1
|
Yang Q, Kang Y, Tang W, Li M, Zhao C. Interplay of gut microbiota in Kawasaki disease: role of gut microbiota and potential treatment strategies. Future Microbiol 2025; 20:357-369. [PMID: 40013895 PMCID: PMC11938985 DOI: 10.1080/17460913.2025.2469432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis with predominant involvement of the medium and small arteries. It mostly affects pediatric patients, representing the most common form of pediatric vasculitis in children less than 5 years old. Numerous diseases, especially those related to the immune system, have established links with the intestinal flora. Recent studies have investigated the intestinal flora changes throughout the management of KD. There was gut microbiota dysbiosis in pediatric KD at the acute phase, particularly the downregulation of short-chain fat acids-producing microbiota and the over-proliferation of opportunistic pathogens. The relationship between the response to therapies in individuals with KD and specific microbiota remains uncertain. Targeted microbial supplements and dietary regulation may serve as potential measures to alleviate KD complications and thus improve prognosis. This review provides an overview of the current understanding of the interplay of the gut microbiota and KD. Furthermore, it discusses the possibility of altering the gut microbiota to reinstate a healthy condition.
Collapse
Affiliation(s)
- Qing Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqing Kang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Tang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Wang L, Mi LY, Chen XY, He HW, Long Y. Effects of different antiplatelet therapy drugs on platelet activation and platelet-leukocyte aggregate formation in early septic ARDS. BMC Pharmacol Toxicol 2025; 26:4. [PMID: 39762913 PMCID: PMC11705853 DOI: 10.1186/s40360-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In patients with sepsis, platelets are activated and adhere to neutrophils, forming platelet-leukocyte aggregates (PLAs) that lead to the development of MODS. ARDS is one of the main manifestations of septic MODS. We designed this study to explore the effects of different anti-plate therapy drugs on platelet activation and platelet-leukocyte aggregate (PLA) formation in the early stage of septic ARDS. METHODS Sixty adult male SD rats were randomly divided into: Control group; ARDS group, ARDS + aspirin group, ARDS + clopidogrel group and ARDS + tirofiban group. ARDS was performed via instill lipopolysaccharide (LPS) intratracheally at a dose of 5 mg/kg. Aspirin or clopidogrel were given by gavage immediately after modeling. Tirofiban were given by intraperitoneal injection immediately after modeling. Rats in every group were euthanized by rapid decapitation 6 h after modeling. Platelet activation and PLA were assessed using flow cytometry and immunofluorescence staining. Histology of lung was performed by hematoxylin and eosin staining. RESULTS Aspirin, clopidogrel and tirofiban decreased CRP, IL-1 and TNF-α significantly in septic ARDS (P < 0.05). Aspirin, clopidogrel and tirofiban decreased platelet function and ratio of wet/dry significantly in septic ARDS (P < 0.05). Aspirin, clopidogrel and tirofiban increased PaO2 significantly in septic ARDS (P < 0.05). Platelet activation and PLA in the ARDS + aspirin group, ARDS + clopidogrel group and ARDS + tirofiban group decreased significantly compared to the ARDS group (P < 0.05). At 6 h after ARDS operation, obvious histological damage was observed in the lungs. All of these histological changes were quantitatively evaluated using injury scores. Aspirin, clopidogrel and tirofiban reduced the histological damages in ARDS group (P < 0.05). CONCLUSIONS Aspirin, clopidogrel and tirofiban alleviated the inflammatory response and pulmonary edema, reduced platelet function, and alleviated hypoxemia in early septic ARDS. Aspirin, clopidogrel and tirofiban reduced platelet activation and PLA formation in early septic ARDS. Aspirin, clopidogrel and tirofiban ultimately alleviated lung injury in early septic ARDS.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liang-Yu Mi
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang-Yu Chen
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huai-Wu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
3
|
Anwar F, Al-Abbasi FA, Al-Bar OA, Verma A, Kumar V. Gut microbiome and inflammation in cardiovascular drug response: trends in therapeutic success and commercial focus. Inflammopharmacology 2025; 33:49-68. [PMID: 39488611 DOI: 10.1007/s10787-024-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
The intricate Gut microbiome is evolving as an important system and is hypothesized to be a "metabolic organ" within the host. Alterations in Gut microbiota and inflammation associated with several diseases play a crucial role in drug transformation through microbiota-host co-metabolism, modified pharmacokinetic and pharmacodynamics profiles, and may result in the formation of toxic metabolites with interference in drug response. In recent studies, a large number of drugs are reported that are co-metabolized by the host and the Gut microbial enzymes. we summarize the direct and indirect involvement of Gut microbiome promotion or inhibition of cardiovascular diseases, mechanisms on bioavailability, and therapeutic outcomes of cardiovascular drugs, particularly pharmacokinetics and pharmacodynamics profiles in light of AUC, Tmax, Cmax, and bioavailability and drug transportation via immune cells, inter-individual variations in intestinal microbial taxonomy, influence of drugs on diversity and richness of microflora, high lightening limitations and significance of in personalized medicine. Recent advances in target-drug delivery by nanoparticles with limitations and challenges in application are discussed. The cross-talk between Gut microbiota and cardiovascular drugs signifies a better understanding and rationale for targeting the Gut microbiota to improve the therapeutic outcome for cardiovascular diseases, with present-day limitations.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Omar A Al-Bar
- Department of Biochemistry, Faculty of Science, King Abdul-Aziz University, 21589, Jeddah, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, India.
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| |
Collapse
|
4
|
Yun S, Seo Y, Lee Y, Lee DT. Gut microbiome related to metabolic diseases after moderate-to-vigorous intensity exercise. J Exerc Sci Fit 2024; 22:375-382. [PMID: 39185003 PMCID: PMC11342187 DOI: 10.1016/j.jesf.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background objectives The purpose of this study is to investigate changes in gut microbiota related to metabolic diseases after moderate and high-intensity exercise. A total of 24 participants were divided into three groups: Non-Exercise Group (NEG, n = 8, 28.6 ± 5.3 years, 176.0 ± 7.8 cm, 81.3 ± 14.6 kg), Moderate Intensity Exercise Group (MIEG, n = 8, 26.5 ± 3.3 years, 176.9 ± 5.0 cm, 75.4 ± 9.5 kg), and Vigorous Intensity Exercise Group (VIEG, n = 8, 30.6 ± 5.9 years, 174.2 ± 3.5 cm, 77.8 ± 12.2 kg). Methods The participants were selected by assessing physical activity, gut health status, presence of diseases, recent disease diagnoses, and dietary disorders. Those who reported any presence disease or recent disease diagnosis were excluded from the current study. Stool samples were collected after a 10-h fast for gut microbiome analysis. MIEG participants trained at 40-59 % heart rate reserve (HRR) for at least 150 min per week, while VIEG participants trained at ≥ 60 % HRR for at least 90 min per week. After 4 weeks, all participants provided stool samples for gut microbiome analysis.Data analysis was conducted using the Wilcoxon test, with statistical significance set at ≤ 0.05. Results The results indicated an increase in Prevotella in MIEG, while Veillonella, Dorea_formicigenerans, and Dorea_longicatena exhibited a decrease (p < 0.05). In VIEG, there was an increase in Bacteroides, Butyricimonas, Odoribacter, and Alistipes (p < 0.05). Conclusion These modified microbial groups were associated with factors related to metabolic diseases, including inflammatory bowel disease, obesity, colorectal cancer, diabetes, hypertension, metabolic liver diseases, and ischemic heart diseases. Additional research is essential to delve into the relationship between exercise and these alterations in the microbiome.
Collapse
Affiliation(s)
| | | | - Yunbin Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| | - Dae Taek Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11:1333005. [PMID: 38993521 PMCID: PMC11236727 DOI: 10.3389/fcvm.2024.1333005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Hypertension is a significant risk factor for cardiovascular and cerebrovascular diseases and has become a global public health concern. Although hypertension results from a combination of factors, the specific mechanism is still unclear. However, increasing evidence suggests that gut microbiota is closely associated with the development of hypertension. We provide a summary of the composition and physiological role of gut microbiota. We then delve into the mechanism of gut microbiota and its metabolites involved in the occurrence and development of hypertension. Finally, we review various regimens for better-controlling hypertension from the diet, exercise, drugs, antibiotics, probiotics, and fecal transplantation perspectives.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Shi W, Li Z, Wang W, Liu X, Wu H, Chen X, Zhou X, Zhang S. Dynamic gut microbiome-metabolome in cationic bovine serum albumin induced experimental immune-complex glomerulonephritis and effect of losartan and mycophenolate mofetil on microbiota modulation. J Pharm Anal 2024; 14:100931. [PMID: 38655401 PMCID: PMC11035364 DOI: 10.1016/j.jpha.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 04/26/2024] Open
Abstract
Dynamic changes in gut dysbiosis and metabolomic dysregulation are associated with immune-complex glomerulonephritis (ICGN). However, an in-depth study on this topic is currently lacking. Herein, we report an ICGN model to address this gap. ICGN was induced via the intravenous injection of cationized bovine serum albumin (c-BSA) into Sprague-Dawley (SD) rats for two weeks, after which mycophenolate mofetil (MMF) and losartan were administered orally. Two and six weeks after ICGN establishment, fecal samples were collected and 16S ribosomal DNA (rDNA) sequencing and untargeted metabolomic were conducted. Fecal microbiota transplantation (FMT) was conducted to determine whether gut normalization caused by MMF and losartan contributed to their renal protective effects. A gradual decline in microbial diversity and richness was accompanied by a loss of renal function. Approximately 18 genera were found to have significantly different relative abundances between the early and later stages, and Marvinbryantia and Allobaculum were markedly upregulated in both stages. Untargeted metabolomics indicated that the tryptophan metabolism was enhanced in ICGN, characterized by the overproduction of indole and kynurenic acid, while the serotonin pathway was reduced. Administration of losartan and MMF ameliorated microbial dysbiosis and reduced the accumulation of indoxyl conjugates in feces. FMT using feces from animals administered MMF and losartan improved gut dysbiosis by decreasing the Firmicutes/Bacteroidetes (F/B) ratio but did not improve renal function. These findings indicate that ICGN induces serous gut dysbiosis, wherein an altered tryptophan metabolism may contribute to its progression. MMF and losartan significantly reversed the gut microbial and metabolomic dysbiosis, which partially contributed to their renoprotective effects.
Collapse
Affiliation(s)
- Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, 17176, Sweden
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xunrong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Li Z, Xu S, Chen L, Jiang D. Effect of aspirin on blood pressure in hypertensive patients: a systematic review and meta-analysis. BMC Cardiovasc Disord 2024; 24:90. [PMID: 38321368 PMCID: PMC10845465 DOI: 10.1186/s12872-024-03737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
INTRODUCTION Aspirin is widely used for secondary prevention in patients with hypertension. However, previous studies mainly focused on the preventive effects of aspirin, and there has been a lack of reliable evidence on whether taking aspirin affects blood pressure This study aimed to investigate whether aspirin would affect the blood pressure in patients with hypertension. METHODS PubMed, Cochrane database, Embase, Scopus and Medline databases were searched until September 2023. For continuous variables (e.g., blood pressure reduction), the mean difference (MD) was selected as the effect magnitude indices. We used the Cochrane Collaboration's Risk of Bias tool to assess the risk of bias. RESULT A total of five studies were included, comprising 20,312 patients. We found that aspirin did not affect SBP (MD = -0.78, 95% CI: - 2.41, 0.84). A similar result was found for DBP (MD = -0.86, 95% CI: - 2.14, 0.42). CONCLUSION This study showed no significant difference in blood pressure between the aspirin and control groups, suggesting that aspirin does not affect blood pressure.
Collapse
Affiliation(s)
- Zehan Li
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Shengchao Xu
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Lin Chen
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China
| | - Danxian Jiang
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong Province, China.
| |
Collapse
|
8
|
Hong Y, Chen X, Liu J. Analysis of Factors Associated with Constipation in the Population with Obesity: Evidence from the National Health and Nutrition Examination Survey. Obes Facts 2024; 17:169-182. [PMID: 38266495 PMCID: PMC10987188 DOI: 10.1159/000536318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Obesity and constipation are both global problems, but the factors associated with constipation in individuals with obesity are currently understudied. The aim of our study was to explore the factors associated with constipation in people with obesity. METHODS From three cycles of the National Health and Nutrition Examination Survey (NHANES) 2005-2010, data from 14,048 persons aged ≥20 years were collected. Variables included demographics, lifestyle, comorbidities, and dietary data. Multiple logistic regression analysis was used to calculate adjusted prevalence odds ratio (OR) and assess the relationship between different variables and constipation in population with obesity. RESULTS Using stool consistency definition, multivariate analysis revealed that education ≥12th grade (OR: 0.456; 95% CI: 0.300, 0.694; p = 0.00024), hypertension (OR: 0.505; 95% CI: 0.334, 0.763; p = 0.00119), polypharmacy (OR: 1.669; 95% CI: 1.104, 2.521; p = 0.01507), high cholesterol (OR: 0.400; 95% CI: 0.213, 0.750; p = 0.00430), and high dietary fiber (OR: 0.454; 95% CI: 0.245, 0.841; p = 0.01206) were substantially linked with constipation in the population with obesity. For constipation defined using stool frequency, multivariate regression analysis show constipation in people with obesity had a significant association with the female sex (OR: 2.684; 95% CI: 1.379, 5.223; p = 0.00366 multivariate), Mexican American (OR: 0.142; 95% CI, 0.033, 0.616; p = 0.00914 multivariate), hypertension (OR: 0.569; 95% CI: 0.324, 0.998; p = 0.04916), depression (OR: 2.280; 95% CI: 1.240, 4.195; p = 0.00803), occasional/often milk consumption (OR: 0.473; 95% CI: 0.286, 0.782; p = 0.00356), medium energy (OR: 0.318; 95% CI: 0.118, 0.856; p = 0.02338), polypharmacy (OR: 1.939; 95% CI: 1.115, 3.373; p = 0.01907), and medium moisture (OR: 0.534; 95% CI: 0.285, 0.999; p = 0.04959). In nonobese people, constipation was significantly associated with the female sex and high moisture but not with hypertension and polypharmacy. CONCLUSION This study suggests that the population with obesity has many factors that affect constipation such as hypertension, polypharmacy, cholesterol, dietary fiber, depression, and so on, of which hypertension and polypharmacy were significant associated with constipation, regardless of definitions of constipation. Notably, hypertension might be associated with a reduced risk of constipation in people with obesity.
Collapse
Affiliation(s)
- Yongping Hong
- Department of Anorectal Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Xingxing Chen
- Department of Ultrasound, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| | - Junping Liu
- Department of Anorectal Surgery, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, China
| |
Collapse
|
9
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Bardhan P, Yang T. Sexual Dimorphic Interplays Between Gut Microbiota and Antihypertensive Drugs. Curr Hypertens Rep 2023; 25:163-172. [PMID: 37199902 PMCID: PMC10193343 DOI: 10.1007/s11906-023-01244-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this study is to review the current literature regarding gut microbiota in blood pressure regulation and its interactions with antihypertensive drugs and to discuss how sex differences in gut microbiota contribute to sexual dimorphism of hypertension and treatment. RECENT FINDINGS The significance of gut microbiota in blood pressure regulation and hypertension etiology is growingly recognized. Targeting the dysbiotic microbiota is proposed to be a new therapeutic method. Recently, a few studies demonstrated that the gut microbiota is highly involved in the modulation of the efficacy of antihypertensive drugs, suggesting a novel mechanism by which gut microbiota plays a role in treatment-resistant hypertension. Furthermore, studies on sex differences in gut microbiota, etiology of hypertension, and sex bias in prescription of antihypertensive medications have revealed promising avenues in sexual dimorphism-based precision medicine. However, no scientific questions are ever raised on how sex differences in gut microbiota contribute to the sex specific responses of certain classes of antihypertensive drugs. Given the dynamics and complexity among individuals, precision medicine is proposed of great potential. We review current knowledge on the interactions between gut microbiota, hypertension, and antihypertensive drugs with an emphasis on sex as a crucial determinant. We propose that sex differences in gut microbiota be a research focus to advance our understanding of hypertension management.
Collapse
Affiliation(s)
- Pritam Bardhan
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Health Science Campus Block Health Science Bldg, Room 310, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Health Science Campus Block Health Science Bldg, Room 310, 3000 Arlington Ave., Toledo, OH, 43614, USA.
| |
Collapse
|
11
|
Abstract
Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.
Collapse
Affiliation(s)
- Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition (C.L.G.), Vanderbilt University Medical Center, Nashville
- Tennessee Center for AIDS Research (C.L.G.), Vanderbilt University Medical Center, Nashville
| | - Jane F Ferguson
- Division of Cardiovascular Medicine (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Microbiome Innovation Center (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Infection, Immunology, and Inflammation (J.F.F.), Vanderbilt University Medical Center, Nashville
| |
Collapse
|
12
|
Liu Q, Dong S, Zhou X, Zhao Y, Dong B, Shen J, Yang K, Li L, Zhu D. Effects of Long-Term Intervention with Losartan, Aspirin and Atorvastatin on Vascular Remodeling in Juvenile Spontaneously Hypertensive Rats. Molecules 2023; 28:molecules28041844. [PMID: 36838830 PMCID: PMC9965824 DOI: 10.3390/molecules28041844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Hypertension in adolescents is associated with adverse cardiac and vascular events. In addition to lowering blood pressure, it is not clear whether pharmacological therapy in early life can improve vascular remodeling. This study aimed to evaluate the effects of long-term administration of losartan, aspirin, and atorvastatin on vascular remodeling in juvenile spontaneously hypertensive rats (SHRs). Losartan, aspirin, and atorvastatin were administered via gavage at doses of 20, 10, and 10 mg/kg/day, respectively, on SHRs aged 6-22 weeks. Paraffin sections of the blood vessels were stained with hematoxylin-eosin (H&E) and Sirius Red to evaluate the changes in the vascular structure and the accumulation of different types of collagen. The plasma levels of renin, angiotensin II (Ang II), aldosterone (ALD), endothelin-1 (ET-1), interleukin-6 (IL-6), and neutrophil elastase (NE) were determined using ELISA kits. After the 16-week treatment with losartan, aspirin, and atorvastatin, the wall thickness of the thoracic aorta and carotid artery decreased. The integrity of the elastic fibers in the tunica media was maintained in an orderly manner, and collagen deposition in the adventitia was retarded. The plasma levels of renin, ALD, ET-1, IL-6, and NE in the SHRs also decreased. These findings suggest that losartan, aspirin, and atorvastatin could improve vascular remodeling beyond their antihypertensive, anti-inflammatory, and lipid-lowering effects. Many aspects of the protection provided by pharmacological therapy are important for the prevention of cardiovascular diseases in adults and older adults.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Shuai Dong
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yubo Zhao
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Core Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kang Yang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Linsen Li
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Correspondence: (L.L.); (D.Z.); Tel.: +86-158-1089-2058 (D.Z.)
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, Beijing 100081, China
- Correspondence: (L.L.); (D.Z.); Tel.: +86-158-1089-2058 (D.Z.)
| |
Collapse
|