1
|
Panahizadeh R, Panahi P, Asghariazar V, Makaremi S, Noorkhajavi G, Safarzadeh E. A literature review of recent advances in gastric cancer treatment: exploring the cross-talk between targeted therapies. Cancer Cell Int 2025; 25:23. [PMID: 39856676 PMCID: PMC11762578 DOI: 10.1186/s12935-025-03655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks fourth in global mortality rates and fifth in prevalence, making it one of the most common cancers worldwide. Recent clinical studies have highlighted the potential of immunotherapies as a promising approach to treating GC. This study aims to shed light on the most impactful therapeutic strategies in the context of GC immunotherapy, highlighting both established and emerging approaches. MAIN BODY This review examines over 160 clinical studies conducted globally, focusing on the effectiveness of various immunotherapy modalities, including cancer vaccines, adoptive cell therapy, immune checkpoint inhibitors (ICIs), and monoclonal antibodies (mAbs). A comprehensive search of peer-reviewed literature was performed using databases such as Web of Science, PubMed, and Scopus. The selection criteria included peer-reviewed articles published primarily within the last 10 years, with a focus on studies that provided insights into targeted therapies and their mechanisms of action, clinical efficacy, and safety profiles. The findings indicate that these immunotherapy strategies can enhance treatment outcomes for GC, aligning with current treatment guidelines. ICIs like pembrolizumab and nivolumab have shown significant survival benefits in specific GC subgroups. Cancer vaccines and CAR-T cell therapies demonstrate potential, while mAbs targeting HER2 and VEGFR pathways enhance outcomes in combination regimens. We discuss the latest advancements and challenges in targeted therapy and immunotherapy for GC. Given the evolving nature of this field, this research emphasizes significant evidence-based therapies and those currently under evaluation rather than providing an exhaustive overview. Challenges include resistance mechanisms, immunosuppressive tumor environments, and inconsistent results from combination therapies. Biomarker-driven approaches and further research into emerging modalities like CAR-T cells and cancer vaccines are critical for optimizing treatments. CONCLUSIONS Immunotherapy is reshaping GC management by improving survival and quality of life. Ongoing research and clinical evaluations are crucial for refining personalized and effective therapies.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Padideh Panahi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghasem Noorkhajavi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 85991-56189, Iran.
| |
Collapse
|
2
|
Zhang S, Li Y, Chen G, Wang X, Wu B. Sarcandra glabra (Thunb.) Nakai alleviates DSS-induced ulcerative colitis by promoting restitution, restoring barrier function, and modulating IL-17/Notch1/FoxP3 pathway in intestinal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118131. [PMID: 38565408 DOI: 10.1016/j.jep.2024.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sarcandra glabra is officially named Zhong Jie Feng as a traditional medicine. In the nationality of Yao and Zhuang, it has been used to treat digestive diseases like stomachache and dysentery. Similarly, in Dai nationality, it has been used to treat intestinal diseases like gastric ulcers. However, the effect and mechanism of S. glabra on experimental ulcerative colitis (UC) are known. AIM OF STUDY The main objective of this study was to investigate the effect and mechanism of S. glabra on experimental UC. MATERIALS AND METHODS The chemical components in the water extract of S. glabra (ZJF) were analyzed by UPLC-MS/MS method. The HCoEpiC cell line was used to assess the promotive effect on intestinal proliferation and restitution. RAW264.7 cells were used to assess the in vitro anti-inflammatory effect of ZJF. The 3% DSS-induced colitis model was used to evaluate the in vivo effect of ZJF (4.5 g/kg and 9.0 g/kg). Mesalazine (0.5 g/kg) was used as the positive drug. ELISA, RT-qPCR, Western blot, and multiplex immunohistochemical experiments were used to test gene levels in the colon tissue. The H&E staining method was used to monitor the pathological changes of colon tissue. TUNEL assay kit was used to detect apoptosis of epithelial colonic cells. RESULTS ZJF could alleviate the DSS-caused colitis in colon tissues, showing a comparative effect to that of the positive drug mesalazine. Mechanism study indicated that ZJF could promote normal colonic HCoEpiC cell proliferation and restitution, inhibit overexpression of pro-inflammatory cytokines, restore the M1/M2 ratio, decrease epithelial colonic cell apoptosis, rescue tight junction protein levels, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC. CONCLUSION Our results indicated that S. glabra can promote intestinal cell restitution, balance immune response, and modulate IL-17/Notch1/FoxP3 pathway to treat experimental UC.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xu Wang
- Department of Gastroenterological Endoscopy, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Bin Wu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1409. [PMID: 38794478 PMCID: PMC11125100 DOI: 10.3390/plants13101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pintoa chilensis is a shrub with yellow flowers that reach up to two meters high, endemic of the Atacama Region in Chile. This species grows under special environmental conditions such as low altitude, arid areas, and directly sun-exposed habitats. In the present study, ethanolic extract was obtained from fruits of P. chilensis, and then partitioned in solvents of increasing polarity to obtain five fractions: hexane (HF), dichloromethane (DF), ethyl acetate (AF), and the residual water fraction (QF). The antioxidant activity of extracts was evaluated by using the DPPH, ABTS, and FRAP methods. The results show that the antioxidant capacity of P. chilensis is higher than that reported for other plants growing in similar environments. This effect is attributed to the highest content of flavonoids and total phenols found in P. chilensis. On the other hand, the cell viability of a breast cancer cell line (MCF-7) and a non-tumor cell line (MCF-10A) was assessed in the presence of different extract fractions. The results indicate that the hexane fraction (HF) exhibits the highest cytotoxicity on both cell lines (IC50 values equal to 35 and 45 µg/mL), whereas the dichloromethane fraction (DF) is the most selective one. The GC-MS analysis of the dichloromethane fraction (DF) shows the presence of fatty acids, sugars, and polyols as major components.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Javier Pardo-Baeza
- Programa de Conservación de Flora Nativa del Norte de Chile, Biorestauración Consultores, Copiapó 1530000, Chile;
| | - Sara García-Davis
- Instituto Universitario de Bio—Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain;
| | - Rafael Viteri
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Guayaquil 092301, Ecuador;
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| |
Collapse
|
4
|
Mishra AK, Singh R, Rawat H, Kumar V, Jagtap C, Jain A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. FOOD AND HUMANITY 2024; 2:100202. [DOI: 10.1016/j.foohum.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
5
|
Yang L, Chen Y, Liu K, Chen Y, Zhang Y, Zhang Z, Li H. Investigating the immune mechanism of natural products in the treatment of lung cancer. Front Pharmacol 2024; 15:1289957. [PMID: 38420194 PMCID: PMC10899684 DOI: 10.3389/fphar.2024.1289957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
With the deepening of people's understanding of lung cancer, the research of lung cancer immunotherapy has gradually become the focus of attention. As we all know, the treatment of many diseases relies on the rich sources, complex and varied compositions and wide range of unique biological properties of natural products. Studies have shown that natural products can exert anticancer effects by inducing tumor cell death, inhibiting tumor cell proliferation, and enhancing tumor cell autophagy. More notably, natural products can adjust and strengthen the body's immune response, which includes enhancing the function of NK cells and promoting the differentiation and proliferation of T lymphocytes. In addition, these natural products may enhance their anticancer effects by affecting inhibitory factors in the immune system, hormone levels, enzymes involved in biotransformation, and modulating other factors in the tumor microenvironment. The importance of natural products in lung cancer immunotherapy should not be underestimated. However, the specific links and correlations between natural products and lung cancer immunity are not clear enough, and further studies are urgently needed to clarify the relationship between the two. In this paper, we will focus on the correlation between natural products and lung cancer immune responses, with a view to providing new research perspectives for immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Lian Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yukun Chen
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaile Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
7
|
Ashour MM, Mabrouk M, Aboelnasr MA, Beherei HH, Tohamy KM, Das DB. Anti-Obesity Drug Delivery Systems: Recent Progress and Challenges. Pharmaceutics 2023; 15:2635. [PMID: 38004612 PMCID: PMC10674714 DOI: 10.3390/pharmaceutics15112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity has reached an epidemic proportion in the last thirty years, and it is recognized as a major health issue in modern society now with the possibility of serious social and economic consequences. By the year 2030, nearly 60% of the global population may be obese or overweight, which emphasizes a need for novel obesity treatments. Various traditional approaches, such as pharmacotherapy and bariatric surgery, have been utilized in clinical settings to treat obesity. However, these methods frequently show the possibility of side effects while remaining ineffective. There is, therefore, an urgent need for alternative obesity treatments with improved efficacy and specificity. Polymeric materials and chemical strategies are employed in emerging drug delivery systems (DDSs) to enhance therapy effectiveness and specificity by stabilizing and controlling the release of active molecules such as natural ingredients. Designing DDSs is currently a top priority research objective with an eye towards creating obesity treatment approaches. In reality, the most recent trends in the literature demonstrate that there are not enough in-depth reviews that emphasize the current knowledge based on the creation and design of DDSs for obesity treatment. It is also observed in the existing literature that a complex interplay of different physical and chemical parameters must be considered carefully to determine the effectiveness of the DDSs, including microneedles, for obesity treatment. Additionally, it is observed that these properties depend on how the DDS is synthesized. Although many studies are at the animal-study stage, the use of more advanced DDS techniques would significantly enhance the development of safe and efficient treatment approaches for obese people in the future. Considering these, this review provides an overview of the current anti-obesity treatment approaches as well as the conventional anti-obesity therapeutics. The article aims to conduct an in-depth discussion on the current trends in obesity treatment approaches. Filling in this knowledge gap will lead to a greater understanding of the safest ways to manage obesity.
Collapse
Affiliation(s)
- Mohamed M. Ashour
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt;
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. Aboelnasr
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Khairy M. Tohamy
- Biophysics Branch, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (M.A.A.); (K.M.T.)
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, UK
| |
Collapse
|
8
|
Islam F, Nath N, Zehravi M, Khan J, Jashim SBT, Charde MS, Chakole RD, Kumar KP, Babu AK, Nainu F, Khan SL, Rab SO, Emran TB, Wilairatana P. Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed? NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:39. [PMID: 37843642 PMCID: PMC10579213 DOI: 10.1007/s13659-023-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
The primary approaches to treat cancerous diseases include drug treatment, surgical procedures, biotherapy, and radiation therapy. Chemotherapy has been the primary treatment for cancer for a long time, but its main drawback is that it kills cancerous cells along with healthy ones, leading to deadly adverse health effects. However, genitourinary cancer has become a concern in recent years as it is more common in middle-aged people. So, researchers are trying to find possible therapeutic options from natural small molecules due to the many drawbacks associated with chemotherapy and other radiation-based therapies. Plenty of research was conducted regarding genitourinary cancer to determine the promising role of natural small molecules. So, this review focused on natural small molecules along with their potential therapeutic targets in the case of genitourinary cancers such as prostate cancer, renal cancer, bladder cancer, testicular cancer, and so on. Also, this review states some ongoing or completed clinical evidence in this regard.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Sumiya Ben-Ta Jashim
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Manoj Shrawan Charde
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - Rita Dadarao Chakole
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - K Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Govt. of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), Mehrauli-Badarpur Road, PushpVihar, Sector 3, New Delhi, 110017, India
| | - A Kishore Babu
- Ratnadeep College of Pharmacy, Ratnapur, Jamkhed, Ahmednagar, 413206, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|