1
|
Kolařík V, Hromádková A, Knirsch A, Prucková Z, Janovský P, Rouchal M, Ward JS, Rissanen K, Vícha R. Metal cations switch geometry of β-cyclodextrin complexes. Chem Commun (Camb) 2025. [PMID: 40237151 DOI: 10.1039/d5cc00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Cationic guests with an adamantylphenyl moiety can form two distinct arrangements with the conical β-cyclodextrin macrocycle. Different metal cations were found to promote the formation of one of the two possible forms, depending on their van der Waals radii. Bulkier ions prefer the wider secondary rim of β-cyclodextrin, pushing the cationic part of the guest towards the narrower primary rim, and vice versa.
Collapse
Affiliation(s)
- Václav Kolařík
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Aneta Hromádková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Adam Knirsch
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova, 5569, 760 01 Zlín, Czech Republic.
| |
Collapse
|
2
|
Piano I, Polini B, Corsi F, Carpi S, Petrarolo G, Quattrini L, D'Agostino I, Gamberini MC, Baraldi C, Chiellini G, Nieri P, Motta CL, Gargini C. β-Cyclodextrin nanosponges for the ocular delivery of therapeutic Micro-RNA in a Mouse model of retinitis Pigmentosa: A proof of concept study. Eur J Pharm Biopharm 2025; 208:114660. [PMID: 39914571 DOI: 10.1016/j.ejpb.2025.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/23/2025]
Abstract
The exploitation of micro-RNA (miR) sequences as therapeutics has become highly attractive for the treatment of several diseases, including those still lacking effective cures such as retinitis pigmentosa (RP). Interestingly, miR-155-5p plays a role in photo-oxidative inflammation in wild-type mice and is up-regulated in rd10 mice showing peak rod degeneration, suggesting its inhibition by the corresponding anti-miR as a viable therapeutic strategy for RP. However, biomedical application of (anti-)miRs is limited by their oligonucleotide nature, suffering from low solubility and bioavailability along with a very low half-life in vivo due to enzymatic degradation. Thereby, the need for suitable delivery systems led to the development of various nanocarriers, including oligosaccharide-based polymers. In this context, we designed and prepared an innovative nanosponge (NS) with a β-cyclodextrin (β-CD) motif payload with a bridge-like molecule, the amphipathic adamantane derivative (ADM), able to establish strong interactions with both NS and the therapeutic miR, thereby delivering and eventually releasing it close to the active site. Through an in vivo study, we both validated the NS system as a useful tool for miR topical administration by eye drop formulation and the functional activity of anti-miR-155-5p in RP.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy.
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2 5612 Pisa, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Sara Carpi
- Department of Health Sciences, University 'Magna Græcia' of Catanzaro, Catanzaro, Italy; National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze-Centro Nazionale Ricerche (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Luca Quattrini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy.
| | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103 41125 Modena, Italy
| | - Cecilia Baraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103 41125 Modena, Italy
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2 5612 Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| | | | - Claudia Gargini
- Department of Pharmacy, University of Pisa, Via Bonanno 6 56126 Pisa, Italy
| |
Collapse
|
3
|
Gandhi R, Chopade N, Deshmukh PK, Ingle RG, Harde M, Lakade S, More MP, Tade RS, Bhadane MS. Unveiling cyclodextrin conjugation as multidentate excipients: An exploratory journey across industries. Carbohydr Res 2025; 549:109357. [PMID: 39708386 DOI: 10.1016/j.carres.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability. The computational approach has established robust correlations with experimental outcomes, enhancing our understanding of CD-mediated complexation phenomena. This comprehensive review delves into the CD based Inclusion complex (CDIC) formation and a myriad of components, including drug molecules, amino acids, vitamins, and volatile oils. These complexes find applications across diverse industries, ranging from pharmaceuticals to nutraceuticals, food, fragrance, and beyond. In the pharmaceutical realm, β- CDICs offer innovative solutions for enhancing drug solubility, stability, and bioavailability, thus overcoming formulation challenges associated with poorly water-soluble drugs. Furthermore, the versatility of CDs extends beyond pharmaceuticals, with applications in the encapsulation of phytoactive compounds in nutraceuticals and the enhancing flavor, aroma in food and fragrance industries. This review underscores the pivotal role of CDs conjugation in modern drug delivery systems, emphasizing the importance of interdisciplinary approaches that integrate computational modeling with experimental validation. As the pharmaceutical landscape continues to evolve, CDs-based formulations stand poised to drive innovation and address the ever-growing demand for efficacious and patient-friendly drug delivery solutions.
Collapse
Affiliation(s)
- Roshani Gandhi
- Department of Pharmacognosy, Laddhad College of Pharmacy, Dist-Buldhana, M.S. 443 001, India
| | - Nishant Chopade
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Prashant K Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University) Sawangi, Wardha, M.S. 442004, India
| | - Minal Harde
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, 411044, India
| | - Sameer Lakade
- Department of Pharmaceutics, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune, 411019, India
| | | | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist - Dhule, M.S. 425405, India
| | - Mahesh S Bhadane
- Department of Physics, Rayat Shikshan Sanstha's Dada Patil Mahavidyalaya, Karjat, Dist - Ahemadnagar, M.S. 414 402, India
| |
Collapse
|
4
|
Tian X, Hu H, Fan L, Yang J, Zhao H, Zhang L, Hu D, Hao G, Du F, Wang P. Smart β-cyclodextrin-dominated helical supramolecular dendritic assemblies improve the foliar affinity and biofilm disruption for treating alarming bacterial diseases. Carbohydr Polym 2025; 348:122823. [PMID: 39562098 DOI: 10.1016/j.carbpol.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024]
Abstract
Recent outbreaks of alarming bacterial diseases have significantly impacted global agricultural productivity. Conventional bactericides exhibit certain limitations in efficiently impeding biofilm formation and annihilating biofilm-dispersed pathogens, and often expose to high off-target movement during foliar spraying. Here, we produce an innovative helical dendrimer-like supramolecular material (PhA28@β-CD) assembled by a bioactive small-molecule 2-chlorophenylisopropanolamine (PhA28) and β-cyclodextrin (β-CD) through host-guest recognition principle. In this system, the advisable optimization by a macrocyclic oligosaccharide-β-CD significantly enhances the water-solubility, biocompatibility, and bioavailability of PhA28. At a low-dose of 6.8 μg/mL, PhA28@β-CD discloses an outstanding biofilm disruption rate of 82.4 %, notably exceeding that of PhA28 (60.6 %), which thereby reduces the biofilm-associated virulence. Meanwhile, the self-assembled PhA28@β-CD possesses superior wetting and dispersing properties on hydrophobic leaves, leading to effective foliar deposition and prolong retention of active components. In vivo studies reveal that PhA28@β-CD exhibits superior curative (66.0 %) and protective (72.6 %) activities against citrus canker at 200 μg/mL, markedly surpassing those of the existing bactericide thiodiazole‑copper (46.8 % and 52.2 %) and single PhA28. This material also has broad-spectrum control efficiency (53.0 % ~ 59.5 %) against rice bacterial blight. This research lays the groundwork for developing carbohydrate-optimized multifunctional dendrimer-like assemblies aimed at disrupting biofilms and improving sustained bioavailability to combat bacterial diseases.
Collapse
Affiliation(s)
- Xiaoxue Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongsheng Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lijun Fan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinghan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Haicong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Libo Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Dekun Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peiyi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Calsolaro F, Garello F, Cavallari E, Magnacca G, Trukhan MV, Valsania MC, Cravotto G, Terreno E, Martina K. Amphoteric β-cyclodextrin coated iron oxide magnetic nanoparticles: new insights into synthesis and application in MRI. NANOSCALE ADVANCES 2024; 7:155-168. [PMID: 39569331 PMCID: PMC11575534 DOI: 10.1039/d4na00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
This work presents a group of high-quality hydrophilic and negatively charged coated, iron oxide magnetic nanoparticles (MNPs) that have been prepared using a microwave-ultrasound-assisted protocol, and demonstrates the great impact that the synthetic strategy has on the resulting MNPs. The different coatings tested, including citric acid, carboxymethyl dextran and β-cyclodextrin (βCD)/citric acid have been compared and have shown good dispersibility and stability. The ability of βCD to maintain the inclusive properties of the coated MNPs has been proven as well as their cytocompatibility. An amino citrate-modified βCD is proposed and its capabilities as a flexible amphoteric adsorbing device have been studied. The NMR relaxometric properties of the coated MNPs have been investigated using field-cycling nuclear magnetic relaxation dispersion profiles. For the amino citrate-modified βCD system, the order of magnitude of the Néel relaxation time is in the typical range for superparamagnetic systems' reversal times, i.e., 10-10-10-7 s. The r d value corresponds to the physical radius of the magnetic core, suggesting that, in this particular case, the coating does not prevent the diffusive motion of water molecules, which provide the basis for potential future magnetic resonance imaging (MRI) applications.
Collapse
Affiliation(s)
- Federica Calsolaro
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Giuliana Magnacca
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Mikhail V Trukhan
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Maria Carmen Valsania
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin Piazza Nizza 44/bis 10126 Turin Italy
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin Via P. Giuria 9 10125 Turin Italy
| |
Collapse
|
6
|
Guo DX, Song L, Yang JH, He XY, Liu P, Wang PY. β-Cyclodextrin-optimized supramolecular nanovesicles enhance the droplet/foliage interface interactions and inhibition of succinate dehydrogenase (SDH) for efficient treatment of fungal diseases. J Nanobiotechnology 2024; 22:581. [PMID: 39304921 PMCID: PMC11414324 DOI: 10.1186/s12951-024-02849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Plant fungal diseases present a major challenge to global agricultural production. Despite extensive efforts to develop fungicides, particularly succinate dehydrogenase inhibitors (SDHIs), their effectiveness is often limited by poor retention of fungicide droplets on hydrophobic leaves. The off-target losses and unintended release cause fungal resistance and severe environmental pollution. RESULTS To update the structure of existing SDHIs and synchronously realize the efficient utilization, we have employed a sophisticated supramolecular strategy to optimize a structurally novel SDH inhibitor (AoH25), creating an innovative supramolecular SDH fungicide (AoH25@β-CD), driven by the host-guest recognition principle between AoH25 and β-cyclodextrin (β-CD). Intriguingly, AoH25@β-CD self-assembles into biocompatible supramolecular nanovesicles, which reinforce the droplet/foliage (liquid-solid) interface interaction and the effective wetting and retention on leaf surfaces, setting the foundation for enhancing fungicide utilization. Mechanistic studies revealed that AoH25@β-CD exhibited significantly higher inhibition of SDH (IC50 = 1.56 µM) compared to fluopyram (IC50 = 244.41 µM) and AoH25 alone (IC50 = 2.29 µM). Additionally, AoH25@β-CD increased the permeability of cell membranes in Botryosphaeria dothidea, facilitating better penetration of active ingredients into pathogenic cells. Further experimental outcomes confirmed that AoH25@β-CD was 88.5% effective against kiwifruit soft rot at a low-dose of 100 µg mL-1, outperforming commercial fungicides such as fluopyram (52.4%) and azoxystrobin (65.4%). Moreover, AoH25@β-CD showed broad-spectrum bioactivity against oilseed rape sclerotinia, achieving an efficacy of 87.2%, outstripping those of fluopyram (48.7%) and azoxystrobin (76.7%). CONCLUSION This innovative approach addresses key challenges related to fungicide deposition and resistance, improving the bioavailability of agricultural chemicals. The findings highlight AoH25@β-CD as a novel supramolecular SDH inhibitor, demonstrating its potential as an efficient and sustainable solution for plant disease management.
Collapse
Affiliation(s)
- Deng-Xuan Guo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Li Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jing-Han Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xin-Yu He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pei-Yi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Gholami R, Azizi K, Ganjali Koli M. Unveiling the dynamic and thermodynamic interactions of hydrocortisone with β-cyclodextrin and its methylated derivatives through insights from molecular dynamics simulations. Sci Rep 2024; 14:12495. [PMID: 38822025 PMCID: PMC11143220 DOI: 10.1038/s41598-024-63034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Cyclodextrins (CDs) can enhance the stability and bioavailability of pharmaceutical compounds by encapsulating them within their cavities. This study utilized molecular dynamics simulations to investigate the interaction mechanisms between hydrocortisone (HC) and various methylated CD derivatives. The results reveal that the loading of HC into CD cavities follows different mechanisms depending on the degree and position of methylation. Loading into βCD and 6-MeβCD was more complete, with the hydroxyl groups of HC facing the primary hydroxyl rim (PHR) and the ketone side facing the secondary hydroxyl rim (SHR). In contrast, 2,3-D-MeβCD and 2,6-D-MeβCD showed a different loading mechanism, with the ketone side facing the PHR and the hydroxyl groups facing the SHR. The root mean square fluctuation (RMSF) analysis demonstrated that methylation increases the flexibility of CD heavy atoms, with 3-MeβCD and 2,3-D-MeβCD exhibiting the highest flexibility. However, upon inclusion of HC, 3-MeβCD, 2,3-D-MeβCD, 2-MeβCD, and 6-MeβCD showed a significant reduction in flexibility, suggesting a more rigid structure that effectively retains HC within their cavities. The radial distribution function revealed a significant reduction in the number of water molecules within the innermost layer of the methylated CD cavities, particularly in TMeβCD, indicating a decrease in polarity. The presence of HC led to the release of high-energy water molecules, creating more favorable conditions for HC loading. Conformational analysis showed that methylation caused a partial decrease in the area of the PHR, a significant decrease in the area of the middle rim, and a notable decrease in the area of the SHR. The loading of HC increased the area of the PHR in most derivatives, with the most pronounced increase observed in 2,6-D-MeβCD and 6-MeβCD. The analysis of interaction energies and binding free energies demonstrated that the binding of HC to methylated CD derivatives is thermodynamically more favorable than to βCD, with the strongest association observed for 6-MeβCD, 2-MeβCD, and 2,3-D-MeβCD.
Collapse
Affiliation(s)
- Roya Gholami
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
| | - Khaled Azizi
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran.
- Computational Chemistry Laboratory, Kask Afrand Exire Ltd., Sanandaj, Iran.
| | - Mokhtar Ganjali Koli
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
- Computational Chemistry Laboratory, Kask Afrand Exire Ltd., Sanandaj, Iran
| |
Collapse
|
8
|
Ouyang J, Zhang Z, Li J, Wu C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400105. [PMID: 38386281 DOI: 10.1002/anie.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemical modifications of enzymes excel in the realm of enzyme engineering due to its directness, robustness, and efficiency; however, challenges persist in devising versatile and effective strategies. In this study, we introduce a supramolecular modification methodology that amalgamates a supramolecular polymer with Candida antarctica lipase B (CalB) to create supramolecular enzymes (SupEnzyme). This approach features the straightforward preparation of a supramolecular amphiphilic polymer (β-CD@SMA), which was subsequently conjugated to the enzyme, resulting in a SupEnzyme capable of self-assembly into supramolecular nanoparticles. The resulting SupEnzyme nanoparticles can form micron-scale supramolecular aggregates through supramolecular and electrostatic interactions with guest entities, thus enhancing catalyst recycling. Remarkably, these aggregates maintain 80 % activity after seven cycles, outperforming Novozym 435. Additionally, they can effectively initiate photobiocatalytic cascade reactions using guest photocatalysts. As a consequence, our SupEnzyme methodology exhibits noteworthy adaptability in enzyme modification, presenting a versatile platform for various polymer, enzyme, and biocompatible catalyst pairings, with potential applications in the fields of chemistry and biology.
Collapse
Affiliation(s)
- Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Zhenfang Zhang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
9
|
Roithmeyer H, Sévery L, Moehl T, Spingler B, Blacque O, Fox T, Iannuzzi M, Tilley SD. Electrocatalytic Ammonia Oxidation with a Tailored Molecular Catalyst Heterogenized via Surface Host-Guest Complexation. J Am Chem Soc 2024; 146:430-436. [PMID: 38134360 DOI: 10.1021/jacs.3c09725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Macrocyclic host molecules bound to electrode surfaces enable the complexation of catalytically active guests for molecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4'-bis(dimethylamino)-2,2'-bipyridyl and tpada is 4'-(adamantan-1-yl)-2,2':6',2″-terpyridine), high binding constants with β-cyclodextrin were observed in solution (in DMSO-d6:D2O (7:3), K11 = 492 ± 21 M-1). The strong binding affinities were also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of β-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naphthalene-2-yl)-2,2':6',2″-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host-functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions, and the host-anchored electrode can be refunctionalized multiple times (>3) following the loss of the catalytic activity, without a reduction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 toward basic conditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with Faradaic efficiencies of up to 100%.
Collapse
Affiliation(s)
- Helena Roithmeyer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Laurent Sévery
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Thomas Moehl
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Thomas Fox
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
10
|
Widener AE, Roberts A, Phelps EA. Single versus dual microgel species for forming guest-host microporous annealed particle PEG-MAL hydrogel. J Biomed Mater Res A 2023; 111:1379-1389. [PMID: 37010360 PMCID: PMC10909382 DOI: 10.1002/jbm.a.37540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Inter-particle secondary crosslinks allow microporous annealed particle (MAP) hydrogels to be formed. Methods to introduce secondary crosslinking networks in MAP hydrogels include particle jamming, annealing with covalent bonds, and reversible noncovalent interactions. Here, we investigate the effect of two different approaches to secondary crosslinking of polyethylene glycol (PEG) microgels via reversible guest-host interactions. We generated a dual-particle MAP-PEG hydrogel using two species of PEG microgels, one functionalized with the guest molecule, adamantane, and the other with the host molecule, β-cyclodextrin (Inter-MAP-PEG). In a different approach, a mono-particle MAP-PEG hydrogel was generated using one species of microgel functionalized with both guest and host molecules (Intra-MAP-PEG). The Intra-MAP-PEG formed a homogenous distribution due to the single type of microgels used. We then compared the mechanical properties of these two types of MAP-PEG hydrogels and found that Intra-MAP-PEG resulted in significantly softer gels with lower yield stress. We investigated the effect of intra-particle guest-host interactions through titrated weight percentage and the concentration of functional groups added to the hydrogel. We found that there was an ideal concentration of guest-host molecules that enables intra- and inter-particle guest-host interactions with sufficient covalent crosslinking. Based on these studies, Intra-MAP-PEG provides a homogeneous guest-host hydrogel that is shear-thinning with reversible secondary crosslinking.
Collapse
Affiliation(s)
- Adrienne E. Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Widener AE, Duraivel S, Angelini TE, Phelps EA. Injectable Microporous Annealed Particle Hydrogel Based on Guest-Host-Interlinked Polyethylene Glycol Maleimide Microgels. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200030. [PMID: 36419640 PMCID: PMC9678130 DOI: 10.1002/anbr.202200030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microporous annealed particle (MAP) hydrogels have emerged as a versatile biomaterial platform for regenerative medicine. MAP hydrogels have been used for the delivery of cells and organoids but often require annealing post injection by an external source. We engineered an injectable, self-annealing MAP hydrogel with reversible interparticle linkages based on guest-host functionalized polyethylene glycol maleimide (PEG-MAL) microgels. We evaluated the effect of guest-host linkages on different types of microgels fabricated by either batch emulsion or mechanical fragmentation methods. Batch emulsion generated small spherical microgels with controllable 10-100 μm diameters and mechanical fragmentation generated irregular microgels with larger diameters (100-200 μm). Spherical microgels (15 μm) showed self-healing behavior and completely recovered from high strain while fragmented microgels (133 μm) did not recover. Guest-host interactions significantly contributed to the mechanical properties of spherical microgels but had no effect on fragmented microgels. Spherical microgels were superior to the fragmented microgels for co-injection of immune cells and pancreatic islets due to their lower force of injection, demonstrating more homogeneously distributed cells and greater cell viability after injection. Based on these studies, the spherical guest-host MAP hydrogels provide a controllable, injectable scaffold for engineered microenvironments and cell delivery applications.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Thomas E Angelini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front Chem 2022; 10:859406. [PMID: 35402388 PMCID: PMC8987506 DOI: 10.3389/fchem.2022.859406] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Nanosponges are solid cross-linked polymeric nano-sized porous structures. This broad concept involves, among others, metal organic frameworks and hydrogels. The focus of this manuscript is on cyclodextrin-based nanosponges. Cyclodextrins are cyclic oligomers of glucose derived from starch. The combined external hydrophilicity with the internal hydrophobic surface constitute a unique "microenvironment", that confers cyclodextrins the peculiar ability to form inclusion host‒guest complexes with many hydrophobic substances. These complexes may impart beneficial modifications of the properties of guest molecules such as solubility enhancement and stabilization of labile guests. These properties complemented with the possibility of using different crosslinkers and high polymeric surface, make these sponges highly suitable for a large range of applications. Despite that, in the last 2 decades, cyclodextrin-based nanosponges have been developed for pharmaceutical and biomedical applications, taking advantage of the nontoxicity of cyclodextrins towards humans. This paper provides a critical and timely compilation of the contributions involving cyclodextrins nanosponges for those areas, but also paves the way for other important applications, including water and soil remediation and catalysis.
Collapse
|