SIRT1 and indirectly activates AMPK. Curcumin influences mainly SIRT1 and SIRT3, but its activity is broad, and many pathways in different cells are affected. Quercetin mainly modulates SIRT1, which triggers antioxidant and antiapoptotic responses. Fisetin, through SIRT1 regulation, modifies lipid metabolism and anti-inflammatory processes. Berberine has a wide spectrum of effects and a significant impact on SIRT1 signaling pathways. Finally, kaempferol triggers anti-inflammatory and antioxidant effects through SIRT1 induction. This review aims to summarize recent findings on the properties of phytochemicals in the modulation of sirtuin activity, with a particular focus on biochemical aspects.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Agnieszka Nowacka
- Department of Neurosurgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Klaudia Michalak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Kacper Janowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Adrian Biernaciak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
50
|
Huang X, Wang M, Zhong S, Xu B. Comprehensive Review of Phytochemical Profiles and Health-Promoting Effects of Different Portions of Wampee ( Clausena lansium). ACS OMEGA 2023; 8:26699-26714. [PMID: 37546634 PMCID: PMC10398868 DOI: 10.1021/acsomega.3c02759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Clausena lansium, commonly known as wampee, is a subtropical fruit from the Rutaceae family characterized by its high nutrient content and numerous bioactive substances. This low-fat fruit is abundant in fiber, vitamins, minerals, and essential amino acids. Wampee has been found to contain several bioactive compounds, including essential oils, phenolic compounds, and alkaloids. These bioactive constituents provide numerous health-enhancing properties, such as antioxidant, neuroprotective, anticarcinogenic, anti-inflammatory, hepatoprotective, antidiabetic, and antimicrobial effects. The relationship between these compounds and their impacts on health has been explored in various studies. While the disease-prevention efficacy of C. lansium has been established, additional research is necessary to elucidate the precise mechanisms and metabolic pathways involved. This paper presents a comprehensive review of wampee, focusing on its bioactive compounds, the beneficial effects derived from its consumption, and the evidence supporting the development of wampee-based functional foods in future studies.
Collapse
Affiliation(s)
- Xin Huang
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Minghe Wang
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Saiyi Zhong
- College
of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Science and Technology Innovation
Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Baojun Xu
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|