1
|
Wang X, Mafukidze D, Zheng Y. Microalgae aggregation induced by thermoresponsive polymers. BIORESOURCE TECHNOLOGY 2025; 415:131650. [PMID: 39419406 DOI: 10.1016/j.biortech.2024.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Algal biomass harvesting is one of key technical hurdles impeding the commercialization of algae-based biorefinery. The goal of this work is to develop an innovative technology for algae cell harvesting. Thermoresponsive polymers (TRPs) such as poly(N-isopropylacrylamide) (PNIPAM) and its derivatives were studied on their properties and potential applications for microalgae harvesting. Various PNIPAM was synthesized, and the effects of charge, molecular weight (MW), amine content, and polymer concentration on the polymer phase transition temperature, the degree of phase separation, and the harvesting of microalgae (Chlorella vulgaris) were investigated. The lower critical solution temperature (LCST) of PNIPAM decreased with the increase of polymer concentration, while the decline rate reduced under high MW. The amine content didn't significantly affect the LCST of TRPs. Approx. 92 % of algae cells were harvested by PNIPAM-300 kDa. Modified TRPs showed few benefits in enhancing algae harvesting. TRPs are a promising class of polymers for microalgae harvesting.
Collapse
Affiliation(s)
- Xuexue Wang
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Donovan Mafukidze
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Al-Hammadi M, Güngörmüşler M. New insights into Chlorella vulgaris applications. Biotechnol Bioeng 2024; 121:1486-1502. [PMID: 38343183 DOI: 10.1002/bit.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 04/14/2024]
Abstract
Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.
Collapse
Affiliation(s)
- Mohammed Al-Hammadi
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir, Türkiye
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Türkiye
| |
Collapse
|
3
|
Eregie SB, Sanusi IA, Kana GEB, Olaniran AO. Effect of ultra-violet light radiation on Scenedesmus vacuolatus growth kinetics, metabolic performance, and preliminary biodegradation study. Biodegradation 2024; 35:71-86. [PMID: 37052742 PMCID: PMC10774200 DOI: 10.1007/s10532-023-10029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of Scenedesmus vacuolatus. The impact of the UV radiation on S. vacuolatus morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed S. vacuolatus on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in S. vacuolatus exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of S. vacuolatus to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed S. vacuolatus showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h-1) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed S. vacuolatus. These findings provided major insights into the use of UV radiation to enhance S. vacuolatus biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.
Collapse
Affiliation(s)
- Stella B Eregie
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville 3209, Pietermaritzburg, South Africa.
| | - Isaac A Sanusi
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville 3209, Pietermaritzburg, South Africa
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice, 5700, South Africa
| | - Gueguim E B Kana
- School of Life Sciences, University of KwaZulu-Natal, Private Bag, X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Ademola O Olaniran
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Pietermaritzburg, South Africa
| |
Collapse
|
4
|
Chen X, Chen J, Ma M, Yu S, Liu Z, Zeng X. An Ethyl-Thioglycolate-Functionalized Fe 3O 4@ZnS Magnetic Fluorescent Nanoprobe for the Detection of Ag + and Its Applications in Real Water Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1992. [PMID: 37446508 DOI: 10.3390/nano13131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Ethyl-thioglycolate-modified Fe3O4@ZnS nanoparticles (Fe3O4@ZnS-SH) were successfully prepared using a simple chemical precipitation method. The introduction of ethyl thioglycolate better regulated the surface distribution of ZnS, which can act as a recognition group and can cause a considerable quenching of the fluorescence intensity of the magnetic fluorescent nanoprobe, Fe3O4@ZnS-SH. Benefiting from stable fluorescence emission, the magnetic fluorescent nanoprobe showed a highly selective fluorescent response to Ag+ in the range of 0-400 μM, with a low detection limit of 0.20 μM. The magnetic fluorescent nanoprobe was used to determine the content of Ag+ in real samples. A simple and environmentally friendly approach was proposed to simultaneously achieve the enrichment, detection, and separation of Ag+ and the magnetic fluorescent nanoprobe from an aqueous solution. These results may lead to a wider range of application prospects of Fe3O4 nanomaterials as base materials for fluorescence detection in the environment.
Collapse
Affiliation(s)
- Xin Chen
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jie Chen
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Mingshuo Ma
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Zhigang Liu
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
5
|
Liu WX, Zhou WN, Song S, Zhao YG, Lu Y. Preparation and Characterization of Nano-Fe 3O 4 and Its Application for C18-Functionalized Magnetic Nanomaterials Used as Chromatographic Packing Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1111. [PMID: 36986005 PMCID: PMC10058610 DOI: 10.3390/nano13061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
A new type of magnetic nanomaterial with Fe3O4 as the core and organic polymer as the shell was synthesized by seed emulsion polymerization. This material not only overcomes the problem of insufficient mechanical strength of the organic polymer, it also solves the problem that Fe3O4 is prone to oxidation and agglomeration. In order to make the particle size of Fe3O4 meet the requirement of the seed, the solvothermal method was used to prepare Fe3O4. The effects of the reaction time, amount of solvent, pH value, and polyethylene glycol (PEG) on the particle size of Fe3O4 were investigated. In addition, in order to accelerate the reaction rate, the feasibility of preparing Fe3O4 by microwave was studied. The results showed that under the optimum conditions, the particle size of Fe3O4 could reach 400 nm and had good magnetic properties. After three stages of oleic acid coating, seed emulsion polymerization, and C18 modification, the obtained C18-functionalized magnetic nanomaterials were used for the preparation of the chromatographic column. Under optimal conditions, stepwise elution significantly shortened the elution time of sulfamethyldiazine, sulfamethazine, sulfamethoxypyridazine, and sulfamethoxazole while still achieving a baseline separation.
Collapse
Affiliation(s)
- Wen-Xin Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wei-Na Zhou
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
6
|
Joshi K, Kumar P, Kataria R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Savvidou MG, Georgiopoulou I, Antoniou N, Tzima S, Kontou M, Louli V, Fatouros C, Magoulas K, Kolisis FN. Extracts from Chlorella vulgaris Protect Mesenchymal Stromal Cells from Oxidative Stress Induced by Hydrogen Peroxide. PLANTS (BASEL, SWITZERLAND) 2023; 12:361. [PMID: 36679074 PMCID: PMC9866266 DOI: 10.3390/plants12020361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Microalgae as unicellular eukaryotic organisms demonstrate several advantages for biotechnological and biological applications. Natural derived microalgae products demand has increased in food, cosmetic and nutraceutical applications lately. The natural antioxidants have been used for attenuation of mitochondrial cell damage caused by oxidative stress. This study evaluates the in vitro protective effect of Chlorella vulgaris bioactive extracts against oxidative stress in human mesenchymal stromal/stem cells (MSCs). The classical solid-liquid and the supercritical extraction, using biomass of commercially available and laboratory cultivated C. vulgaris, are employed. Oxidative stress induced by 300 μM H2O2 reduces cell viability of MSCs. The addition of C. vulgaris extracts, with increased protein content compared to carbohydrates, to H2O2 treated MSCs counteracted the oxidative stress, reducing reactive oxygen species levels without affecting MSC proliferation. The supercritical extraction was the most efficient extraction method for carotenoids resulting in enhanced antioxidant activity. Pre-treatment of MSCs with C. vulgaris extracts mitigates the oxidative damage ensued by H2O2. Initial proteomic analysis of secretome from licensed (TNFα-activated) MSCs treated with algal extracts reveals a signature of differentially regulated proteins that fall into clinically relevant pathways such as inflammatory signaling. The enhanced antioxidative and possibly anti-inflammatory capacity could be explored in the context of future cell therapies.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Ioulia Georgiopoulou
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Nasia Antoniou
- TheraCell Advanced Biotechnologies, 14564 Kifisia, Greece
| | - Soultana Tzima
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Maria Kontou
- TheraCell Advanced Biotechnologies, 14564 Kifisia, Greece
| | - Vasiliki Louli
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | | | - Kostis Magoulas
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Fragiskos N. Kolisis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
8
|
Mohamed MS, Hozayen WG, Alharbi RM, Ibraheem IBM. Adsorptive recovery of arsenic (III) ions from aqueous solutions using dried Chlamydomonas sp. Heliyon 2022; 8:e12398. [PMID: 36590564 PMCID: PMC9800544 DOI: 10.1016/j.heliyon.2022.e12398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to descry the effectiveness of dried microalga Chlamydomonas sp. for disposing of arsenic from aqueous solution. The study included examining the impact of some factors on algae's adsorption capacity (optimization study), such as initial concentrations of heavy metal, biosorbent doses, pH and contact time. All trials have been performed at constant temperature 25 °C and shaking speed of 300 rpm. The optimization studying indicated the pH 4, contact time at 60 min, temperature 25 °C and biomass concentration of 0.6 g/l were the best optimum conditions for the bioremediation activity with maximum removal percentage 95.2% and biosorption capacity 53.8 mg/g. Attesting of biosorption by applying FTIR (Fourier transfigure infrared), XRD (X-ray diffraction), SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray), DLS (Dynamic light scarring) and ZP (Zeta Potential) was conducted. Also, Kinetics, isotherm equilibrium and thermodynamics were carried out to explain the plausible maximum biosorption capacity and biosorption rate of biosorbent q maximum.
Collapse
Affiliation(s)
- Mostafa Sh. Mohamed
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Walaa G. Hozayen
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Reem Mohammed Alharbi
- Biology Department, Science College, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | | |
Collapse
|
9
|
Patel AK, Kumar P, Chen CW, Tambat VS, Nguyen TB, Hou CY, Chang JS, Dong CD, Singhania RR. Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. BIORESOURCE TECHNOLOGY 2022; 363:128009. [PMID: 36162780 DOI: 10.1016/j.biortech.2022.128009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
For commercial scale algal biorefining, harvesting cost is a major bottleneck. Thus, a cost-effective, less-energy intensive, and efficient harvesting method is being investigated. Among several harvesting methods, magnetic flocculation offers the benefits of modest operation, energy savings and quick separation. This study aims to develop novel magnetite-(Fe3O4) nanoparticles (MNPs) of 20 nm average size and their high reusability potential to reduce the harvesting cost of microalgae biomass. The MNPs were synthesized and characterized using FTIR, Zeta analyzer, and SEM before performing on Chlorella sorokiniana Kh12 and Tu5. For maximum harvesting efficiency >99%, the optimal culture pH, MNPs concentration, and agitation speed were 3, 200 mg/L, and 450 rpm, respectively. Subsequently, MNPs were recovered via alkaline treatment and reused up to 5 cycles as they retained their reactivity and harvesting efficiency. The studied MNPs-based harvesting method could be adopted at a commercial scale for cost-effective algae biorefinery in the future.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan.
| | - Reeta Rani Singhania
- Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City-81157, Taiwan
| |
Collapse
|
10
|
Separation and Concentration of Astaxanthin and Lutein from Microalgae Liquid Extracts Using Magnetic Nanoparticles. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8080080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The downstream processing of natural active molecules remains the most significant cost in the production pipeline. This considerable cost is largely attributed to rigorous chromatographic purification protocols. In an ongoing effort to abate the dependence on chromatography in downstream processing, alternative affinity matrices in the form of magnetic particles (e.g., iron oxide) have emerged as viable candidates. Nevertheless, biotechnological applications of iron oxide particles are still confined to the research level or for low-throughput clinical applications. Herein, we describe an efficient, quick, and environmentally friendly method for the isolation of astaxanthin and lutein, two carotenoids with very similar chemical structure, from extracts of the microalga Haematococcus pluvialis. The technology proposed, named Selective Magnetic Separation (SMS), is based on the use of magnetic materials carrying affinity ligands that bind carotenoids and is applied as second step of purification. The method, thanks to functionalized magnetic nanoparticles, reduces the use of organic or toxic solvents. In the present work, we examined the most efficient binding conditions such as temperature, magnetic nanoparticles concentration, and elution time, as well as their effects on carotenoids recovery, with the aim to improve the non-covalent binding between the ligand (amines) and astaxanthin/lutein. Our initial results clearly showed that it is possible to use magnetic separation as an alternative to chromatography to isolate important and valuable compounds.
Collapse
|
11
|
Ferraro A. Special Issue “Nanomaterials for Biomedical and Biotechnological Applications”. NANOMATERIALS 2022; 12:nano12111923. [PMID: 35683778 PMCID: PMC9182482 DOI: 10.3390/nano12111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Angelo Ferraro
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Zografou, 15772 Athens, Greece
| |
Collapse
|
12
|
Gerulová K, Kucmanová A, Sanny Z, Garaiová Z, Seiler E, Čaplovičová M, Čaplovič Ľ, Palcut M. Fe 3O 4-PEI Nanocomposites for Magnetic Harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1786. [PMID: 35683642 PMCID: PMC9182367 DOI: 10.3390/nano12111786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
Magnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae (Chlorella vulgaris, Chlorella ellipsoidea, and Auxenochlorella protothecoides) and one cyanobacteria (Microcystis aeruginosa) has been studied. The biomass was flushed with clean air using a 0.22 μm filter and fed CO2 for accelerated growth and faster reach of the exponential growth phase. The microalgae were harvested with magnetite nanoparticles. The nanoparticles were prepared by controlled co-precipitation of Fe2+ and Fe3+ cations in ammonia at room temperature. Subsequently, the prepared Fe3O4 nanoparticles were coated with polyethyleneimine (PEI). The prepared materials were characterized by high-resolution transmission electron microscopy, X-ray diffraction, magnetometry, and zeta potential measurements. The prepared nanomaterials were used for magnetic harvesting of microalgae. The highest harvesting efficiencies were found for PEI-coated Fe3O4. The efficiency was pH-dependent. Higher harvesting efficiencies, up to 99%, were obtained in acidic solutions. The results show that magnetic harvesting can be significantly enhanced by PEI coating, as it increases the positive electrical charge of the nanoparticles. Most importantly, the flocculants can be prepared at room temperature, thereby reducing the production costs.
Collapse
Affiliation(s)
- Kristína Gerulová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Alexandra Kucmanová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Sanny
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Garaiová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina F1, 842 48 Bratislava, Slovakia;
| | - Eugen Seiler
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia;
| | - Mária Čaplovičová
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, 812 43 Bratislava, Slovakia;
| | - Ľubomír Čaplovič
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| | - Marián Palcut
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| |
Collapse
|
13
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
14
|
Lane TW. Barriers to microalgal mass cultivation. Curr Opin Biotechnol 2021; 73:323-328. [PMID: 34710649 DOI: 10.1016/j.copbio.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.
Collapse
Affiliation(s)
- Todd W Lane
- Bioresource and Environmental Security Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94550, USA.
| |
Collapse
|
15
|
Abstract
A number of technological challenges need to be overcome if algae are to be utilized for commercial fuel production. Current economic assessment is largely based on laboratory scale up or commercial systems geared to the production of high value products, since no industrial scale plant exits that are dedicated to algal biofuel. For macroalgae (‘seaweeds’), the most promising processes are anaerobic digestion for biomethane production and fermentation for bioethanol, the latter with levels exceeding those from sugar cane. Currently, both processes could be enhanced by increasing the rate of degradation of the complex polysaccharide cell walls to generate fermentable sugars using specifically tailored hydrolytic enzymes. For microalgal biofuel production, open raceway ponds are more cost-effective than photobioreactors, with CO2 and harvesting/dewatering costs estimated to be ~50% and up to 15% of total costs, respectively. These costs need to be reduced by an order of magnitude if algal biodiesel is to compete with petroleum. Improved economics could be achieved by using a low-cost water supply supplemented with high glucose and nutrients from food grade industrial wastewater and using more efficient flocculation methods and CO2 from power plants. Solar radiation of not <3000 h·yr−1 favours production sites 30° north or south of the equator and should use marginal land with flat topography near oceans. Possible geographical sites are discussed. In terms of biomass conversion, advances in wet technologies such as hydrothermal liquefaction, anaerobic digestion, and transesterification for algal biodiesel are presented and how these can be integrated into a biorefinery are discussed.
Collapse
|