1
|
Lai Y, Lan X, Chen Z, Lou G, Li Y, Liu C, Feng J, Li X, Wang Y. The Role of Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. Polysaccharides in Regulating the Gut Microbiota and Its Health Benefits. Molecules 2025; 30:1193. [PMID: 40141970 PMCID: PMC11944627 DOI: 10.3390/molecules30061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. is a widely used herb in China, belonging to the large fungi of the family Polyporaceae. P. cocos; it consists of a variety of biologically active ingredients such as polysaccharides, triterpenes, and sterols, and is considered a treasure in traditional Chinese medicine (TCM). Notably, P. cocos polysaccharides, as the most prominent constituent, are of interest for their superior anti-obesity, anti-tumor, anti-inflammatory, antioxidant, and immunomodulatory activities. P. cocos polysaccharides can be divided into water-soluble polysaccharides and water-insoluble polysaccharides, which may contribute to their diverse biological functions. Numerous scholars have focused on the extraction process, structural identification, and classical pharmacological pathways of P. cocos polysaccharides, but there are few systematic reviews on P. cocos polysaccharides regulating the gut microbiota. Natural products and their active ingredients are closely related to intestinal health, and further exploration of these mechanisms is warranted. This review summarizes the recent cases of P. cocos polysaccharides regulating the gut microbiota to promote health and discusses their relationship with bioactive functions. It aims to provide a basis for exploring the new mechanisms of P. cocos polysaccharides in promoting intestinal health and offers a new vision for the further development of functional products.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Zhicheng Chen
- School of Clinic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Guanhua Lou
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Ying Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Chang Liu
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Yu Wang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| |
Collapse
|
2
|
Xie Y, Jian S, Zhang L, Deng B. Effect of compound polysaccharide on immunity, antioxidant capacity, gut microbiota, and serum metabolome in kittens. Front Microbiol 2025; 16:1500961. [PMID: 40109962 PMCID: PMC11920579 DOI: 10.3389/fmicb.2025.1500961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction This study was conducted to investigate the effects of compound polysaccharides (CP), composed of Astragalus polysaccharide and Poria cocos polysaccharide, on immunity, antioxidant capacity, gut microbiota, and serum metabolome in kittens. Methods A total of 14 4-month-old kittens, with an average body weight of 2.39 kg, were used in a 56-day experiment. They were randomly assigned to the control (CON) group (n = 7) and CP group (n = 7). Blood samples and fresh feces were collected at the end of the experimental period. Results The results displayed that supplementation with CP increased the concentrations of serum immunoglobulin A, immunoglobulin G, interleukin 6, and tumor necrosis factor-α (p < 0.05). However, there was no difference in the concentrations of serum amyloid A between the two groups (p > 0.05). Furthermore, the serum biochemical parameters of all the kittens were within the reference range. The relative abundance of beneficial bacteria (norank_f__Butyricicoccaceae and Bacteroides plebeius) was higher in the CP group (p < 0.05), while the opportunistic pathogen (Anaerotruncus) was lower in the CP group (p < 0.05). In addition, serum metabolomic analysis demonstrated that the differential metabolites, including arachidonic acid, dihomo-gamma-linolenic acid, and glycine, and the relevant metabolic pathway, including glyoxylate and dicarboxylate metabolism, glycine, serine, and threonine metabolism, and biosynthesis of unsaturated fatty acids, were implicated in regulating immune function in the kitten after CP treatment. Conclusion CP supplementation can enhance immune function in kittens and increase the relative abundance of beneficial gut microbiota, and does not lead to generalized inflammation. Dietary supplementation with CP may generate nutritional benefits in kittens, and this study offers insight into the development of functional pet food for kittens.
Collapse
Affiliation(s)
- Yixuan Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shiyan Jian
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Baichuan Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Guan XY, Wei ZC, Wang YT, Li WL, Mu WL, Seyam A, Shi C, Hou TZ. Blocking Gremlin1 inhibits M1 macrophage polarization through Notch1/Hes1 signaling pathway in apical periodontitis. Immunopharmacol Immunotoxicol 2024:1-12. [PMID: 39134472 DOI: 10.1080/08923973.2024.2392196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Gremlin1 is a multifunctional protein whose expression is demonstrated to be involved in a series of physiology and pathological processes. The association between Gremlin1 and apcial periodontitis (AP) has been established. M1-polarized macrophages are crucial immune cells that exacerbate the progression of apical periodontal inflammatory response, but the function of Gremlin1 during macrophages activation in periapical lesions is still unclear. This study attempts to explore the regulatory effects of Gremlin1 on macrophage polarization on apical periodontitis microenviroment. METHODS Clinical specimens were used to determine the expression of Gremlin1 in periapical tissues by immunohistochemical (IHC) staining. Then, the disease models of periapical inflammation in rats were established, and adenovirus- associated virus (AAVs) was used to blockade Gremlin1 expression. Lentivirus carrying sh-Gremlin1 particles were used to transfect THP-1 induced M1-subtype macrophages. To assess the expression of associated molecules, Western blot, immunofluorescence staining were performed. RESULTS Gremlin1 was significantly up-regulated in the periapical tissues of subjects with AP as identified by IHC staining, and positively correlated with levels of M1 macrophage-associated genes. Rats AP model with inhibition of Gremlin1 in periapical lesions exhibited limited infiltration of macrophages and decreased expression of M1 macrophage-related genes in periapical lesions. Furthermore, Gremlin1 blockade substantially decreased the Notch1/Hes1 signaling pathway activation level. The in vitro experiments confirmed the above results. CONCLUSION Taken together, current study illustrated that the Gremlin1 suppression in periapical lesions inhibited M1 macrophage polarization through Notch1/Hes1 axis. Moreover, Gremlin1 may act as a potential candidate in the treatment of AP.
Collapse
Affiliation(s)
- Xiao-Yue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi-Chen Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Ting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Lan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wen-Li Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Abdelrahman Seyam
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Hospital of Stomatology, Chengdu, Sichuan, China
| | - Tie-Zhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Yuan J, Hu Y, Yang D, Zhou A, Luo S, Xu N, Dong J, He Q, Zhang C, Zhang X, Ji Z, Li Q, Chu J. The Effects of Crataegus pinnatifida and Wolfiporia extensa Combination on Diet-Induced Obesity and Gut Microbiota. Foods 2024; 13:1633. [PMID: 38890862 PMCID: PMC11171702 DOI: 10.3390/foods13111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Obesity is a multifactorial chronic metabolic disease with multiple complications. Crataegus pinnatifida (CP) and Wolfiporia extensa (WE) are traditional functional foods with improving metabolic health properties. This study demonstrated the effect of CP and WE combination on ameliorating obesity induced by a high-fat diet (HFD). Moreover, the CP-WE food pair ameliorated HFD-induced metabolic disorders, including glucose intolerance, insulin resistance, hyperlipidemia, and hepatic steatosis. 16S rRNA gene amplicon sequencing and analysis revealed that CP combined with WE reshaped the composition of gut microbiota in HFD-fed mice. Furthermore, correlation analysis revealed a substantial association between the obesity-related parameters and the shifts in predominant bacterial genera influenced by the food pair intervention. In conclusion, this study demonstrated that the CP-WE food pair ameliorated HFD-induced obesity and reshaped gut microbiota composition, providing a promising approach to combat obesity through specific food combinations.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yueyun Hu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
| | - Dongmei Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - An Zhou
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shengyong Luo
- Anhui Academy of Medical Sciences, Hefei 230061, China;
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China;
| | - Jiaxing Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qing He
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Chenxu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Xinyu Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Zhangxin Ji
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Qinglin Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China; (J.Y.); (Y.H.); (D.Y.); (A.Z.); (J.D.); (Q.H.); (C.Z.); (X.Z.); (Z.J.)
| | - Jun Chu
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
6
|
Lv Y, Yang Y, Chen Y, Wang D, Lei Y, Pan M, Wang Z, Xiao W, Dai Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 261:129878. [PMID: 38309394 DOI: 10.1016/j.ijbiomac.2024.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-β-D-Glc and 1,6-β-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.
Collapse
Affiliation(s)
- Yaozhong Lv
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China
| | - Yajun Yang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Dongfan Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Yipeng Lei
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Mingyue Pan
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China.
| | - Yujie Dai
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Shi H, Luo W, Wang S, Dai J, Chen C, Li S, Liu J, Zhang W, Huang Q, Zhou R. Therapeutic efficacy of tylvalosin combined with Poria cocos polysaccharides against porcine reproductive and respiratory syndrome. Front Vet Sci 2023; 10:1242146. [PMID: 37609059 PMCID: PMC10440737 DOI: 10.3389/fvets.2023.1242146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases of pigs worldwide. Vaccination and various management measures have been implemented to control PRRS. However, due to high genetic diversity and insufficient understanding of the pathogenesis and immunological mechanisms, PRRS is still a challenge to the pig industry. Therefore, it is important to develop novel strategies to combat PRRS virus (PRRSV) infection. In this study, our data show that tylvalosin, a third-generation animal-specific macrolide, could inhibit PRRSV replication in MARC-145 cells, and suppress the PRRSV-induced NF-κB activation and cytokines expression. The pig infection experiment further demonstrated that tylvalosin could significantly reduce the virus loads in serum and tissues, and alleviate lung lesions of pigs infected with highly pathogenic PRRSV strains. The fever and loss of daily gain (LoDG) of the pigs were decreased as well. Considering the feature of immune suppression of PRRSV, a combination of tylvalosin with the immunopotentiator Poria cocos polysaccharides (PCP) was developed. Pig experiment showed this combination had a better therapeutic efficacy against PRRSV infection than tylvalosin and PCP alone in attenuating lung lesions, alleviating fever, and suppressing cytokines production. This study suggests that tylvalosin has significant antiviral and anti-inflammatory effects against PRRSV infection, and the combination of tylvalosin and PCP provides a promising strategy for PRRS treatment.
Collapse
Affiliation(s)
- Hong Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuaiyang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jun Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cuilan Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuo Li
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Jie Liu
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Weiyuan Zhang
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- The HZAU-HVSEN Research Institute, Wuhan, China
| |
Collapse
|