1
|
Nair A, Anish RJ, Moorthy SN. A review on the role of functional foods and derivatives for diabetes management. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:799-809. [PMID: 40182674 PMCID: PMC11961806 DOI: 10.1007/s13197-025-06234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/17/2024] [Accepted: 01/27/2025] [Indexed: 04/05/2025]
Abstract
Diabetes mellitus (DM) is a global metabolic disorder affecting the quality of life. The continuous usage of hypoglycaemic agents can control diabetic pathogenesis in patient; however it is challenging to minimize the severe side effects and metabolic contraindications. So, it is necessary to find novel drug candidates or dietary derivatives with minimum side effects, and excellent biological efficacy to meet the demands of the growing population. As a metabolic disorder, DM requires a food based therapy for better recovery. Including various functional foods (legumes, spices and whole grains) in optimal quantity in routine diet can prevent the complications associated with DM. Recent research revealed that the functional foods (FFs) combinations can accelerate the recovery time, promote a clinical total effective rate, and minimize endothelial dysfunction and microvascular episodes, associated with diabetic pathogenesis and provides novel possibilities of cost-effective treatment options for DM management. Innovative technology associated with artificial intelligence (AI), imaging techniques, and metabolic engineering tools help to understand the signalling mechanisms associated with DM and reveal sensitive targets for novel drug interactions, further opening a crucial turning point in DM research. In conclusion, the current review summarized the direct intake of FFs or derivatives, such as food protein and bioactive peptides, can be exploited as promising anti-diabetic agents in the near future. AI's influential role in bioactive peptide design and revealing the newer targets of FFs and FF derivatives (FFDs) in signalling are appraised as promising approaches for DM management. The current findings point to the fact that regulated FFs intake along with health care monitoring can control the complications associated with DM. Graphical abstract
Collapse
Affiliation(s)
- Aswathy Nair
- Department of Biochemistry, University of Kerala, Trivandrum, 695581 India
| | | | - S. Narayana Moorthy
- Division of Crop Utilization, ICAR-Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
2
|
Ung AT, Chen H. Biological Properties, Health Benefits and Semisynthetic Derivatives of Edible Astraeus Mushrooms (Diplocystidiaceae): A Comprehensive Review. Chem Biodivers 2024; 21:e202401295. [PMID: 39177069 PMCID: PMC11644123 DOI: 10.1002/cbdv.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Edible Astraeus mushrooms are known for their nutritional and culinary benefits and potential therapeutic properties. However, more investigation and discussion are still needed to understand their mechanisms of action regarding observed biological activities and thorough chemical analysis of bioactive compounds. This review provides a comprehensive summary and discussion of the bioactive properties and mode of action of Astraeus extracts and their isolated compounds. It covers their reported antioxidant, anti-inflammatory, antidiabetic, anticancer, anti-tuberculosis, antimalarial, antiviral and antileishmanial activities, as well as their potential benefits on metabolic and cardiovascular health and immune function. The review highlights the significance of the biological potential of isolated compounds, such as sugar alcohols, polysaccharides, steroids, and lanostane triterpenoids. Moreover, the review identifies under-researched areas, such as the chemical analysis of Astraeus species, which holds immense research potential. Ultimately, the review aims to inspire further research on the nutraceuticals or therapeutics of these mushrooms.
Collapse
Affiliation(s)
- Alison T. Ung
- School of Mathematical and Physical SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNSW 2007Australia
| | - Hui Chen
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneyUltimoNSW 2007Australia
| |
Collapse
|
3
|
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N. Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - Progress or setback? Biochimie 2024; 227:119-128. [PMID: 38996998 DOI: 10.1016/j.biochi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Diabetes is a substantial public health issue, while its prevalence continues to rise worldwide, affecting millions of persons between the ages of 20 and 80, the development of new therapeutic classes improving glycemic control and consequently micro and macrovascular complications are needed. Today, diabetes treatment is daily for life, and should not be interrupted. However, insulin secretagogues medications, and exogenous self-administration of insulin provide efficient antidiabetic effects, but their misuse leads to hypoglycemic complications besides other risks, hence the need to look for other natural products not to use solely but in concert with others types of medications. In this review, we will highlight briefly the pathophysiology of diabetes and its complications, then we will report the main bioactive macromolecules derived from various sources of natural products providing anti-diabetic properties. However, further researches need to be carried out to face the limitations hampering the development of effective natural drugs for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Chbel
- Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur Du Maroc, 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco; INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807, Villejuif Cedex, France.
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
4
|
Parajuli A, Aryal HP, Paudel MR, Rokaya MB. Antidiabetic potential of four species of Termitomyces mushrooms from Nepal. Nat Prod Res 2024:1-6. [PMID: 39590558 DOI: 10.1080/14786419.2024.2431985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
People use mushrooms to treat diabetes mellitus. We studied the antidiabetic potential of four Termitomyces mushrooms using porcine pancreatic α-amylase inhibitory activity and alloxan-induced diabetic mice. Methanolic extracts of all Termitomyces mushrooms were effective in inhibiting α-amylase activity. T. striatus forma ochraceus showed the highest α-amylase inhibitory activity of 61.4% (200 g/ml). When we administered intraperitoneal doses of Termitomyces extracts (250 and 500 mg/kg) to alloxan-induced diabetes mice (30-35 g), we observed a weight loss in diabetic control mice compared to diabetic mice. At the end of the 15 days, diabetic control mice lost more weight with the administration dose of 500 mg/kg than that of 250 mg/kg Termitomyces extracts. Monitoring blood glucose levels for 15 days revealed that 500 mg/kg significantly reduced blood glucose levels compared to 250 mg/kg. In conclusion, Termitomyces species were effective in decreasing α-amylase activity and reducing blood sugar levels in alloxan-induced diabetic mice.
Collapse
Affiliation(s)
- Achut Parajuli
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Hari Prasad Aryal
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Mukti Ram Paudel
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Maan Bahadur Rokaya
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
- Department of Biodiversity Research, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
5
|
Ricottini L, Basciani S, Spizzichini ML, de Mattia D, Coniglio-Iannuzzi delle Noci M, Sorrentino S, Nordio M. The Effectiveness and Safety of a Nutraceutical Combination in Overweight Patients with Metabolic Syndrome. Nutrients 2024; 16:3977. [PMID: 39683371 PMCID: PMC11643896 DOI: 10.3390/nu16233977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The aim of the present study was to evaluate the effectiveness and safety of a nutraceutical combination given to insulin-resistant overweight patients with altered lipid profiles. To this end, an observational study was designed in which 74 individuals (50 females and 24 males) underwent an observational period of 3 months. METHODS During this time, a specific nutraceutical combination containing myo-inositol, glycine, Coprinus comatus, α-lipoic acid, phlorizin, zinc, vitamin B6, and chromium picolinate was administered. Patients were asked not to modify their lifestyles so that no variable that might interfere with results was introduced. RESULTS After the 3-month period, the obtained data revealed that insulin levels significantly decreased with respect to the baseline, while glucose levels exhibited a trend towards lower concentrations, which was not significant. In addition, HOMA-IR index, body weight, BMI, and abdominal circumference values all decreased significantly. Regarding lipid profiles, the data obtained before and after the 3-month period showed statistically significant decreases in concentrations of total cholesterol, LDL cholesterol, and triglyceride, as well as a small but statistically significant concomitant increase in HDL cholesterol. CONCLUSIONS Thus, on the basis of these data, it may be stated that the specific nutraceutical combination used in the present study significantly ameliorated a number of metabolic parameters without measurable side effects. The efficacy and safety of the product were, therefore, confirmed in our group of patients.
Collapse
Affiliation(s)
| | - Sabrina Basciani
- Department of Experimental Medicine, University “Sapienza”, 00161 Rome, Italy
| | | | | | | | | | - Maurizio Nordio
- Department of Experimental Medicine, University “Sapienza”, 00161 Rome, Italy
| |
Collapse
|
6
|
Xu X, Liu X, Liu L, Chen J, Guan J, Luo D. Metagenomic and transcriptomic profiling of the hypoglycemic and hypotriglyceridemic actions of Tremella fuciformis-derived polysaccharides in high-fat-diet- and streptozotocin-treated mice. Food Funct 2024; 15:11096-11114. [PMID: 39432083 DOI: 10.1039/d4fo01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mushroom polysaccharides have great anti-diabetes potential. The fruiting body of Tremella fuciformis is rich in polysaccharides. However, few studies have been performed to date on T. fuciformis-derived polysaccharides (TPs) in terms of anti-diabetes potential. Our previous studies showed that novel TPs with medium molecular weights exhibited the highest anti-skin aging activities among the tested samples in D-galactose-treated mice. In the present study, the effects of these novel TPs, named TP, on high-fat-diet- and streptozotocin-treated mice were assessed, and their potential biological mechanisms were explored by metagenomic and transcriptomic analyses. Oral administration of TP markedly reduced blood glucose and TG levels, alleviated emaciation, improved anti-oxidant capacity, and protected the functions of β-cells at a dose of 100 mg kg-1 in diabetic mice. Meanwhile, the taxonomic compositions and functional properties of fecal microbiota were altered considerably by TP, as evidenced by partial restoration of the imbalanced gut microbiota and the higher abundances of Bacteroides, Phocaeicola, Bifidobacterium, and Alistipes compared to the model mice, corresponding to the upregulation of four enriched KEGG pathways of microbial communities such as the digestive system, cardiovascular disease, parasitic infectious disease, and cell growth and death. Further transcriptomic analysis of liver tissues identified 35 enriched KEGG pathways associated with metabolism and cellular signaling processes in response to TP. These results demonstrated the biological mechanisms underlying the hypoglycemic and hypotriglyceridemic activities of TP. The findings expanded our understanding of the anti-diabetic mechanisms for mushroom polysaccharides and provided new clues for future studies.
Collapse
Affiliation(s)
- Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Liyan Liu
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jin Chen
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Jingjing Guan
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| | - Donghui Luo
- College of Food Science and Engineering, Guangdong Ocean University, 1# Luoqin Road, Yangjiang 529500, China.
| |
Collapse
|
7
|
Ferraro V, Spagnoletta A, Rotondo NP, Marsano RM, Miniero DV, Balenzano G, De Palma A, Colletti A, Gargano ML, Lentini G, Cavalluzzi MM. Hypoglycemic Properties of Leccinum scabrum Extracts-An In Vitro Study on α-Glucosidase and α-Amylase Inhibition and Metabolic Profile Determination. J Fungi (Basel) 2024; 10:718. [PMID: 39452670 PMCID: PMC11508548 DOI: 10.3390/jof10100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Type-2 diabetes affects an increasing percentage of the world's population and its control through dietary management, involving the consumption of health-promoting foods or their derived supplements, is a common strategy. Several mushroom species have been demonstrated to be endowed with antidiabetic properties, resulting from their ability in improving insulin sensitivity and production, or inhibiting the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase. This study aimed to investigate for the first time the hypoglycemic properties of the edible mushroom Leccinum scabrum (Bull.) Gray. Mushroom extracts were prepared through the microwave-assisted extraction (MAE) technique using green solvents with different polarity degrees. The inhibition activity of all the obtained extracts on both α-glucosidase and α-amylase was evaluated and the highest activity was observed for the EtOAc extract which showed an IC50 value about 60-fold lower than the reference compound 1-deoxynojirimycin (DNJ) on α-glucosidase (0.42 ± 0.02 and 25.4 ± 0.6 µg/mL, respectively). As expected on the basis of the literature data concerning both α-glucosidase and α-amylase inhibition, a milder inhibition activity on pancreatic α-amylase was observed. Preliminary in vivo tests on Drosophila melanogaster carried out on the most active obtained extract (EtOAc) confirmed the in vitro observed hypoglycemic activity. Finally, the EtOAc extract metabolic profile was determined through GC-MS and HRMS analyses.
Collapse
Affiliation(s)
- Valeria Ferraro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Anna Spagnoletta
- Laboratory “Regenerative Circular Bioeconomy”, ENEA-Trisaia Research Centre, 75026 Rotondella, Italy;
| | - Natalie Paola Rotondo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
- Department of Medicine & Surgery, LUM University Giuseppe Degennaro Torre Rossi, Piano 5 S.S. 100 Km. 18, 70010 Casamassima, Italy
| | - Gaetano Balenzano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Annalisa De Palma
- Department of Biosciences, Biotechnology, and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (D.V.M.); (A.D.P.)
| | - Alessandro Colletti
- Department of Drug Science and Technology, University of Turin, 10124 Torino, Italy
| | - Maria Letizia Gargano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (V.F.); (N.P.R.); (G.L.); (M.M.C.)
| |
Collapse
|
8
|
Yin Z, Zhang J, Qin J, Guo L, Guo Q, Kang W, Ma C, Chen L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: a review. Front Pharmacol 2024; 15:1447677. [PMID: 39130633 PMCID: PMC11310034 DOI: 10.3389/fphar.2024.1447677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.
Collapse
Affiliation(s)
- Zhenhua Yin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Juanjuan Zhang
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Jingjing Qin
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Lin Guo
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qingfeng Guo
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| | - Wenyi Kang
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R and D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Chen
- Henan Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
9
|
Rašeta M, Kebert M, Mišković J, Kostić S, Kaišarević S, Stilinović N, Vukmirović S, Karaman M. Ganoderma pfeifferi Bres. and Ganoderma resinaceum Boud. as Potential Therapeutic Agents: A Comparative Study on Antiproliferative and Lipid-Lowering Properties. J Fungi (Basel) 2024; 10:501. [PMID: 39057386 PMCID: PMC11277669 DOI: 10.3390/jof10070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Medicinal mushrooms, especially Ganoderma species, hold immense promise for the production of a wide range of bioactive compounds with various effects. The biochemical potential of indigenous fungal strains, specific to a region, could play a critical role in the continuous search for novel strains with superior activities on a global scale. This research focused on the ethanolic (EtOH) and hot-water (H2O) extracts of fruiting bodies of two wild-growing Ganoderma species: G. pfeifferi and G. resinaceum, with the aim of assessing their nutritional (total carbohydrate content-TCC) and mineral composition in relation to bioactive properties: antioxidant, antiproliferative and lipid-lowering. Atomic absorption spectrophotometry (AAS) revealed that G. pfeifferi is a promising source of minerals that are essential for numerous physiological functions in the human body like bone health and muscle and nerve function, with Ca (4.55 ± 0.41 mg/g d.w.) and Mg (1.33 ± 0.09 mg/g d.w.) being the most abundant macroelement present. Zn, Mn, and Cr were particularly notable, with concentrations ranging from 21.49 to 41.70 mg/kg d.w. The EtOH extract of G. pfeifferi demonstrated significantly elevated levels of TCC, essential macromolecules for energy and structural functions in the body, with higher quantities of all three standard carbohydrates detected in this type of extract. Similar to the revealed composition, the same species, G. pfeifferi, stood out as the most prominent antioxidant agent, with the H2O extract being stronger than EtOH in the ABTS assay (86.85 ± 0.67 mg TE/g d.w.), while the EtOH extract displayed the highest anti-OH• scavenging ability (IC50 = 0.18 ± 0.05 μg/mL) as well as the most notable reducing potential among all. The highest antiproliferative effect against the breast cancer cell line (MCF-7), were demonstrated by the H2O extracts from G. resinaceum with the most pronounced activity after 24 h (IC50 = 4.88 ± 0.50 μg/mL), which surpasses that of the standard compound, ellagic acid (IC50 = 33.94 ± 3.69 μg/mL). Administration of both Ganoderma extracts mitigated diabetic lipid disturbances and exhibited potential renal and hepatic protection in vivo on white Wistar rats by the preservation of kidney function parameters in G. resinaceum H2O pre-treatment (urea: 6.27 ± 0.64 mmol/L, creatinine: 50.00 ± 6.45 mmol/L) and the reduction in ALT levels (17.83 ± 3.25 U/L) compared to diabetic control groups treated with saline (urea: 46.98 ± 6.01 mmol/L, creatinine: 289.25 ± 73.87 mmol/L, and ALT: 60.17 ± 9.64 U/L). These results suggest that pre-treatment with G. resinaceum H2O extracts may have potential antidiabetic properties. In summary, detected microelements are vital for maintaining overall health, supporting metabolic processes, and protecting against various chronic diseases. Further research and dietary assessments could help determine the full potential and applications of the two underexplored Ganoderma species native to Serbia in nutrition and health supplements.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.)
| | - Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.)
| | - Sonja Kaišarević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia;
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.S.); (S.V.)
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.S.); (S.V.)
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.K.)
| |
Collapse
|
10
|
Mizuno M, Minato KI. Anti-inflammatory and immunomodulatory properties of polysaccharides in mushrooms. Curr Opin Biotechnol 2024; 86:103076. [PMID: 38364705 DOI: 10.1016/j.copbio.2024.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Mushrooms are distinguished as important food-containing polysaccharides possessing potent anti-inflammatory and immunomodulating properties. These compounds belong mostly to polysaccharides that are mostly β-D-glucans. Among them, β-1,3-glucan with β-1,6 side chains of glucose residues, has more important roles in their properties. In this review, we have introduced polysaccharides mainly from Lentinula edodes and Pleurotus citrinopileatus with anti-inflammatory and immunomodulating properties. In addition, the mechanisms of activation of their physiological properties and signal cascade are also reviewed.
Collapse
Affiliation(s)
- Masashi Mizuno
- Department of Health and Nutrition, Faculty of Human Science, Osaka Aoyama University, 2-11-1 Niina, Minoh, Osaka 562-8580, Japan.
| | - Ken-Ichiro Minato
- Department of Applied Biological Chemistry, The Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| |
Collapse
|
11
|
Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front Nutr 2024; 10:1279208. [PMID: 38292699 PMCID: PMC10824988 DOI: 10.3389/fnut.2023.1279208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
There is a huge gap between food production and the exploding population demands in various parts of the world, especially developing countries. This increases the chances of malnutrition, leading to increased disease incidence and the need for functional foods to reduce mortality. Pleurotus ostreatus are edible mushrooms that are cheaply sourced and rich in nutrient with the potential to be harnessed toward addressing the present and future food crisis while serving as functional foods for disease prevention and treatment. This study evaluated the nutritional, proximate, vitamins and amino acids contents of Pleurotus ostreatus. The proximate composition of Pleurotus ostreatus in this study revealed that it contains 43.42% carbohydrate, 23.63% crude fiber, 17.06% crude protein, 8.22% ash, 1.21% lipid and a moisture content of 91.01 and 6.46% for fresh and dry samples of Pleurotus ostreatus, respectively. The monosaccharide and disaccharide profile of Pleurotus ostreatus revealed the presence of glucose (55.08 g/100 g), xylose (7.19 g/100 g), fructose (19.70 g/100 g), galactose (17.47 g/100 g), trehalose (7.37 g/100 g), chitobiose (11.79 g/100 g), maltose (29.21 g/100 g), sucrose (51.60 g/100 g) and lower amounts of cellobiose (0.01 g/100 g), erythrose (0.48 g/100 g) and other unidentified sugars. Potassium, Iron and Magnesium were the highest minerals present with 12.25 mg, 9.66 mg and 7.00 mg amounts, respectively. The vitamin profile revealed the presence of vitamin A (2.93 IU/100 g), C (16.46 mg/100 g), E (21.50 mg/100 g) and B vitamins with vitamin B2 having the highest concentration of 92.97 mg/kg. The amino acid scores showed that Pleurotus ostreatus had more non-essential amino acids (564.17 mg/100 g) than essential amino acids (67.83 mg/100 g) with a ratio of 0.11. Lysine (23.18 mg/100 g) was the highest essential amino acid while aspartic acid (492.12 mg/kg) was the highest non-essential amino acid present in Pleurotus ostreatus. It had a higher concentration of acidic amino acids, 492.12 mg/100 g (77.87%), followed by neutral amino acids, 106.66 mg/100 g (16.88%) and least were the basic amino acids, 23.18 mg/100 g (3.67%). Based on the nutritional assessment of the Pleurotus ostreatus analyzed in this study, it can be concluded that it can serve as an important functional food source that can be exploited to meet the increasing food demands and reduce micronutrient deficiencies in many parts of the world, especially developing countries.
Collapse
Affiliation(s)
- Magdalene Eno Effiong
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, Nigeria
| | | | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| |
Collapse
|
12
|
Panya M, Kaewraemruaen C, Saenwang P, Pimboon P. Evaluation of Prebiotic Potential of Crude Polysaccharides Extracted from Wild Lentinus polychrous and Lentinus squarrosulus and Their Application for a Formulation of a Novel Lyophilized Synbiotic. Foods 2024; 13:287. [PMID: 38254588 PMCID: PMC10815080 DOI: 10.3390/foods13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Edible mushrooms, including wild mushrooms, are currently being investigated as natural sources to evaluate their prebiotic potential. This study aimed to evaluate the prebiotic potential of crude polysaccharides (CPSs) extracted from wild Lentinus squarrosulus UBU_LS1 and Lentinus polychrous UBU_LP2 and their application as cryoprotectants in the freeze-drying process to formulate a novel synbiotic product. Based on fruiting body morphology and molecular identification, two wild edible mushrooms named UBU_LS1 and UBU_LP2 were identified as Lentinus squarrosulus and Lentinus polychrous, respectively. L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 contained high amounts of CPS after hot water extraction. Monosaccharide component analysis showed that CPS_UBU_LS1 and CPS_UBU_LP2 were typical heteropolysaccharides. CPS_UBU_LS1 and CPS_UBU_LP2 showed hydrolysis tolerance to the simulated human gastric acidic pH solution, indicating that these CPSs are capable of reaching the lower gastrointestinal tract. Antioxidant activity determined using the 1,1-diphenyl-2-picrylhydrazyl assay revealed that the CPS_UBU_LS1 and CPS_UBU_LP2 displayed greater antioxidant activity comparable with that of ascorbic acid. It was found that CPS_UBU_LS1 and CPS_UBU_LP2 have a high potential for stimulating growth in all probiotic strains. Moreover, both CPS compounds could possibly be used as cryoprotectants in freeze drying, since the viability of the selected probiotic L. fermentum 47-7 exhibited cell survival of greater than 70% after 90 days of storage at 4 °C. These results highlight that wild edible mushrooms L. squarrosulus UBU_LS1 and L. polychrous UBU_LP2 are potential natural sources of prebiotics and can be applied as cryoprotectants in the freeze-drying process. The crude polysaccharide derived from this study could also be considered as a potent antioxidative compound. Therefore, our study provides evidence to support the application of CPSs from wild edible mushrooms in synbiotic product development and in various functional foods. Finally, further evaluation of these prebiotics, including the determination of the potential rehabilitation of beneficial gut microbes in diseased individuals, is currently being conducted by our research group.
Collapse
Affiliation(s)
- Marutpong Panya
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Chamraj Kaewraemruaen
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Phairo Saenwang
- Research Group for Biomedical Research and Innovative Development (RG-BRID), College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| | - Patcharin Pimboon
- College of Medicine and Public Health, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand;
| |
Collapse
|
13
|
Zanfirescu A, Avram I, Gatea F, Roșca R, Vamanu E. In Vitro and In Vivo Antihyperglycemic Effects of New Metabiotics from Boletus edulis. Life (Basel) 2023; 14:68. [PMID: 38255683 PMCID: PMC10817235 DOI: 10.3390/life14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing incidence of diabetes has prompted the need for new treatment strategies, including natural products that reduce glycemia values. This work examined the in vitro and in vivo antihyperglycemic effects of new metabiotics derived from Boletus edulis extracts. The metabiotics were obtained from 100% B. edulis, and two other products, CARDIO and GLYCEMIC, from Anoom Laboratories SRL, which contain other microbial species related to B. edulis. Our in vitro investigations (simulations of the microbiota of patients with type 2 diabetes (T2D)) demonstrated that B. edulis extracts modulate the microbiota, normalizing its pattern. The effects were further tested in vivo, employing a mouse model of T2D. The tested extracts decreased glycemia values compared to the control and modulated the microbiota. The metabiotics had positive effects on T2D in vitro and in vivo, suggesting their potential to alleviate diabetes-associated microbiota dysbiosis.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ionela Avram
- Department of Genetics, University of Bucharest, 36–46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania;
| | - Răzvan Roșca
- Anoom Laboratories SRL, 18th Resita Str., ap. 58, 4th District, 024023 Bucharest, Romania;
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
14
|
Montserrat-de la Paz S, D Miguel-Albarreal A, Gonzalez-de la Rosa T, Millan-Linares MC, Rivero-Pino F. Protein-based nutritional strategies to manage the development of diabetes: evidence and challenges in human studies. Food Funct 2023; 14:9962-9973. [PMID: 37873616 DOI: 10.1039/d3fo02466k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases in modern society, governed by both genetic and environmental factors, such as nutritional habits. This metabolic disorder is characterized by insulin resistance, which is related to high blood glucose levels, implying negative health effects in humans, hindering the healthy ageing of people. The relationship between food and health is clear, and the ingestion of specific nutrients modulates some physiological processes, potentially implying biologically relevant changes, which can translate into a health benefit. This review aims to summarize human studies published in which the purpose was to investigate the effect of protein ingestion (in native state or as hydrolysates) on human metabolism. Overall, several studies showed how protein ingestion might induce a decrease of glucose concentration in the postprandial state (area under the curve), although it is highly dependent on the source and the dose. Other studies showed no biological effects upon protein consumption, mostly with fish-derived products. In addition, the major challenges and perspectives in this research field are highlighted, suggesting the future directions, towards which scientists should focus on. The dietary intake of proteins has been proven to likely exert a beneficial effect on diabetes-related parameters, which can have a biological relevance in the prevention and pre-treatment of diabetes. However, the number of well-designed human studies carried out to date to demonstrate the effects of specific proteins or protein hydrolysates in vivo is still scarce.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Antonio D Miguel-Albarreal
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Maria C Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
15
|
Nam T, Kim A, Oh Y. Effectiveness of Chickpeas on Blood Sugar: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2023; 15:4556. [PMID: 37960209 PMCID: PMC10647263 DOI: 10.3390/nu15214556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetes affects one in eleven adults globally, with rising cases in the past 30 years. Type 1 and type 2 cause blood sugar problems, increasing cardiovascular risks. Dietary control, including chickpeas, is suggested but needs more research. Comprehensive searches were conducted across multiple databases for the randomized controlled trial efficacy of chickpea consumption to lower blood sugar levels to a healthy range, with data extraction and risk of bias assessment performed independently by two researchers. Statistical analysis was performed using RevMan 5.4, expressing continuous data as mean differences and risk ratios with 95% confidence intervals, and a summary of the findings is provided considering the variations in study characteristics. A total of 118 articles were initially identified from seven databases, primarily from Anglo-American countries, resulting in 12 selected studies after the identification and screening processes. These studies involved 182 participants, focusing on healthy or normoglycemic adults, and assessed the effects of chickpeas compared to various foods such as wheat, potatoes, pasta, sauce, cheese, rice, and corn. A meta-analysis involving a subset of studies demonstrated that chickpeas were more effective in reducing blood glucose iAUC compared to potatoes and wheat. Chickpeas offer the potential for blood sugar control through low starch digestibility, high fiber, protein, and hormonal effects. Although insulin benefits are seen, statistical significance varies, supporting their role in diabetic diets focusing on nutrient-rich foods over processed carbs.
Collapse
Affiliation(s)
- Taegwang Nam
- College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea;
| | - Anna Kim
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Yongtaek Oh
- College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea;
| |
Collapse
|