1
|
Ye X, Tao Y, Pu XL, Hu H, Chen J, Tan CL, Tan X, Li SH, Liu Y. The genus Paris: a fascinating resource for medicinal and botanical studies. HORTICULTURE RESEARCH 2025; 12:uhae327. [PMID: 40051578 PMCID: PMC11883231 DOI: 10.1093/hr/uhae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/15/2024] [Indexed: 03/09/2025]
Abstract
The genus Paris, comprising a series of distinctive medicinal plants, has been utilized globally for its therapeutic properties over centuries. Modern pharmacological studies have demonstrated that secondary metabolites from Paris species exhibit significant pharmacological activities, including anticancer, hemostatic, anti-inflammatory, antimicrobial, and other effects. Additionally, the unique morphological traits and large genome size of Paris species have continuously captured the interest of botanists and horticulturalists. Nonetheless, the conservation of wild Paris populations is threatened due to the lengthy reproductive cycle and overexploitation, posing considerable challenges to their development and sustainable use. This review provides a comprehensive overview of the botanical characteristics, historical medicinal uses, pharmacological effects, and toxicity evaluation of secondary metabolites in Paris species. It also covers the molecular biological research conducted on the genus Paris and proposes key research questions and important directions for future solutions. We advocate the expansion and implementation of multi-omics approaches, as well as molecular and genetic technologies recently advanced in model plant research, to intensively study Paris species. This will facilitate the comprehensive understanding of gene function and molecular mechanisms underlying specialized metabolite formation in Paris.
Collapse
Affiliation(s)
- Xiao Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
- Chengdu Medical College, Chengdu 610500, China
| | - Yang Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiu-Lan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Lin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
2
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Feng Y, Mo Y, Zhang Y, Teng Y, Xi D, Zhou J, Zeng G, Zong S. Polyphyllin VI: A promising treatment for prostate cancer bone metastasis. Int Immunopharmacol 2025; 144:113684. [PMID: 39602960 DOI: 10.1016/j.intimp.2024.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Prostate cancer, as one of the most prevalent malignant tumors in men, seriously affects the prognosis and survival of patients due to its extremely high rate of bone metastasis. This study investigated the effect of Polyphyllin VI (PPVI) on metastatic bone disease for the first time in prostate cancer, focusing on its impact on osteoclast and tumor cell. In vitro studies utilized TRAP staining, ghost pen cyclic peptide staining, and bone resorption assays to evaluate the differentiation and function of receptor activator of nuclear factor-κB ligand (RANKL) induced and RM-1 conditional medium (CM) induced osteoclasts. The colony formation assay, wound healing assay, and Transwell assay were employed to analyze tumor cell proliferation, migration, and invasion in vitro. Flow cytometry was used to detect the cycling and apoptosis of tumor cells in vitro. Western Blot and PCR assays were conducted to assess the expression of genes. In vivo, micro-CT, hematoxylin-eosin staining, and immunohistochemical staining evaluated the impact of PPVI on bone destruction and tumor growth in a mouse model of tumor tibial metastasis. The study results indicated that PPVI effectively inhibited osteoclast differentiation, suppresses tumor cell proliferation, migration, and invasion in vitro, and induces apoptosis and G2/M phase arrest. In vivo, PPVI not only inhibits the growth of metastatic tumors but also mitigates the resulting bone destruction. These results suggest that PPVI holds significant potential as an alternative treatment for prostate cancer with bone metastasis, providing insights into its molecular mechanisms and therapeutic efficacy.
Collapse
Affiliation(s)
- Yanbin Feng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Jinan, Shandong, China
| | - Yaomin Mo
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Jinan, Shandong, China
| | - Yilin Teng
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Deshuang Xi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Junhong Zhou
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Gaofeng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, Guangxi, China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Zhang L, Zhang D, Liu C, Tang B, Cui Y, Guo D, Duan M, Tu Y, Zheng H, Ning X, Liu Y, Chen H, Huang M, Niu Z, Zhao Y, Liu X, Xie J. Outer Membrane Vesicles Derived From Fusobacterium nucleatum Trigger Periodontitis Through Host Overimmunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400882. [PMID: 39475060 DOI: 10.1002/advs.202400882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/11/2024] [Indexed: 12/19/2024]
Abstract
The virulent bacteria-induced host immune response dominates the occurrence and progression of periodontal diseases because of the roles of individual virulence factors from these pathogens in the initiation and spread of inflammation. Outer membrane vesicles (OMVs) as a pathogenic entity have recently attracted great attention as messenger bridges between bacteria and host tissues. Herein, the novel role of OMVs derived from Fusobacterium nucleatum in the occurrence of periodontitis is dissected. In a rat periodontitis model, it is found that OMVs derived from F. nucleatum caused deterioration of periodontitis by enhancing inflammation of the periodontium and absorption of alveolar bone, which is almost equivalent to the effect of F. nucleatum itself. Furthermore, that OMVs can independently induce periodontitis is shown. The pathogenicity of OMVs is attributed to multiple pathogenic components identified by omics. After entering human periodontal ligament stem cells (hPDLSCs) by endocytosis, OMVs activated NLRP3 inflammasomes and impaired the mineralization of hPDLSCs through NF-κB (p65) signaling, leading to the final injury of the periodontium and damage of alveolar bone in periodontitis. These results provide a new understanding of OMVs derived from pathogens and cues for the prevention of periodontitis.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huiling Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinjie Ning
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama Birmingham, Birmingham, 35233, USA
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
6
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Liang A, Korani L, Yeung CLS, Tey SK, Yam JWP. The emerging role of bacterial extracellular vesicles in human cancers. J Extracell Vesicles 2024; 13:e12521. [PMID: 39377479 PMCID: PMC11460218 DOI: 10.1002/jev2.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as pivotal mediators between bacteria and host. In addition to being crucial players in host homeostasis, they have recently been implicated in disease pathologies such as cancer. Hence, the study of BEVs represents an intriguing and rapidly evolving field with substantial translational potential. In this review, we briefly introduce the fundamentals of BEV characteristics, cargo and biogenesis. We emphatically summarize the current relationship between BEVs across various cancer types, illustrating their role in tumorigenesis, treatment responses and patient survival. We further discuss the inherent advantages of BEVs, such as stability, abundance and specific cargo profiles, that make them attractive candidates for non-invasive diagnostic and prognostic approaches. The review also explores the potential of BEVs as a strategy for cancer therapy, considering their ability to deliver therapeutic agents, modulate the tumour microenvironment (TME) and elicit immunomodulatory responses. Understanding the clinical significance of BEVs may lead to the development of better-targeted and personalized treatment strategies. This comprehensive review evaluates the current progress surrounding BEVs and poses questions to encourage further research in this emerging field to harness the benefits of BEVs for their full potential in clinical applications against cancer.
Collapse
Affiliation(s)
- Aijun Liang
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Lavisha Korani
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Sze Keong Tey
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| | - Judy Wai Ping Yam
- Department of Hepatobiliary Surgery IIZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongHong Kong
| |
Collapse
|
8
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Zhang D, Tian X, Wang Y, Liu F, Zhang J, Wang H, Zhang N, Yan T, Lin C, Shi Z, Liu R, Jiang S. Polyphyllin I ameliorates gefitinib resistance and inhibits the VEGF/VEGFR2/p38 pathway by targeting HIF-1a in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155690. [PMID: 38761523 DOI: 10.1016/j.phymed.2024.155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 μM). Significantly, treatment with PPI at 1.0 μM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.
Collapse
Affiliation(s)
- Dengtian Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Youzhi Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Ni Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
11
|
Wu Z, Xiao C, Li F, Huang W, You F, Li X. Mitochondrial fusion-fission dynamics and its involvement in colorectal cancer. Mol Oncol 2024; 18:1058-1075. [PMID: 38158734 PMCID: PMC11076987 DOI: 10.1002/1878-0261.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The incidence and mortality rates of colorectal cancer have elevated its status as a significant public health concern. Recent research has elucidated the crucial role of mitochondrial fusion-fission dynamics in the initiation and progression of colorectal cancer. Elevated mitochondrial fission or fusion activity can contribute to the metabolic reprogramming of tumor cells, thereby activating oncogenic pathways that drive cell proliferation, invasion, migration, and drug resistance. Nevertheless, excessive mitochondrial fission can induce apoptosis, whereas moderate mitochondrial fusion can protect cells from oxidative stress. This imbalance in mitochondrial dynamics can exert dual roles as both promoters and inhibitors of colorectal cancer progression. This review provides an in-depth analysis of the fusion-fission dynamics and the underlying pathological mechanisms in colorectal cancer cells. Additionally, it offers partial insights into the mitochondrial kinetics in colorectal cancer-associated cells, such as immune and endothelial cells. This review is aimed at identifying key molecular events involved in colorectal cancer progression and highlighting the potential of mitochondrial dynamic proteins as emerging targets for pharmacological intervention.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| | - Fang Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Wenbo Huang
- Hospital of Chengdu University of Traditional Chinese MedicineChina
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Institute of OncologyChengdu University of Traditional Chinese MedicineChina
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese MedicineChina
- Oncology Teaching and Research DepartmentChengdu University of Traditional Chinese MedicineChina
| |
Collapse
|
12
|
Wei X, Wang F, Tan P, Huang H, Wang Z, Xie J, Wang L, Liu D, Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res 2024; 203:107148. [PMID: 38522760 DOI: 10.1016/j.phrs.2024.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Wang J, Ni BY, Wang J, Han L, Ni X, Wang XM, Cao LC, Sun QH, Han XP, Cui HJ. Research progress of Paris polyphylla in the treatment of digestive tract cancers. Discov Oncol 2024; 15:31. [PMID: 38324023 PMCID: PMC10850040 DOI: 10.1007/s12672-024-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.
Collapse
Affiliation(s)
- Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bao-Yi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Chaoyang, China
| | - Lei Han
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin Ni
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin-Miao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Chang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian-Hui Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Pu Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu-Jun Cui
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
14
|
Meng X, Ma G, Zhang X, Yin H, Miao Y, He F. Extracellular vesicles from Fusobacterium nucleatum: roles in the malignant phenotypes of gastric cancer. Cell Cycle 2024; 23:294-307. [PMID: 38446489 PMCID: PMC11057558 DOI: 10.1080/15384101.2024.2324587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The increase of the Fusobacterium nucleatum level has been previously identified in various cancers including gastric cancer (GC), but how the F. nucleatum exerts its carcinogenic role in GC remains unclear. Several studies revealed that F. nucleatum contributes to cancer progression via its secretion of extracellular vehicles (EVs). Hence, it's designed to reveal the influence of F. nucleatum-derived EVs (Fn-EVs) in GC progression. The tumor and adjacent tissues were collected from 30 GC patients, and the abundance of F. nucleatum was found to be highly expressed in tumor samples. The ultracentrifugation was employed to isolate EVs from F. nucleatum and Escherischia coli (E. coli), which were labeled Fn-EVs and E. coli-EVs, respectively. After treating GC cells with Fn-EVs and E. coli-EVs, cell counting kit 8, colony formation, wound healing as well as transwell assay were performed, which revealed that Fn-EVs effectively enhanced oxaliplatin resistance, and facilitated cell proliferation, migration, invasion, and stemness in GC cells while E. coli-EVs exert no significant effect on GC cells. Besides, the stemness and DNA repair of GC cells were also enhanced by Fn-EVs, as revealed by the sphere-forming assay and the detection of stemness- and DNA repair-associated proteins by western blotting. In vivo analyses demonstrated that Fn-EVs administration not only promoted GC tumor growth and liver metastasis but also conferred GC tumor resistance to oxaliplatin resistance. This study first revealed the contributive role of F. nucleatum in GC development via Fn-EVs, which provided a better perspective for manipulating F. nucleatum in treating GC patients with malignant phenotypes.
Collapse
Affiliation(s)
- Xiangkun Meng
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Gang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yu Miao
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Deng Y, Xiao J, Ma L, Wang C, Wang X, Huang X, Cao Z. Mitochondrial Dysfunction in Periodontitis and Associated Systemic Diseases: Implications for Pathomechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:1024. [PMID: 38256098 PMCID: PMC10816612 DOI: 10.3390/ijms25021024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Periodontitis is a chronic infectious disorder damaging periodontal tissues, including the gingiva, periodontal ligament, cementum, and alveolar bone. It arises from the complex interplay between pathogenic oral bacteria and host immune response. Contrary to the previous view of "energy factories", mitochondria have recently been recognized as semi-autonomous organelles that fine-tune cell survival, death, metabolism, and other functions. Under physiological conditions, periodontal tissue cells participate in dynamic processes, including differentiation, mineralization, and regeneration. These fundamental activities depend on properly functioning mitochondria, which play a crucial role through bioenergetics, dynamics, mitophagy, and quality control. However, during the initiation and progression of periodontitis, mitochondrial quality control is compromised due to a range of challenges, such as bacterial-host interactions, inflammation, and oxidative stress. Currently, mounting evidence suggests that mitochondria dysfunction serves as a common pathological mechanism linking periodontitis with systemic conditions like type II diabetes, obesity, and cardiovascular diseases. Therefore, targeting mitochondria to intervene in periodontitis and multiple associated systemic diseases holds great therapeutic potential. This review provides advanced insights into the interplay between mitochondria, periodontitis, and associated systemic diseases. Moreover, we emphasize the significance of diverse therapeutic modulators and signaling pathways that regulate mitochondrial function in periodontal and systemic cells.
Collapse
Affiliation(s)
- Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
16
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Minami S, Chikazu D, Ochiya T, Yoshioka Y. Extracellular vesicle-based liquid biopsies in cancer: Future biomarkers for oral cancer. Transl Oncol 2023; 38:101786. [PMID: 37713973 PMCID: PMC10509717 DOI: 10.1016/j.tranon.2023.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Oral cancer is the sixth most common cancer worldwide, with approximately 530,000 new cases and 300,000 deaths each year. The process of carcinogenesis is complex, and survival rates have not changed significantly in recent decades. Early detection of cancer, prognosis prediction, treatment selection, and monitoring of progression are important to improve survival. With the recent significant advances in analytical technology, liquid biopsy has made it possible to achieve these goals. In this review, we report new results from clinical and cancer research applications of liquid biopsy, focusing on extracellular vesicles (EVs) among the major targets of liquid biopsy, namely, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and EVs. In addition, the potential application of EVs derived from gram-negative bacteria (outer membrane vesicles; OMVs) among oral bacteria, which have recently attracted much attention, to liquid biopsy for oral cancer will also be addressed.
Collapse
Affiliation(s)
- Sakura Minami
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
19
|
Long D, Mao C, Zhang Z, Zou J, Zhu Y. Visual analysis of colorectal cancer and gut microbiota: A bibliometric analysis from 2002 to 2022. Medicine (Baltimore) 2023; 102:e35727. [PMID: 37933041 PMCID: PMC10627710 DOI: 10.1097/md.0000000000035727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
A growing number of studies have shown that gut microbiota (GM) plays an essential role in the occurrence and development of colorectal cancer (CRC). The current body of research exploring the relationship between CRC and GM is vast. Nevertheless, bibliometric studies in this area have not yet been reported. This study aimed to explore the hotspots and frontiers of research on GM and CRC in the past 20 years, which may provide a reference for researchers in this field. The Web of Science Core Collection database was searched for publications on CRC and GM from 2002 to 2022. The scientometric softwares CiteSpace and VOSviewer were used to visually analyze the countries, institutions, authors, journals, and keywords involved in the literature. Keywords co-occurrence, cluster, and burst analysis were utilized to further explore the current state and development trends of research on GM and CRC. A total of 2158 publications were included in this study, with a noticeably rising annual publication trend. The majority of these papers are from 80 nations, primarily China and the USA. J Yu was the most active author and WS Garrett has the highest citation. Among all institutions, Shanghai Jiao Tong University has the largest number of papers. Most of the publications were published in the International Journal of Molecular Sciences, with Science being the most frequently cited journal. The 4 main clusters mainly involved probiotics, inflammation, molecular mechanisms, and research methods. Current research hotspots included "Fusobacterium nucleatum," "Escherichia coli," etc. Newly emerging research has focused predominantly on immune response, gene expression, and recent strategies for the treatment of CRC with GM. The relationship between GM and CRC will continue to be a hot research area. Changes in the composition of GM in patients with CRC, the potential molecular mechanisms as well as probiotics and natural products used in the treatment of CRC have been the focus of current research and hotspots for future studies.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhensheng Zhang
- The First Traditional Chinese Medicine Hospital of Zhanjiang City, Zhanjiang, Guangdong, China
| | - Junjun Zou
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
He L, Yan X, Wen S, Zhong Z, Hou Z, Liu F, Mi H. Paris polyphylla extract attenuates colitis in mice by regulating PPAR-γ mediated Treg/Th17 balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116621. [PMID: 37164256 DOI: 10.1016/j.jep.2023.116621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla Sm. (P.P), is a widely-used traditional Chinese medicine (TCM) in the treatment of wound, throat sores and snakebites. Furthermore, P.P was recorded as an anti-inflammatory drug by the Chinese Pharmacopoeia. AIM OF THE STUDY We sought to decipher the anti-inflammatory effect of P.P on ulcerative colitis (UC); specifically, to explore whether P.P attenuates colitis by restoring the regulatory T cells (Tregs) and T helper 17 (Th17) cells balance and its mechanism. MATERIAL AND METHODS We treated experimental colitis mice with extracts of Paris polyphylla (EPP). The percentage of Tregs and Th17 cells were measured using flow cytometry, and their secreted cytokines levels were evaluated employing ELISA. The expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in colon tissues was detected using immunofluorescence. Furthermore, GW9662, a PPAR-γ antagonist, was used to validate the mechanism of EPP in restoring the Treg/Th17 balance. RESULTS The EPP effectively alleviated the clinical symptoms and inflammatory cytokine levels in mice with colitis. EPP treatment also restored the impaired Treg/Th17 balance in mice. Furthermore, EPP treatment promoted PPAR-γ expression and reduced HIF-1α and p-STAT3 expression in colon tissues, whereas PPAR-γ inhibition blocked the effects of EPP in mice models. CONCLUSION Our study indicates that EPP exhibit excellent anti-inflammatory properties via restoring PPAR-γ/STAT3/HIF-1α axis-mediated Treg/Th17 balance in colitis mice. Hence, P. polyphylla is a promising medicinal plant-based alternative for managing colitis that requires further clinical validation.
Collapse
Affiliation(s)
- Long He
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xingrui Yan
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hong Mi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
21
|
Liu C, Zhang H, Li T, Jiang Z, Yuan Y, Chen X. Fusobacterium nucleatum Promotes Megakaryocyte Maturation in Patients with Gastric Cancer via Inducing the Production of Extracellular Vesicles Containing 14-3-3ε. Infect Immun 2023; 91:e0010223. [PMID: 37404144 PMCID: PMC10429653 DOI: 10.1128/iai.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023] Open
Abstract
Fusobacterium nucleatum colonization contributes to the occurrence of portal vein thrombosis in patients with gastric cancer (GC). However, the underlying mechanism by which F. nucleatum promotes thrombosis remains unclear. In this study, we recruited a total of 91 patients with GC and examined the presence of F. nucleatum in tumor and adjacent non-tumor tissues by fluorescence in situ hybridization and quantitative PCR. Neutrophil extracellular traps (NETs) were detected by immunohistochemistry. Extracellular vesicles (EVs) were extracted from the peripheral blood and proteins in the EVs were identified by mass spectrometry (MS). HL-60 cells differentiated into neutrophils were used to package engineered EVs to imitate the EVs released from NETs. Hematopoietic progenitor cells (HPCs) and K562 cells were used for megakaryocyte (MK) in vitro differentiation and maturation to examine the function of EVs. We observed that F. nucleatum-positive patients had increased NET and platelet counts. EVs from F. nucleatum-positive patients could promote the differentiation and maturation of MKs and had upregulated 14-3-3 proteins, especially 14-3-3ε. 14-3-3ε upregulation promoted MK differentiation and maturation in vitro. HPCs and K562 cells could receive 14-3-3ε from the EVs, which interacted with GP1BA and 14-3-3ζ to trigger PI3K-Akt signaling. In conclusion, we identified for the first time that F. nucleatum infection promotes NET formation, which releases EVs containing 14-3-3ε. These EVs could deliver 14-3-3ε to HPCs and promote their differentiation into MKs via activation of PI3K-Akt signaling.
Collapse
Affiliation(s)
- Chang Liu
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Cardiovascular Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - He Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Tiepeng Li
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhiqiang Jiang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yiqiang Yuan
- Department of Cardiovascular Medicine, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Cardiovascular Medicine, The 7th People’s Hospital of Zhengzhou, Henan Cardiovascular Hospital Affiliated to Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, Zhengzhou, Henan, China
- Department of Cardiovascular Medicine, Henan Provincial Chest Hospital, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Gastrointestinal Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Li G, Sun Y, Huang Y, Lian J, Wu S, Luo D, Gong H. Fusobacterium nucleatum-derived small extracellular vesicles facilitate tumor growth and metastasis via TLR4 in breast cancer. BMC Cancer 2023; 23:473. [PMID: 37221488 PMCID: PMC10207721 DOI: 10.1186/s12885-023-10844-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The contributive role of the microbiome in tumor progression has been reported in multiple studies, such as the Fusobacterium nucleatum (F. nucleatum) in breast cancer (BC). This study aimed to explore the role of F. nucleatum-derived small extracellular vesicles (Fn-EVs) in BC and preliminarily uncover the mechanism. METHODS Ten normal and 20 cancerous breast tissues were harvested to investigate the gDNA expression of F. nucleatum and its relation with the clinical characteristics of BC patients. After isolating Fn-EVs by ultracentrifugation from F. nucleatum (ATCC 25,586), both MDA-MB-231 and MCF-7 cells were treated with PBS, Fn, or Fn-EVs, followed by being subjected to CCK-8, Edu staining, wound healing, and Transwell assays to detect their cell viability, proliferation, migration, and invasion. TLR4 expression in BC cells with diverse treatments was assessed by western blot. In vivo experiments were performed to verify its role in tumor growth and liver metastasis. RESULTS The F. nucleatum gDNA levels of breast tissues in BC patients were significantly higher than those in normal subjects, and positively associated with tumor size and metastasis. Fn-EVs administration significantly enhanced the cell viability, proliferation, migration, and invasion of BC cells, while knocking down TLR4 in BC cells could block these effects. Furthermore, in vivo study verified the contributive role of Fn-EVs in tumor growth and metastasis of BC, which might rely on its regulation of TLR4. CONCLUSIONS Collectively, our results suggest that F. nucleatum plays an important role in BC tumor growth and metastasis by regulating TLR4 through Fn-EVs. Thus, a better understanding of this process may aid in the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Guiqiu Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Yan Sun
- Shenzhen Nanshan District Maternal and Child Health Hospital, Shenzhen, 518052 PR China
| | - Yu Huang
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Jie Lian
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Shaoyuan Wu
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Dixian Luo
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| | - Hui Gong
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Affiliated Shenzhen Sixth Hospital of Shenzhen University, No. 89 Taoyuan Road, Nanshan District, Shenzhen, 518052 PR China
| |
Collapse
|
23
|
Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N. Paris polyphylla Sm. Induces Reactive Oxygen Species and Caspase 3-Mediated Apoptosis in Colorectal Cancer Cells In Vitro and Potentiates the Therapeutic Significance of Fluorouracil and Cisplatin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1446. [PMID: 37050072 PMCID: PMC10097216 DOI: 10.3390/plants12071446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Paris polyphylla Sm. (Melanthiaceae) is an essential, vulnerable herb with a wide range of traditional applications ranging from fever to cancer in various communities. The use of P. polyphylla in India is limited to traditional healers. Here, we demonstrated that P. polyphylla extract (PPE) has good phenol, flavonoid, saponin, and steroidal saponin content and anti-oxidant activity with IC50 35.12 ± 6.1 μg/mL in DPPH and 19.69 ± 6.7 μg/mL in ABTS. Furthermore, PPE induces cytotoxicity in HCT-116 with IC50 8.72 ± 0.71 μg/mL without significant cytotoxicity inthe normal human colon epithelial cell line, CCD 841 CoN. PPE inhibits the metastatic property and induces apoptosis in HCT-116, as measured by Annexin V/PI, by increasing the production of reactive oxygen species (ROS) and caspase 3 activation. PPE acts synergistically with 5FU and cisplatin in HCT-116 and potentiates their therapeutic significance. Steroidal saponins with anticancer activities were detected in PPE by HR-LCMS. The present study demonstrated that PPE induces apoptosis by increasing ROS and activating caspase 3, which was attributed to steroidal saponins. PPE can be used as a potential natural remedy for colon cancer.
Collapse
Affiliation(s)
- Vimi Kshetrimayum
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Rameshwari Heisnam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
- School of Biotechnology Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneshwar 751024, India
| | - Ojit Singh Keithellakpam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Sai Jyothi Akula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Pulok K. Mukherjee
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| | - Nanaocha Sharma
- Microbial Resources Division, Institute of Bioresources and Sustainable Development Takyelpat, Imphal 795001, India
| |
Collapse
|
24
|
Liu Y, Liu MY, Bi LL, Tian YY, Qiu PC, Qian XY, Wang MC, Tang HF, Lu YY, Zhang BL. Cytotoxic steroidal glycosides from the rhizomes of Paris polyphylla var. yunnanensis. PHYTOCHEMISTRY 2023; 207:113577. [PMID: 36587887 DOI: 10.1016/j.phytochem.2022.113577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 μM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Mei-You Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Lin Bi
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Yun-Yuan Tian
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Peng-Cheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Xiao-Ying Qian
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hai-Feng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Yun-Yang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China.
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, China.
| |
Collapse
|
25
|
Utama K, Khamto N, Meepowpan P, Aobchey P, Kantapan J, Meerak J, Roytrakul S, Sangthong P. 2',4'-Dihydroxy-6'‑methoxy-3',5'-dimethylchalcone and its amino acid-conjugated derivatives induce G0/G1 cell cycle arrest and apoptosis via BAX/BCL2 ratio upregulation and in silico insight in SiHa cell lines. Eur J Pharm Sci 2023; 184:106390. [PMID: 36813001 DOI: 10.1016/j.ejps.2023.106390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
We modified the chemical structure of 2',4'-dihydroxy-6'‑methoxy-3',5'-dimethylchalcone (DMC, 1), a phytochemical found in the seed of Syzygium nervosum A.Cunn. ex DC., by conjugation with the amino acid L-alanine (compound 3a) or L-valine (compound 3b) to enhance anticancer activity and water solubility. Compounds 3a and 3b had antiproliferative activity in human cervical cancer cell lines (C-33A, SiHa and HeLa), with half-maximal inhibitory concentrations (IC50) of 7.56 ± 0.27 and 8.24 ± 0.14 µM, respectively in SiHa cells; these values were approximately two-fold greater than DMC. We investigated the biological activities of compounds 3a and 3b based on a wound healing assay, a cell cycle assay and messenger RNA (mRNA) expression analysis to determine the possible mechanism of anticancer activity. Compounds 3a and 3b inhibited SiHa cell migration in the wound healing assay. After treatment with compounds 3a and 3b, there was an increase in SiHa cells in the G1 phase, indicative of cell cycle arrest. Moreover, compound 3a showed potential anticancer activity by upregulating TP53 and CDKN1A that resulted in upregulation of BAX and downregulation of CDK2 and BCL2, leading to apoptosis and cell cycle arrest. The BAX/BCL2 expression ratio was increased after treatment with compound 3avia the intrinsic apoptotic pathway. In silico molecular dynamics simulation and binding free energy calculation shed light on how these DMC derivatives interact with the HPV16 E6 protein, a viral oncoprotein associated with cervical cancer. Our findings suggest that compound 3a is a potential candidate for anti-cervical cancer drug development.
Collapse
Affiliation(s)
- Kraikrit Utama
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Paitoon Aobchey
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Kantapan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jomkhwan Meerak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 12120, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
26
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
27
|
Chuang YT, Tang JY, Shiau JP, Yen CY, Chang FR, Yang KH, Hou MF, Farooqi AA, Chang HW. Modulating Effects of Cancer-Derived Exosomal miRNAs and Exosomal Processing by Natural Products. Cancers (Basel) 2023; 15:318. [PMID: 36612314 PMCID: PMC9818271 DOI: 10.3390/cancers15010318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Li J, Jia J, Zhu W, Chen J, Zheng Q, Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front Pharmacol 2023; 14:1095786. [PMID: 36895945 PMCID: PMC9989034 DOI: 10.3389/fphar.2023.1095786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer is a major threat to human health, with high mortality and a low cure rate, continuously challenging public health worldwide. Extensive clinical application of traditional Chinese medicine (TCM) for patients with poor outcomes of radiotherapy and chemotherapy provides a new direction in anticancer therapy. Anticancer mechanisms of the active ingredients in TCM have also been extensively studied in the medical field. As a type of TCM against cancer, Rhizoma Paridis (Chinese name: Chonglou) has important antitumor effects in clinical application. The main active ingredients of Rhizoma Paridis (e.g., total saponins, polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII) have shown strong antitumor activities in various cancers, such as breast cancer, lung cancer, colorectal cancer, hepatocellular carcinoma (HCC), and gastric cancer. Rhizoma Paridis also has low concentrations of certain other active ingredients with antitumor effects, such as saponins polyphyllin E, polyphyllin H, Paris polyphylla-22, gracillin, and formosanin-C. Many researchers have studied the anticancer mechanism of Rhizoma Paridis and its active ingredients. This review article describes research progress regarding the molecular mechanism and antitumor effects of the active ingredients in Rhizoma Paridis, suggesting that various active ingredients in Rhizoma Paridis may be potentially therapeutic against cancer.
Collapse
Affiliation(s)
- Jie Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jinhao Jia
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Weiwei Zhu
- Clinical Trial Agency, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jianfei Chen
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Defang Li
- Collaborative Innovation Platform for Modernization and Industrialization of Regional Characteristic Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
29
|
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 2022; 14:2134689. [PMID: 36242585 PMCID: PMC9578468 DOI: 10.1080/19490976.2022.2134689] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microenvironment dysbiosis is one of the major causes of diseases, such as obesity, diabetes, inflammatory bowel disease, and colon cancer. Microbiota-based strategies have excellent clinical potential in the treatment of repetitive and refractory diseases; however, the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria-host is essential to achieve precise control of the gut microbiome and obtain effective clinical data. Gut bacteria-derived extracellular vesicles (GBEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and are considered key players in bacteria-bacteria and bacteria-host communication. This review focusses on the role of GBEVs in gut microbiota interactions and bacteria-host communication, and the potential clinical applications of GBEVs.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China,Institute of Physical Science and Information Technology, Anhui University, Hefei, China,CONTACT Yongzhong Wang School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
30
|
Chen M, Lin W, Li N, Wang Q, Zhu S, Zeng A, Song L. Therapeutic approaches to colorectal cancer via strategies based on modulation of gut microbiota. Front Microbiol 2022; 13:945533. [PMID: 35992678 PMCID: PMC9389535 DOI: 10.3389/fmicb.2022.945533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of global incidence and second in terms of death toll among malignant tumors. Gut microbiota are involved in the formation, development, and responses to different treatments of CRC. Under normal physiological conditions, intestinal microorganisms protect the intestinal mucosa, resist pathogen invasion, and regulate the proliferation of intestinal mucosal cells via a barrier effect and inhibition of DNA damage. The composition of gut microbiota and the influences of diet, drugs, and gender on the composition of the intestinal flora are important factors in the early detection of CRC and prediction of the results of CRC treatment. Regulation of gut microbiota is one of the most promising new strategies for CRC treatment, and it is essential to clarify the effect of gut microbiota on CRC and its possible mechanisms to facilitate the prevention and treatment of CRC. This review discusses the role of gut microbiota in the pathogenesis of CRC, the potential of gut microbiota as biomarkers for CRC, and therapeutic approaches to CRC based on the regulation of gut microbiota. It might provide new ideas for the use of gut microbiota in the prevention and treatment of CRC in the near future and thus reduce the incidence of CRC.
Collapse
Affiliation(s)
- Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Sciences, Chengdu, China
- Anqi Zeng,
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Linjiang Song,
| |
Collapse
|
31
|
The Association of Gut Microbiota and Complications in Gastrointestinal-Cancer Therapies. Biomedicines 2021; 9:biomedicines9101305. [PMID: 34680424 PMCID: PMC8533200 DOI: 10.3390/biomedicines9101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
The therapy of gastrointestinal carcinomas includes surgery, chemo- or immunotherapy, and radiation with diverse complications such as surgical-site infection and enteritis. In recent years, the microbiome’s influence on different diseases and complications has been studied in more detail using methods such as next-generation sequencing. Due to the relatively simple collectivisation, the gut microbiome is the best-studied so far. While certain bacteria are sometimes associated with one particular complication, it is often just the loss of alpha diversity linked together. Among others, a strong influence of Fusobacterium nucleatum on the effectiveness of chemotherapies is demonstrated. External factors such as diet or specific medications can also predispose to dysbiosis and lead to complications. In addition, there are attempts to treat developed dysbiosis, such as faecal microbiota transplant or probiotics. In the future, the underlying microbiome should be investigated in more detail for a better understanding of the precipitating factors of a complication with specific therapeutic options.
Collapse
|