1
|
Rojas-González FE, Castillo-Quevedo C, Rodríguez-Kessler PL, Jimenez-Halla JOC, Vásquez-Espinal A, Eithiraj RD, Cortez-Valadez M, Cabellos JL. Exploration of Free Energy Surface of the Au 10 Nanocluster at Finite Temperature. Molecules 2024; 29:3374. [PMID: 39064952 PMCID: PMC11279810 DOI: 10.3390/molecules29143374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The first step in comprehending the properties of Au10 clusters is understanding the lowest energy structure at low and high temperatures. Functional materials operate at finite temperatures; however, energy computations employing density functional theory (DFT) methodology are typically carried out at zero temperature, leaving many properties unexplored. This study explored the potential and free energy surface of the neutral Au10 nanocluster at a finite temperature, employing a genetic algorithm coupled with DFT and nanothermodynamics. Furthermore, we computed the thermal population and infrared Boltzmann spectrum at a finite temperature and compared it with the validated experimental data. Moreover, we performed the chemical bonding analysis using the quantum theory of atoms in molecules (QTAIM) approach and the adaptive natural density partitioning method (AdNDP) to shed light on the bonding of Au atoms in the low-energy structures. In the calculations, we take into consideration the relativistic effects through the zero-order regular approximation (ZORA), the dispersion through Grimme's dispersion with Becke-Johnson damping (D3BJ), and we employed nanothermodynamics to consider temperature contributions. Small Au clusters prefer the planar shape, and the transition from 2D to 3D could take place at atomic clusters consisting of ten atoms, which could be affected by temperature, relativistic effects, and dispersion. We analyzed the energetic ordering of structures calculated using DFT with ZORA and single-point energy calculation employing the DLPNO-CCSD(T) methodology. Our findings indicate that the planar lowest energy structure computed with DFT is not the lowest energy structure computed at the DLPN0-CCSD(T) level of theory. The computed thermal population indicates that the 2D elongated hexagon configuration strongly dominates at a temperature range of 50-800 K. Based on the thermal population, at a temperature of 100 K, the computed IR Boltzmann spectrum agrees with the experimental IR spectrum. The chemical bonding analysis on the lowest energy structure indicates that the cluster bond is due only to the electrons of the 6 s orbital, and the Au d orbitals do not participate in the bonding of this system.
Collapse
Affiliation(s)
| | - César Castillo-Quevedo
- Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Carretera Federal No. 23, km. 191, Colotlán 46200, Jalisco, Mexico;
| | | | - José Oscar Carlos Jimenez-Halla
- Departamento de Química, División de Ciencias Exactas y Naturales, Universidad de Guanajuato, Noria Alta s/n, Guanajuato 36050, Guanajuato, Mexico;
| | - Alejandro Vásquez-Espinal
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat. Casilla 121, Iquique 1100000, Chile;
| | | | - Manuel Cortez-Valadez
- CONAHCYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo 83190, Sonora, Mexico;
| | - José Luis Cabellos
- Coordinación de Investigación y Desarrollo Tecnológico, Universidad Politécnica de Tapachula, Carretera Tapachula a Puerto Madero km. 24, Tapachula 30830, Chiapas, Mexico
| |
Collapse
|
2
|
Napiórkowska E, Szeleszczuk Ł, Milcarz K, Pisklak DM. Density Functional Theory and Density Functional Tight Binding Studies of Thiamine Hydrochloride Hydrates. Molecules 2023; 28:7497. [PMID: 38005219 PMCID: PMC10673443 DOI: 10.3390/molecules28227497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Thiamine hydrochloride (THCL), also known as vitamin B1, is an active pharmaceutical ingredient (API), present on the list of essential medicines developed by the WHO, which proves its importance for public health. THCL is highly hygroscopic and can occur in the form of hydrates with varying degrees of hydration, depending on the air humidity. Although experimental characterization of the THCL hydrates has been described in the literature, the questions raised in previously published works suggest that additional research and in-depth analysis of THCL dehydration behavior are still needed. Therefore, the main aim of this study was to characterize, by means of quantum chemical calculations, the behavior of thiamine hydrates and explain the previously obtained results, including changes in the NMR spectra, at the molecular level. To achieve this goal, a series of DFT (CASTEP) and DFTB (DFTB+) calculations under periodic boundary conditions have been performed, including molecular dynamics simulations and GIPAW NMR calculations. The obtained results explain the differences in the relative stability of the studied forms and changes in the spectra observed for the samples of various degrees of hydration. This work highlights the application of periodic DFT calculations in the analysis of various solid forms of APIs.
Collapse
Affiliation(s)
- Ewa Napiórkowska
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Żwirki i Wigury 81 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Katarzyna Milcarz
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Verma P, Srivastava A, Tandon P, Shimpi MR. Insights into structural, spectroscopic, and hydrogen bonding interaction patterns of nicotinamide-oxalic acid (form I) salt by using experimental and theoretical approaches. Front Chem 2023; 11:1203278. [PMID: 37476653 PMCID: PMC10354448 DOI: 10.3389/fchem.2023.1203278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
In the present work, nicotinamide-oxalic acid (NIC-OXA, form I) salt was crystallized by slow evaporation of an aqueous solution. To understand the molecular structure and spectroscopic properties of NIC after co-crystallization with OXA, experimental infrared (IR), Raman spectroscopic signatures, X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC) techniques were used to characterize and validate the salt. The density functional theory (DFT) methodology was adopted to perform all theoretical calculations by using the B3LYP/6-311++G (d, p) functional/basis set. The experimental geometrical parameters were matched in good correlation with the theoretical parameters of the dimer than the monomer, due to the fact of covering the nearest hydrogen bonding interactions present in the crystal structure of the salt. The IR and Raman spectra of the dimer showed the red (downward) shifting and broadening of bands among (N15-H16), (N38-H39), and (C13=O14) bonds of NIC and (C26=O24), (C3=O1), and (C26=O25) groups of OXA, hence involved in the formation of NIC-OXA salt. The atoms in molecules (AIM) analysis revealed that (N8-H9···O24) is the strongest (conventional) intermolecular hydrogen bonding interaction in the dimer model of salt with the maximum value of interaction energy -12.1 kcal mol-1. Furthermore, the natural bond orbital (NBO) analysis of the Fock matrix showed that in the dimer model, the (N8-H9···O24) bond is responsible for the stabilization of the salt with an energy value of 13.44 kcal mol-1. The frontier molecular orbitals (FMOs) analysis showed that NIC-OXA (form I) salt is more reactive and less stable than NIC, as the energy gap of NIC-OXA (form I) salt is less than that of NIC. The global and local reactivity descriptor parameters were calculated for the monomer and dimer models of the salt. The electrophilic, nucleophilic, and neutral reactive sites of NIC, OXA, monomer, and dimer models of salt were visualized by plotting the molecular electrostatic potential (MESP) surface. The study provides valuable insights into combining both experimental and theoretical results that could define the physicochemical properties of molecules.
Collapse
Affiliation(s)
- Priya Verma
- Department of Physics, University of Lucknow, Lucknow, India
| | | | - Poonam Tandon
- Department of Physics, University of Lucknow, Lucknow, India
| | - Manishkumar R. Shimpi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Li F, Quan D, Zhang X, Li X, Esimbek J. Quantum mechanical modeling of interstellar molecules on cosmic dusts: H2O, NH3, and CO2. Front Chem 2022; 10:1040703. [DOI: 10.3389/fchem.2022.1040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Since the first detection of CH molecule in interstellar medium (ISM), more than 270 molecules have been identified in various astronomical sources in ISM. These molecules include big complex ones, such as fullerene (C60) and polycyclic aromatic hydrocarbons (PAHs), which are the main components of carbonaceous dust. Dust surface chemistry plays an important role in explaining the formation of interstellar molecules. However, many of the dust surface chemical parameters, such as the adsorption energies, are still of uncertainty. Here we present a study of the adsorption of water (H2O), ammonia (NH3), and carbon dioxide (CO2) on graphene-like substrate within the framework of density functional theory (DFT). We used Gaussian 16 software and adopted the corrected generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functions. We determined the optimal accretion position of the studied molecules on the graphene-like surface and calculated the adsorption energies. Furthermore, according to the density of states and molecular orbitals of the adsorbed states, we analyzed the charge transfer between the molecules and the graphene-like surface. These results can provide more accurate parameters for calculating the chemical reaction rates on the dust surface, thus contributing to the understanding of dust-surface reactions in ISM.
Collapse
|
5
|
Vanzan M, Jones RM, Corni S, D'Agosta R, Baletto F. Exploring AuRh Nanoalloys: A Computational Perspective on the Formation and Physical Properties. Chemphyschem 2022; 23:e202200035. [PMID: 35156760 PMCID: PMC9314847 DOI: 10.1002/cphc.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Indexed: 11/12/2022]
Abstract
We studied the formation of AuRh nanoalloys (between 20-150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one-by-one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core-shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters' physical features like the HOMO-LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge-transfer transitions.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | - Robert M. Jones
- Department of PhysicsKing's College LondonStrandLondonWC2R 2LSUK
| | - Stefano Corni
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
- CNR Institute of NanoscienceVia Campi 213/A41125ModenaItaly
| | - Roberto D'Agosta
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology (PMAS)Universidad del País Vasco UPV/EHUAvenida de Tolosa 7220018San SebastiánSpain
- IKERBASQUEBasque Foundation for SciencePlaza de Euskadi 548009BilbaoSpain
| | - Francesca Baletto
- Department of PhysicsKing's College LondonStrandLondonWC2R 2LSUK
- Department of PhysicsUniversity of MilanoVia Celoria 1620133MilanoItaly
| |
Collapse
|
6
|
Vibrational Characterization and Molecular Electronic Investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV-VIS, NMR, and DFT Methods. J Fluoresc 2022; 32:1005-1017. [PMID: 35247130 DOI: 10.1007/s10895-022-02903-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Spectroscopic (FT-IR, FT-Raman, UV-vis, and NMR) techniques have been extensively used for structural elucidation of compounds along with the study of geometrical and vibrational properties. Herein, 2-acetyl-5-methylfuran, a derivative of furan, was experimentally characterized and analyzed in details using FT-IR, FT-Raman, UV-vis, and 1H NMR spectroscopic techniques conducted in different solvents. The experimentally analyzed spectral results were carefully compared with theoretical values obtained using density functional theory (DFT) calculations at the B3LYP/6-311 + + G (d, p) method to support, validate, and provide more insights on the structural characterizations of the titled compound. The correlated experimental and theoretical structural vibrational assignments along with their potential energy distributions (PEDs) and all the spectroscopic spectral investigations of the titled structure were observed to be in good agreements with calculated results.
Collapse
|
7
|
Buelna-García CE, Castillo-Quevedo C, Quiroz-Castillo JM, Paredes-Sotelo E, Cortez-Valadez M, Martin-del-Campo-Solis MF, López-Luke T, Utrilla-Vázquez M, Mendoza-Wilson AM, Rodríguez-Kessler PL, Vazquez-Espinal A, Pan S, de Leon-Flores A, Mis-May JR, Rodríguez-Domínguez AR, Martínez-Guajardo G, Cabellos JL. Relative Populations and IR Spectra of Cu 38 Cluster at Finite Temperature Based on DFT and Statistical Thermodynamics Calculations. Front Chem 2022; 10:841964. [PMID: 35300385 PMCID: PMC8921525 DOI: 10.3389/fchem.2022.841964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The relative populations of Cu38 isomers depend to a great extent on the temperature. Density functional theory and nanothermodynamics can be combined to compute the geometrical optimization of isomers and their spectroscopic properties in an approximate manner. In this article, we investigate entropy-driven isomer distributions of Cu38 clusters and the effect of temperature on their IR spectra. An extensive, systematic global search is performed on the potential and free energy surfaces of Cu38 using a two-stage strategy to identify the lowest-energy structure and its low-energy neighbors. The effects of temperature on the populations and IR spectra are considered via Boltzmann factors. The computed IR spectrum of each isomer is multiplied by its corresponding Boltzmann weight at finite temperature. Then, they are summed together to produce a final temperature-dependent, Boltzmann-weighted spectrum. Our results show that the disordered structure dominates at high temperatures and the overall Boltzmann-weighted spectrum is composed of a mixture of spectra from several individual isomers.
Collapse
Affiliation(s)
- Carlos Emiliano Buelna-García
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Mexico
- Organización Científica y Tecnológica del Desierto, Hermosillo, Mexico
| | - Cesar Castillo-Quevedo
- Departamento de Fundamentos del Conocimiento, Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Mexico
| | | | - Edgar Paredes-Sotelo
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Mexico
| | - Manuel Cortez-Valadez
- CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Mexico
| | | | - Tzarara López-Luke
- Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | | | | | - Peter L. Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, Santiago, Chile
| | - Alejandro Vazquez-Espinal
- Comput. Theor. Chem. Group Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Aned de Leon-Flores
- Departamento de Ciencias Químico Biologicas, Universidad de Sonora, Hermosillo, Mexico
| | | | | | - Gerardo Martínez-Guajardo
- Unidad Académica de Ciencias Químicas, Área de Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | | |
Collapse
|
8
|
Ariyarathna IR. Ground and Electronically Excited States of Main-Group-Metal-Doped B 20 Double Rings. J Phys Chem A 2021; 126:506-512. [PMID: 34939805 DOI: 10.1021/acs.jpca.1c08631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ab initio coupled-cluster, electron propagator, and Møller-Plesset second-order perturbation theory calculations are utilized to analyze the low-lying electronic states of several metal-doped B20. In the ground state, the presently focused AB20/EB20 (A = Li, Na, and K; E = Mg and Ca) consist of charge-separated A+B20-/E2+B202- frameworks. The excited electronic states of AB20 and EB20+ were analyzed by computing the vertical electron attachment energies (VEAEs) of AB20+ and EB202+. In several excited states, the radical electron is predominantly localized on the B20 frames, which are counterparts of the low-lying states of bare B20-. A variety of basis sets were tested on obtaining VEAEs, and the aug-cc-pVDZ/A,E d-aug-cc-pVDZ/B combination provided the best accuracy-efficiency compromise on them. Furthermore, this work analyzes the Rydberg-like excited states of AB20 and EB20+ and will serve as a guide for future studies on similar metal-doped boron systems.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
9
|
Effects of Temperature on Enantiomerization Energy and Distribution of Isomers in the Chiral Cu 13 Cluster. Molecules 2021; 26:molecules26185710. [PMID: 34577181 PMCID: PMC8471510 DOI: 10.3390/molecules26185710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the lowest energy structure of bare Cu13 nanoclusters as a pair of enantiomers at room temperature. Moreover, we compute the enantiomerization energy for the interconversion from minus to plus structures in the chiral putative global minimum for temperatures ranging from 20 to 1300 K. Additionally, employing nanothermodynamics, we compute the probabilities of occurrence for each particular isomer as a function of temperature. To achieve that, we explore the free energy surface of the Cu13 cluster, employing a genetic algorithm coupled with density functional theory. Moreover, we discuss the energetic ordering of isomers computed with various density functionals. Based on the computed thermal population, our results show that the chiral putative global minimum strongly dominates at room temperature.
Collapse
|