1
|
Zhang J, Dai Z, Yu H, Sun B, Ding J, Wang Y. Effects of Dictyophora polysaccharide on cerebellar Purkinje cell degeneration in a chronic alcohol mouse model. Animal Model Exp Med 2025. [PMID: 40223353 DOI: 10.1002/ame2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/16/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Recent research showed that the NLRP3 inflammasome was activated in the central nervous system of mice administered chronic ethanol (EtOH). Dictyophora polysaccharides (DIPs) are essential components of the valuable edible fungus Dictyophora, which has antioxidant properties that can delay the aging process of the body. This study aimed to investigate the roles of NLRP3 in chronic EtOH-induced cerebellar Purkinje cell (PC) degeneration and behavioral changes. METHODS C57BL/6J normal and NLRP3 knockout mice were exposed to EtOH for 14 days. Dictyophora polysaccharide (DIP) and NLRP3 inhibitor were administered to the EtOH mice. The pathology and NLRP3-ASC-caspase-1 signaling pathway proteins were analyzed in EtOH mice cerebellar tissues and behavioral performance was assessed in the mice. RESULTS In the EtOH mouse model, we observed increases in the NLRP3 inflammasome proteins, including NLRP3, ASC, caspase-1, mature IL-1β and pro IL-1β, loss of PCs, and motor coordination disorders. We found that DIPs could suppress the NLRP3-ASC-caspase-1 signaling pathway, and alleviate the motor deficits and cerebellar pathological changes in chronic EtOH mice. Next, we used MCC950, a NLRP3 inhibitor, and an NLRP3 knockout strategy to further verify the effects of NLRP3-ASC-caspase-1 signaling in chronic EtOH mice. MCC950 or NLRP3 knockout alleviated the EtOH-induced latency to decreases in fall time, increases in stride width and decreases in stride length. MCC950 or NLRP3 knockout also attenuated PC number loss and suppressed NLRP3 inflammation induced by EtOH. Taken together, pharmacologically or genetically inhibiting NLRP3 alleviated EtOH-induced cerebellar degeneration and behavioral deficits. CONCLUSION These findings indicated that DIPs might diminish EtOH-induced cerebellar degeneration and behavioral deficits through the NLRP3-ASC-caspase-1 signaling pathway, which provides a potential therapeutic target for the prevention and treatment of alcoholism and EtOH-induced cerebellar pathology.
Collapse
Affiliation(s)
- Jian Zhang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhihui Dai
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Huanhuan Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Tian Y, Hou Q, Zhang M, Gao E, Wu Y. Exposure to arsenic and cognitive impairment in children: A systematic review. PLoS One 2025; 20:e0319104. [PMID: 40009645 PMCID: PMC11864541 DOI: 10.1371/journal.pone.0319104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
OBJECTIVE Arsenic exposure is a significant public health concern, particularly for its impact on children's cognitive development. Arsenic, a prevalent environmental toxin, is known to disrupt various biological pathways, leading to cognitive deficits and neurodevelopmental issues. Understanding the long-term effects and mechanisms underlying arsenic-induced cognitive impairments is crucial for devising effective interventions. METHODS This systematic review included observational and experimental studies focusing on children under 18 years exposed to arsenic through drinking water, food, or other environmental sources. Studies were selected through comprehensive database searches, encompassing articles that measured cognitive outcomes via standardized tests. The synthesis was primarily narrative, given the heterogeneity in study designs, exposure levels, and outcomes. RESULTS The review analysed findings from 24 studies, showing a consistent inverse relationship between arsenic exposure and cognitive performance in children. Higher arsenic levels were associated with lower IQ scores, slower processing speeds, and impaired memory and language skills. These cognitive deficits were evident across diverse geographical regions and persisted even after adjusting for sociodemographic factors. The studies highlighted the potential for both immediate and long-term cognitive effects, underscoring the importance of early-life exposure. CONCLUSIONS Arsenic exposure has the potential to impair cognitive development in children. Nonetheless, quantitative meta-analysis is necessary to deduce any conclusions related to its impact. Public health efforts must prioritize reducing arsenic exposure through improved water quality and community-awareness programs. Future research should focus on longitudinal studies to better understand the dose-response relationship and the effectiveness of intervention strategies. SYSTEMATIC REVIEW REGISTRATION Prospero, CRD42024544442.
Collapse
Affiliation(s)
- Yumei Tian
- School of Nursing, Hunan Medical University, Huaihua City, Hunan Province, China
| | - Qi Hou
- Wuhan Polytechnic University, School of Life Sciences and Technology, Wuhan City, Hubei Province, China
| | - Mingyue Zhang
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Er Gao
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Yue Wu
- School of Nursing, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| |
Collapse
|
3
|
Kumar Y, Xu B. New Insights into Chemical Profiles and Health-Promoting Effects of Edible Mushroom Dictyophora indusiate (Vent ex. Pers.) Fischer: A Review. J Fungi (Basel) 2025; 11:75. [PMID: 39852494 PMCID: PMC11767163 DOI: 10.3390/jof11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on D. indusiata by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from D. indusiata offer anti-diabetic, antioxidant, anti-tumor, hepatoprotective, and anti-bacterial effects. In particular, polysaccharides from Dictyophora indusiata (DIP) enhance immune function, reduce oxidative stress, and promote gut health as prebiotics. DIP shows neuroprotective effects by reducing oxidative damage, improving mitochondrial function, and regulating apoptosis, making them beneficial for neurodegenerative diseases. They also activate immune responses through TLR4 and NF-κB pathways. Additionally, compounds like dictyophorines and quinazoline from D. indusiata support nerve growth and protection. Mushrooms help regulate metabolism and improve lipid profiles, with potential applications in managing metabolic disorders, cancer, cardiovascular diseases, diabetes, and neurodegenerative conditions. Their wide range of bioactive compounds makes D. indusiata mushrooms functional foods with significant therapeutic potential.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Biotechnology, Mehsana Urban Institute of Sciences, Ganpat University, Mehsana 384012, Gujrat, India;
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
4
|
He Y, Gao W, Zhang Y, Sun M, Kuang H, Sun Y. Progress in the preparation, structure and bio-functionality of Dictyophora indusiata polysaccharides: A review. Int J Biol Macromol 2024; 283:137519. [PMID: 39577539 DOI: 10.1016/j.ijbiomac.2024.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024]
Abstract
Dictyophora indusiata (D. indusiata) is an elegant fungus known as the "mushroom queen" because of its rich nutritional value and resemblance to dancers wearing clean white dresses. Due to the harsh growth environment, the yield of D. indusiata is relatively low. Polysaccharides are the most abundant component among them and it is valued for its unique physiological function. Multiple extraction and purification methods have been used to separate and purify polysaccharides from D. indusiata. These polysaccharides have demonstrated strong biological activities in vitro and in vivo, including anti-inflammatory, anti-tumour, immunomodulatory, antioxidant and anti-hyperlipidemic effects. In addition, D. indusiata polysaccharides have shown promising potential for development and application in the areas of food, healthcare products, pharmaceuticals, and cosmetics. Recent advances in the extraction, purification, structural characterization, biological activities and application prospects of D. indusiata polysaccharides were summarized. This review may enrich the knowledge about bioactive polysaccharides from D. indusiata and provide a theoretical basis. Due to diverse potential health-promoting properties of D. indusiata polysaccharides, further development for their application in functional foods and pharmaceuticals is expected.
Collapse
Affiliation(s)
- Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
5
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
6
|
Ran X, Yan X, Zhuang H, Liang Z, Ma G, Chen X, Huang Y, Liu X, Luo P, Hu T, Zhang J, Shen L. Effects of arsenic exposure on blood trace element levels in rats and sex differences. Biometals 2024; 37:1099-1111. [PMID: 38568319 DOI: 10.1007/s10534-024-00594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 10/15/2024]
Abstract
Arsenic (As) is a widespread environmental metalloid and human carcinogen, and its exposure is associated with a wide range of toxic effects, leading to serious health hazards. As poisoning is a complex systemic multi-organ and multi-system damage disease. In this study, a rat model of As poisoning was established to investigate the levels of trace elements in the blood of rats and sex differences in the effect of As on every trace elements in rat blood. Twenty 6-week-old SD (Sprague Dawley) rats were randomly divided into the control group and the As-exposed group. After 3 months, the contents of 19 elements including As in the blood were detected in these two groups by inductively coupled plasma mass spectrometry (ICP-MS). As levels in the blood of As-exposed rats were significantly higher than those in the control group, with increased levels of Rb, Sr, Cs and Ce, and decreased levels of Pd. As showed a significant positive correlation with Rb. There were significant sex differences in blood Se, Pd, Eu, Dy, Ho, and Au levels in the As-exposed group. The results showed that As exposure can lead to an increase of As content in blood and an imbalance of some elements. There were sex differences in the concentration and the correlation between elements of some elements. Elemental imbalances may affect the toxic effects of As and play a synergistic or antagonistic role in As toxicity.
Collapse
Affiliation(s)
- Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
7
|
Yan N, Wang Z, Li Z, Zheng Y, Chang N, Xu K, Wang Q, Duan X. Arsenic Exposure Induces Neuro-immune Toxicity in the Cerebral Cortex and the Hippocampus via Neuroglia and NLRP3 Inflammasome Activation in C57BL/6 Mice. Biol Trace Elem Res 2024; 202:4554-4566. [PMID: 38148432 DOI: 10.1007/s12011-023-04012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
This study aimed to examine the immuntoxic effects of arsenic in the nervous system. Our results showed that arsenic increased corticocerebral and hippocampal weights (p < 0.05). Morris water maze tests revealed that arsenic significantly increased the time spent in latency to platform on the fourth day in 50 mg/L arsenic exposure and the fifth day in 25 and 50 mg/L arsenic exposure, as well as reduced the path length in target quadrant, time spent in target quadrant, and crossing times of the platform (p < 0.05). Hematoxylin-eosin staining showed that the vacuolated degeneration and pyknosis was found in the cerebral cortex and hippocampus of arsenic-treated mice. The mRNA levels of corticocerebral and hippocampal brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were decreased in the 50 mg/L arsenic-treated group (p < 0.05). In addition, immunofluorescence staining showed that 25 and 50 mg/L arsenic all increased the expression of CD11b and glial fibrillary acidic protein (GFAP) in the cerebral cortex and hippocampus (p < 0.05). Arsenic markedly raised antigen-presenting molecule MHCII and CD40 mRNA levels in the cerebral cortex and hippocampus and upregulated the cell chemokine receptor 5 (CCR5) and CCR7 mRNA levels in the cerebral cortex at the 50 mg/L arsenic group, and increased the CCR7 mRNA levels in the hippocampus at the 25 and 50 mg/L arsenic groups (p < 0.05). Arsenic activated the nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome, and enhanced its upstream promoter NF-κB protein level and downstream regulators IL-18 mRNA levels. Collectively, these results provide new evidences for the neuro-immune toxicity of arsenic.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhengdong Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhou Li
- Occupational and Environmental Health Monitoring Department, Dezhou Center for Disease Control and Prevention, Dezhou, 253016, China
| | - Yang Zheng
- Department of Scientific Research, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Nan Chang
- Department of Food Quality and Safety, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
8
|
Tian C, Qi Y, Zheng Y, Xia P, Liu Q, Luan M, Zheng J, Song R, Wang M, Qi D, Xiong C, Dong L. Exploring the Effect of Arsenic-Containing Hydrocarbon on the Bidirectional Synaptic Plasticity of the Dorsal Hippocampus. Int J Mol Sci 2024; 25:7223. [PMID: 39000331 PMCID: PMC11241539 DOI: 10.3390/ijms25137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Arsenic-containing hydrocarbons (AsHCs) are common in marine organisms. However, there is little research on their effects on the central nervous system's advanced activities, such as cognition. Bidirectional synaptic plasticity dynamically regulates cognition through the balance of long-term potentiation (LTP) and long-term depression (LTD). However, the effects of AsHCs on bidirectional synaptic plasticity and the underlying molecular mechanisms remain unexplored. This study provides the first evidence that 15 μg As L-1 AsHC 360 enhances bidirectional synaptic plasticity, occurring during the maintenance phase rather than the baseline phase. Further calcium gradient experiments hypothesize that AsHC 360 may enhance bidirectional synaptic plasticity by affecting calcium ion levels. The enhancement of bidirectional synaptic plasticity by 15 μg As L-1 AsHC 360 holds significant implications in improving cognitive function, treating neuro-psychiatric disorders, promoting neural recovery, and enhancing brain adaptability.
Collapse
Affiliation(s)
- Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Yenan Qi
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
- School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Pei Xia
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China;
| | - Qiwen Liu
- School of Control Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Mengying Luan
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Junyao Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Rujuan Song
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Meng Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Dejiao Qi
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
| | - Chan Xiong
- Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Lei Dong
- School of Life Sciences, Tiangong University, Tianjin 300387, China; (C.T.); (Y.Q.); (Y.Z.); (M.L.); (J.Z.); (R.S.); (M.W.); (D.Q.)
- School of Electronics & Information Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
9
|
Chen X, Yan X, Tang X, Wang Y, Zhang X, Cao X, Ran X, Ma G, Hu T, Qureshi A, Luo P, Shen L. Study on the mechanism of arsenic-induced renal injury based on SWATH proteomics technology. J Trace Elem Med Biol 2024; 83:127390. [PMID: 38266420 DOI: 10.1016/j.jtemb.2024.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Arsenic (As) poisoning is a worldwide endemic disease affecting thousands of people. As is excreted mainly through the renal system, and arsenic has toxic effects on the kidneys, but the mechanism has not been elucidated. In this study, the molecular basis of arsenic's nephrotoxicity was studied by using a high-throughput proteomics technique. METHODS Eight SD (Sprague-Dawley) rats, half male and half female, were fed an As diet containing 50 mg/kg NaAsO2. Age- and sex-matched rats fed with regular chow were used as controls. At the end of the experiment (90 days), kidney tissue samples were collected and assessed for pathological changes using hematoxylin-eosin staining. Proteomic methods were used to identify alterations in protein expression levels in kidney tissues, and bioinformatic analyses of differentially expressed proteins between arsenic-treated and control groups were performed. The expression of some representative proteins was validated by Western blot analysis. RESULTS NaAsO2 could induce renal injury. Compared with the control group, 112 proteins were up-regulated, and 46 proteins were down-regulated in the arsenic-treated group. These proteins were associated with the electron transport chain, oxidative phosphorylation, mitochondrial membrane, apoptosis, and proximal tubules, suggesting that the mechanisms associated with them were related to arsenic-induced kidney injury and nephrotoxicity. The expressions of Atp6v1f, Cycs and Ndufs1 were verified, consistent with the results of omics. CONCLUSION These results provide important evidence for arsenic-induced kidney injury and provide new insights into the molecular mechanism of arsenic-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
10
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
11
|
Yan X, Zhang J, Li J, Zhang X, Wang Y, Chen X, Luo P, Hu T, Cao X, Zhuang H, Tang X, Yao F, He Z, Ma G, Ran X, Shen L. Effects of arsenic exposure on trace element levels in the hippocampus and cortex of rats and their gender differences. J Trace Elem Med Biol 2023; 80:127289. [PMID: 37660573 DOI: 10.1016/j.jtemb.2023.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Exposure to arsenic (As) is a major public health challenge worldwide. Chronic exposure to As can cause various human health effects, including skin diseases, cardiovascular disease, neurological disorders, and cancer. Studies have shown that As exposure can lead to disturbances in the balance of trace elements in the body. Moreover, As readily crosses the blood-brain barrier and can be enriched in the hippocampus and cortex, causing neurotoxic damage. At present, there are few reports on the effect of As on trace element levels in the central nervous system (CNS). Therefore, we sought to explore As-induced neurotoxicity and the effects of As on CNS trace element levels. METHODS An As-induced neurological injury model in rats was established by feeding As chow for 90 days of continuous exposure, and 19 elements were detected in the hippocampus and cortex of As-exposed rats by inductively coupled plasma mass spectrometry. RESULTS The results showed that the As levels in the hippocampus and cortex of As-exposed rats were significantly higher than those in the control group, The As levels in the cortex were significantly higher than in the hippocampus group. The levels of Cd, Ho, and Rb were increased in the hippocampus and decreased in Au, Ba, Ce, Cs, Pd, Se, Sr, and Tl in the As-exposed group, while the levels of Cd and Rb were increased and Se and Au were decreased in the cortex. Significant gender differences in the effects of As on hippocampal Cd, Ba, Rb, and Sr, and cortical Cd and Mo. CONCLUSION It is suggested that elemental imbalance may be a risk factor for developing As toxicity plays a synergistic or antagonistic role in As-induced toxicity and is closely related to As-induced CNS damage.
Collapse
Affiliation(s)
- Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Junyu Li
- Shenzhen Customs Food Inspection and Quarantine Technology Centre, Shenzhen 518000, PR China
| | - Xinglai Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Yi Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, PR China.
| |
Collapse
|
12
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
13
|
Tang X, Feng C, Zhao Y, Zhang H, Gao Y, Cao X, Hong Q, Lin J, Zhuang H, Feng Y, Wang H, Shen L. A study of genetic heterogeneity in autism spectrum disorders based on plasma proteomic and metabolomic analysis: multiomics study of autism heterogeneity. MedComm (Beijing) 2023; 4:e380. [PMID: 37752942 PMCID: PMC10518435 DOI: 10.1002/mco2.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic heterogeneity poses a challenge to research and clinical translation of autism spectrum disorder (ASD). In this study, we conducted a plasma proteomic and metabolomic study of children with ASD with and without risk genes (de novo mutation) and controls to explore the impact of genetic heterogeneity on the search for biomarkers for ASD. In terms of the proteomic and metabolomic profiles, the groups of children with ASD carrying and those not carrying de novo mutation tended to cluster and overlap, and integrating them yielded differentially expressed proteins and differential metabolites that effectively distinguished ASD from controls. The mechanisms associated with them focus on several common and previously reported mechanisms. Proteomics results highlight the role of complement, inflammation and immunity, and cell adhesion. The main pathways of metabolic perturbations include amino acid, vitamin, glycerophospholipid, tryptophan, and glutamates metabolic pathways and solute carriers-related pathways. Integrating the two omics analyses revealed that L-glutamic acid and malate dehydrogenase may play key roles in the pathogenesis of ASD. These results suggest that children with ASD may have important underlying common mechanisms. They are not only potential therapeutic targets for ASD but also important contributors to the study of biomarkers for the disease.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Yuxi Zhao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Huajie Zhang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yan Gao
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xueshan Cao
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Qi Hong
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Jing Lin
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Yuying Feng
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Hanghang Wang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and EcologyShenzhenP. R. China
| |
Collapse
|
14
|
Jiang Y, Yin X, Xu Q, Tang X, Zhang H, Cao X, Lin J, Wang Y, Yang F, Khan NU, Shen L, Zhao D. SWATH proteomics analysis of placental tissue with intrahepatic cholestasis of pregnancy. Placenta 2023; 137:1-13. [PMID: 37054625 DOI: 10.1016/j.placenta.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/26/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Intrahepatic cholestasis of pregnancy (ICP) usually occurs in the second and third trimesters. The disease's etiology and diagnostic criteria are currently unknown. Based on a sequence window to obtain all theoretical fragment ions (SWATH) proteomic approach, this study sought to identify potential proteins in placental tissue that may be involved in the pathogenesis of ICP and adverse fetal pregnancy outcomes. METHODS The postpartum placental tissue of pregnant women with ICP were chosen as the case group (ICP group) (subdivided into mild ICP group (MICP group) and severe ICP group (SICP group)), and healthy pregnant women were chosen as the control group (CTR). The hematoxylin-eosin (HE) staining was used to observe the histologic changes of placenta. The SWATH analysis combined with liquid chromatography-tandem mass spectrometry (LC-MS) was used to screen the differentially expressed proteins (DEPs) in ICP and CTR groups, and bioinformatics analysis was used to find out the biological process of these differential proteins. RESULTS Proteomic studies showed there were 126 DEPs from pregnant women with ICP and healthy pregnant women. Most of the identified proteins were functionally related to humoral immune response, cell response to lipopolysaccharide, antioxidant activity and heme metabolism. A subsequent examination of placentas from patients with mild and severe ICP revealed 48 proteins that were differentially expressed. Through death domain receptors and fibrinogen complexes, these DEPs primarily regulate extrinsic apoptotic signaling pathways, blood coagulation, and fibrin clot formation. The differential expressions of HBD, HPX, PDE3A, and PRG4 were down-regulated by Western blot analysis, which was consistent with proteomics. DISCUSSION This preliminary study helps us to understand the changes in the placental proteome of ICP patients, and provides new insights into the pathophysiology of ICP.
Collapse
Affiliation(s)
- Yuxuan Jiang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Xu
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Fei Yang
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Danqing Zhao
- Department of Obstetrics and Gynecology Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
15
|
Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175:113691. [PMID: 36871878 DOI: 10.1016/j.fct.2023.113691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Arsenic is a notorious metalloid that exists in the earth's crust and is considered toxic for humans and the environment. Both cancerous and non-cancerous complications are possible after arsenic exposure. Target organs include the liver, lungs, kidney, heart, and brain. Arsenic-induced neurotoxicity, the main focus of our study, can occur in central and peripheral nervous systems. Symptoms can develop in a few hours, weeks, or years depending on the quantity of arsenic and the duration of exposure. In this review, we aimed to gather all the compounds, natural and chemical, that have been studied as protective agents in cellular, animal, and human reports. Oxidative stress, apoptosis, and inflammation are frequently described as destructive mechanisms in heavy metal toxicity. Moreover, reduced activity of acetylcholinesterase, the altered release of monoamine neurotransmitters, down-regulation of N-methyl-D-aspartate receptors, and decreased brain-derived neurotrophic factor are important underlying mechanisms of arsenic-induced neurotoxicity. As for neuroprotection, though some compounds have yet limited data, there are others, such as curcumin, resveratrol, taurine, or melatonin which have been studied more deeply and might be closer to a reliable protective agent. We collected the available information on all protective agents and the mechanisms by which they fight against arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Mersedeh Shayan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Wang Y, Zhang J, Zhang X, Zhang H, Cao X, Hu T, Lin J, Tang X, Chen X, Jiang Y, Yan X, Zhuang H, Luo P, Shen L. Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology. Biol Trace Elem Res 2022:10.1007/s12011-022-03466-2. [PMID: 36333559 DOI: 10.1007/s12011-022-03466-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Chronic arsenic poisoning is a global health problem that affects millions of people, and studies have found that long-term ingestion of arsenic-containing compounds can lead to lung damage, but the exact mechanism is unknown. In this study, Sprague-Dawley (SD) rats were used as the research object, and the proteomic analysis method based on sequential window acquisition of all theoretical fragment ions (SWATH) was used to detect the changes in the expression levels of related proteins in the lung tissue of arsenic-exposed rats, and to explore the mechanism of arsenic compound-induced lung injury. The results showed that arsenic exposure resulted in the abnormal expression of collagen type III and proteins involved in metabolic, immune, and cellular processes, leading to the dysfunction of important pathways associated with these proteins, resulting in lung injury. It suggested that the underlying mechanism of arsenic-induced lung injury may be related to oxidative stress, immune injury, cell junction, and collagen type III. This result provides a new research idea for revealing the mechanism of lung injury caused by arsenic exposure.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jun Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Yuxuan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, People's Republic of China.
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|