1
|
Yang H, Liu L, Shu Z, Zhang W, Huang C, Zhu Y, Li S, Wang W, Li G, Zhang Q, Liu Q, Jiang G. Magnetic iron oxide nanoparticles: An emerging threat for the environment and human health. J Environ Sci (China) 2025; 152:188-202. [PMID: 39617545 DOI: 10.1016/j.jes.2024.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 12/18/2024]
Abstract
Magnetic iron oxide nanoparticles (FexOy NPs, mainly Fe3O4 and γ-Fe2O3) are nanomaterials ubiquitously present in aquatic, terrestrial, and atmospheric environments, with a high prevalence and complex sources. Over the past decade, numerous reports have emerged on the presence of exogenous particles in human body, facilitated by the rapid development of separation and detection methods. The health risk associated with magnetic FexOy NP have garnered escalating attention due to their presence in human blood and brain tissues, especially for their potential association with neurodegenerative diseases like Alzheimer's disease. In this paper, we provide a comprehensive overview of sources, analysis methods, environmental impacts, and health risks of magnetic FexOy NP. Currently, most researches are primarily based on engineered FexOy NP, while reports about magnetic FexOy NP existing in real-world environments are still limited, especially for their occurrence levels in various environmental matrices, environmental transformation behavior, and biotoxic effects. Our study reviews this emerging pollutant, providing insights to address current research deficiencies and chart the course for future studies.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cha Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhuan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liang X, Li QL, Li JT, Zhao WB, Yang DZ, Yang YL, Zhong ZT. A facile colorimetric sensor based on Fe 3O 4 magnetic nanoparticles with intrinsic catalytic activity for the rapid and selective detection of ochratoxin A. Food Chem 2025; 474:143179. [PMID: 39914351 DOI: 10.1016/j.foodchem.2025.143179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Ochratoxin A (OTA) is recognized as a Group 2B carcinogen and poses significant dangers to human, making it crucial to regulate OTA levels in food products. Herein, we developed a colorimetric approach to analyze OTA utilizing the intrinsic catalytic oxidized activity of Fe3O4 magnetic nanoparticles (MNPs). Our findings reveal that OTA shows a significant impact on the absorbance signal of the catalytic system, notably reducing the absorbance at 532 nm with H2O2 and 4-aminoantipyrene (4-AP). This sensor does not require elaborate aptamer or antibody, omitting the cumbersome reaction and the loss during synthesis, thus simply realizing OTA detection. The signal correlates linearly with the OTA concentrations and achieves satisfied sensitivity. The practical application has been verified utilizing beer and rice samples, resulting in recoveries ranging from 91.0 % to 106.2 %. This accuracy and reliability verified the method feasibility for monitoring OTA levels in food products.
Collapse
Affiliation(s)
- Xiao Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qiu-Lan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ji-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wen-Bo Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - De-Zhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ya-Ling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zi-Tao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Shakeri-Zadeh A, Bulte JWM. Imaging-guided precision hyperthermia with magnetic nanoparticles. NATURE REVIEWS BIOENGINEERING 2025; 3:245-260. [PMID: 40260131 PMCID: PMC12011369 DOI: 10.1038/s44222-024-00257-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 04/23/2025]
Abstract
Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques based on the detection of magnetic nanoparticles inside the body include magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magneto-motive ultrasonography (MMUS) and magneto-photoacoustic imaging (MPAI). Preclinical data indicate that the conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This Review explores the potential use of magnetic-nanoparticle-mediated imaging techniques combined with magnetic fluid hyperthermia (MFH) to selectively and precisely heat tumour locations while avoiding damage to surrounding healthy tissue. Imaging-guided MFH could provide individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumour and adjacent organs, as well as the volumetric distribution of the thermal dose. Requirements for the clinical translation of MFH-enabled magnetic imaging techniques are also discussed - the development of magnetic nanoparticle formulations with a favourable biosafety profile, optimal magnetic heating properties and maximal magnetic imaging signals; and the integration of magnetic imaging and heating hardware into a single platform.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, MD, USA
| |
Collapse
|
4
|
Udupi A, Shetty S, Aranjani JM, Kumar R, Bharati S. Anticancer therapeutic potential of multimodal targeting agent- "phosphorylated galactosylated chitosan coated magnetic nanoparticles" against N-nitrosodiethylamine-induced hepatocellular carcinoma. Drug Deliv Transl Res 2025; 15:1023-1042. [PMID: 38990437 PMCID: PMC11782354 DOI: 10.1007/s13346-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as carriers in targeted drug delivery and has several advantages in the field of magnetic hyperthermia, chemodynamic therapy and magnet assisted radionuclide therapy. The characteristics of SPIONs can be tailored to deliver drugs into tumor via "passive targeting" and they can also be coated with tissue-specific agents to enhance tumor uptake via "active targeting". In our earlier studies, we developed HCC specific targeting agent- "phosphorylated galactosylated chitosan"(PGC) for targeting asialoglycoprotein receptors. Considering their encouraging results, in this study we developed a multifunctional targeting system- "phosphorylated galactosylated chitosan-coated magnetic nanoparticles"(PGCMNPs) for targeting HCC. PGCMNPs were synthesized by co-precipitation method and characterized by DLS, XRD, TEM, VSM, elemental analysis and FT-IR spectroscopy. PGCMNPs were evaluated for in vitro antioxidant properties, uptake in HepG2 cells, biodistribution, in vivo toxicity and were also evaluated for anticancer therapeutic potential against NDEA-induced HCC in mice model in terms of tumor status, electrical properties, antioxidant defense status and apoptosis. The characterization studies confirmed successful formation of PGCMNPs with superparamagnetic properties. The internalization studies demonstrated (99-100)% uptake of PGCMNPs in HepG2 cells. These results were also supported by biodistribution studies in which increased iron content (296%) was noted inside the hepatocytes. Further, PGCMNPs exhibited no in vivo toxicity. The anticancer therapeutic potential was evident from observation that PGCMNPs treatment decreased tumor bearing animals (41.6%) and significantly (p ≤ 0.05) lowered tumor multiplicity. Overall, this study indicated that PGCMNPs with improved properties are efficiently taken-up by hepatoma cells and has therapeutic potential against HCC. Further, this agent can be tagged with 32P and hence can offer multimodal cancer treatment options via radiation ablation as well as magnetic hyperthermia.
Collapse
Affiliation(s)
- Anushree Udupi
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, 342005, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Swastika PE, Ardiyanti H, Zurnansyah, Darmawan MY, Mahardika LJ, Istiqomah NI, Wibowo NA, Suharyadi E. Enhanced detection of bovine serum albumin using single- and double-chip configuration of tunneling magnetoresistance-based biosensor with green-synthesized magnetite/Ag nanotag. Mikrochim Acta 2025; 192:143. [PMID: 39934505 DOI: 10.1007/s00604-025-07005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
A tunneling magnetoresistance (TMR)-based biosensor is introduced that coupled with green-synthesized magnetite/Ag nanoparticles nanotag for albumin assays, using bovine serum albumin (BSA) serving as a model for human serum albumin. The performance of both single-chip and double-chip configurations of TMR sensors was assessed to improve detection performance. The TMR sensors are integrated with an Arduino microcontroller and a basic differential amplifier to provide direct and measurable digital signals. Magnetic nanoparticles were produced through green synthesis methods using Moringa oleifera extract, resulting in soft ferromagnetic properties. The sensor system exhibited good stability and linearity in detecting various concentrations of BSA under low bias magnetic fields, achieving a relative standard deviation (RSD) of less than 15% within a rapid detection time of 30 s. The double-chip configuration demonstrated higher sensitivity of 29.75 mV/(mg/mL), compared with 23.27 mV/(mg/mL) for the single-chip setup, while also achieving a low limit of detection below 1 mg/mL, consistent with typical albumin levels in blood and urine. These results indicate that the double-chip configuration in TMR biosensors is a reliable detection method showing competitive performance with green-synthesized magnetic labels under low bias conditions. This research supports the potential of this system as a prescreening tool in medical diagnostics, which may help reduce the risks of disease progression.
Collapse
Affiliation(s)
- Pinaka Elda Swastika
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physics Education, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
| | - Harlina Ardiyanti
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physics, Institut Teknologi Sumatera, Lampung, Indonesia
| | - Zurnansyah
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mahardika Yoga Darmawan
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physics, Institut Teknologi Sumatera, Lampung, Indonesia
| | | | | | - Nur Aji Wibowo
- Department of Physics, Universitas Kristen Satya Wacana, Salatiga, Indonesia
| | - Edi Suharyadi
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
6
|
Imantay A, Mashurov N, Zhaisanbayeva BA, Mun EA. Doxorubicin-Conjugated Nanoparticles for Potential Use as Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:133. [PMID: 39852748 PMCID: PMC11768029 DOI: 10.3390/nano15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects. This makes them a viable vector for novel drug delivery systems. Currently, DOX is commonly conjugated to NPs by non-covalent conjugation-physical entrapping of the drug using electrostatic interactions, van der Waals forces, or hydrogen bonding. The reported downside of these methods is that they provide a low drug loading capacity and a higher drug leakage possibility. In comparison to this, the covalent conjugation of DOX via amide (typically formed by coupling carboxyl groups on DOX with amine groups on the nanoparticle or a linker, often facilitated by carbodiimide reagents), hydrazone (which results from the reaction between hydrazines and carbonyl groups, offering pH-sensitive cleavage for controlled release), or disulfide bonds (formed through the oxidation of thiol groups and cleavable by intracellular reducing agents such as glutathione) is more promising as it offers greater bonding strength. This review covers the covalent conjugation of DOX to three different types of NPs-metallic, silica/organosilica, and polymeric-including their corresponding release rates and mechanisms.
Collapse
Affiliation(s)
| | | | | | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (N.M.); (B.A.Z.)
| |
Collapse
|
7
|
Velazquez-Albino AC, Imhoff ED, Rinaldi-Ramos CM. Advances in engineering nanoparticles for magnetic particle imaging (MPI). SCIENCE ADVANCES 2025; 11:eado7356. [PMID: 39772674 PMCID: PMC11708890 DOI: 10.1126/sciadv.ado7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement. This review summarizes recent advancements in MPI tracer synthesis and compares reported tracers in terms of sensitivity and resolution. In making these comparisons, we point out inconsistencies in reporting of MPI tracer properties. To overcome this challenge, we propose a list of properties to standardize characterization and reporting of new MPI tracers and improve communication within the field.
Collapse
Affiliation(s)
| | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
8
|
Rajan A, Laha SS, Sahu NK, Thorat ND, Shankar B. Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy. Mater Today Bio 2024; 29:101348. [PMID: 39669801 PMCID: PMC11636219 DOI: 10.1016/j.mtbio.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties. This review offers a comprehensive perception of IONPs-mediated MHT from fundamentals to clinical translation, by elucidating the underlying mechanism of heat generation and the related influential factors. Biological mechanisms underlying MHT-mediated cancer cell death such as reactive oxygen species generation and lysosomal membrane permeabilization have been discussed in this review. Recent advances in biological interactions (in vitro and in vivo) of IONPs and their translation to clinical MHT applications are briefed. New frontiers and prospects of promising combination cancer therapies such as MHT with photothermal therapy, cancer starvation therapy and sonodynamic therapy are presented in detail. Finally, this review concludes by addressing current crucial challenges and proposing possible solutions to achieve clinical success.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| | - Suvra S. Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Nanasaheb D. Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre, University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| |
Collapse
|
9
|
Sanko V, Şenocak A, Yeşilot S, Tümay SO. The fabrication of a hybrid fluorescent nanosensing system and its practical applications via film kits for the selective determination of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124677. [PMID: 38908110 DOI: 10.1016/j.saa.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Heavy metal ions especially mercury exposure have severe toxic effects on living organisms and human health. Therefore, easy, accessible, and accurate determination strategies for the selective specification of mercury ions are essential for numerous disciplines. In the presented paper, new hybrid fluorescent iron oxide nanoparticles labeled with carbazole and triazole units (CT-IONP) were prepared via surface modification for the spectrofluorimetric determination of Hg2+ in environmental samples. The structure of the new sensing system is characterized via various spectroscopic, thermal, and microscopic techniques. Under optimized conditions, the hybrid system is not only used in fully water media but also highly fluorescent which led to the "turn-off" response towards Hg2+ ion in the presence of various competitive species. The presented sensing system was successfully used for the determination of Hg2+ ions in the wide linear working range (0.02-10.00 µmol.L-1) at nanomolar levels, where the limit of detection and quantification were calculated as 7.38 and 22.14 nmol.L-1. Importantly, the practical application of hybrid material was applied by CT-IONP embedded polycaprolactone (PCL) polymer film kits. The bluish color of fabricated film kits was instantly and dramatically turned colorless-dark patterns after the addition of Hg2+ ions, which resulted in convenient and rapid film test kits for selective detection.
Collapse
Affiliation(s)
- Vildan Sanko
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Türkiye.; METU MEMS Center, Ankara 06520, Türkiye
| | - Ahmet Şenocak
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Serkan Yeşilot
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye
| | - Süreyya Oğuz Tümay
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25100, Türkiye.
| |
Collapse
|
10
|
Haghighi AH, Ghaderian A, Mirzaei E. Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles. Int J Biomater 2024; 2024:8286525. [PMID: 39512856 PMCID: PMC11540882 DOI: 10.1155/2024/8286525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
One of the most important advantages and applications of coated nanoparticles in biological applications is their use in isolating different types of cells to diagnose and treat all types of diseases. Therefore, in this research work, the possibility of isolation and enrichment of B cells using magnetic iron oxide nanoparticles have been investigated. In this regard, magnetic nanoparticles are first coated with (3-aminopropyl)triethoxysilane to make them hydrophilic and prevent their clumping, then reacted with and rendered biocompatible by FITC anti-human CD20 antibody. These nanoparticles containing antibodies have been used to isolate B cells from the lymphatic cells. Transmission electron microscopy (TEM) and vibrating-sample magnetometry (VSM) tests were used to check the magnetic properties and coating of nanoparticles. The flow cytometry and fluorescent microscopy tests are used to check antibody binding to nanoparticles. Moreover, flow cytometry tests were used to check the extent of cell separation. Results show that nanoparticles reacted with 450 μL of antibody (T450) performed better than other nanoparticles in isolating B cells.
Collapse
Affiliation(s)
- Amir Hossein Haghighi
- Department of Polymer Engineering, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Abolfazl Ghaderian
- Young Researchers and Elite Club, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Mazhar MW, Ishtiaq M, Maqbool M, Arshad A, Alshehri MA, Alhelaify SS, Alharthy OM, Shukry M, Sayed SM. Green synthesis of anethole-loaded zinc oxide nanoparticles enhances antibacterial strategies against pathogenic bacteria. Sci Rep 2024; 14:24671. [PMID: 39433801 PMCID: PMC11494018 DOI: 10.1038/s41598-024-74163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The threat of antibiotic resistance is escalating, diminishing the effectiveness of numerous antibiotics due to the rapid development of resistant bacteria. In response, the use of green-synthesized nanoparticle, alone or combined with antimicrobial agents, appears promising. This study explores the effectiveness of zinc oxide nanoparticles (ZnONPs) synthesized using Loranthus cordifolius leaf extracts and subsequently coated with anethole. The fabrication of these nanoparticles was confirmed via UV-Vis, FTIR and TEM analyses, ensuring the nanoparticles were produced as intended. Utilizing a nanoprecipitation process that excludes evaporation and drying, a high drug loading capacity of 16.59% was accomplished. The encapsulation efficiency for anethole was recorded at 88.23 ± 4.98%. Antibacterial efficacy was assessed by com paring the green-synthesized ZnONPs (average size: 14.47 nm), anethole-loaded ZnONPs (average size: 14,75 nm), and commercially sourced ZnONPs. The ZnONPs with anethole demonstrated superior inhibition against all tested bacterial strains, including Gram-negative species like Pseudomonas aeruginosa and Escherichia coli, and Gram-positive species like Bacillus subtilis and Staphylococcus aureus, outperforming the commercially available ZnONPs. Additionally, anethole-coated ZnONPs showed the greatest inhibition of Gyr-B activity (IC50 = 0.78 ± 0.2 M), better than both green-synthesized and commercially available ZnONPs. These findings emphasize the enhanced antimicrobial properties of ZnONPs, particularly when combined with green synthesis and anethole loading, highlighting their potential in various biomedical applications.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber-10040 (AJK), Bhimber, Pakistan
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Anila Arshad
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering (Jiangsu University), , Ministry of Education, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ohud Muslat Alharthy
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Universiy, Giza, 12613, Egypt.
| |
Collapse
|
12
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
13
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
14
|
Saba I, Batoo KM, Wani K, Verma R, Hameed S. Exploration of Metal-Doped Iron Oxide Nanoparticles as an Antimicrobial Agent: A Comprehensive Review. Cureus 2024; 16:e69556. [PMID: 39421116 PMCID: PMC11484742 DOI: 10.7759/cureus.69556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, nanotechnology has captured significant interest, especially in the medical field, where the unique characteristics of nanoscale particles offer substantial advantages. The family of nanosized materials, specifically iron oxide nanoparticles (IONPs), has emerged as promising due to their magnetic properties, biocompatibility, and substantial surface area for therapeutic molecule attachment. The review explores various strategies to enhance the antibacterial properties of IONPs, such as metal doping, which modifies their physicochemical, biological, electrical, and optical properties. Metal-doped IONPs, including those with nickel, copper, zinc, selenium, molybdenum, gold, and others, have shown that they effectively eradicate viruses and bacteria. The mechanisms behind their enhanced antibacterial activity involve generating reactive oxygen species (ROS), inhibiting antibiotic-resistant genes, disrupting cell walls and DNA, dysfunction of efflux pumps, and internalizing nanoparticles. The review also addresses the potential toxicity of IONPs, highlighting factors such as their dimension, form, and outermost layers, which change how they affect the overall condition of cellular structures. Surface coatings using polymers and essential oils are among the strategies being investigated as potential ways to reduce toxicity. This review additionally looks into IONPs' drug delivery potential for antibiotics and antifungals. The integration of IONPs with various pharmaceutical compounds and their controlled release mechanisms are also detailed. The review concludes by offering a positive outlook on the potential enhancements and prospects of IONPs. Challenges in synthesis technologies, size tuning, and surface alteration are acknowledged, emphasizing the need for continued research to fully harness the capabilities of IONPs in biomedical applications.
Collapse
Affiliation(s)
- Iram Saba
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
- Research and Scientific Center, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | - Khalid M Batoo
- Medical Physics, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, SAU
| | - Kaiser Wani
- Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, IND
- Biochemistry, College of Science, King Saud University, Riyadh, SAU
| | - Ritesh Verma
- Physics, Amity University Haryana, Gurugram (Manesar), IND
| | - Saif Hameed
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
| |
Collapse
|
15
|
Mishra S, Yadav MD. Magnetic Nanoparticles: A Comprehensive Review from Synthesis to Biomedical Frontiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17239-17269. [PMID: 39132737 DOI: 10.1021/acs.langmuir.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nanotechnology has opened new doors of exploration, particularly in materials science and healthcare. Magnetic nanoparticles (MNP), the tiny magnets, because of their various properties, have the potential to bring about radical changes in the field of medicine. The distinctive surface chemistry, nontoxicity, biocompatibility, and, in particular, the inducible magnetic moment of magnetic materials has attracted a great deal of interest in morphological structures from a variety of scientific domains. This review presents a concise overview of MNPs and their crucial properties and synthesis routes. It also aims to highlight the continuous synthesis methods available for MNP production. In recent years, the use of computational methods for understanding the behavior of nanoparticles has been on the rise. Thus, we also discuss the numerical models developed to understand how magnetic nanoparticles can be used in magnetic hyperthermia and targeting the Circle of Wilis. With the increasing use of MNPs in biomedical applications, it becomes necessary to understand the mechanisms of toxicity, which are elucidated in this review. The review focuses on the biomedical applications of MNPs in drug delivery, theranostics, and MRI contrasting agents. We anticipate that this article will broaden the perspective on magnetic nanoparticles and help to understand their functionality and applicability better.
Collapse
Affiliation(s)
- Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Manishkumar D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| |
Collapse
|
16
|
Shoudho K, Uddin S, Rumon MMH, Shakil MS. Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity. ACS OMEGA 2024; 9:33303-33334. [PMID: 39130596 PMCID: PMC11308002 DOI: 10.1021/acsomega.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The increasing occurrence of infectious diseases caused by antimicrobial resistance organisms urged the necessity to develop more potent, selective, and safe antimicrobial agents. The unique magnetic and tunable properties of iron oxide nanoparticles (IONPs) make them a promising candidate for different theragnostic applications, including antimicrobial agents. Though IONPs act as a nonspecific antimicrobial agent, their antimicrobial activities are directly or indirectly linked with their synthesis methods, synthesizing precursors, size, shapes, concentration, and surface modifications. Alteration of these parameters could accelerate or decelerate the production of reactive oxygen species (ROS). An increase in ROS role production disrupts bacterial cell walls, cell membranes, alters major biomolecules (e.g., lipids, proteins, nucleic acids), and affects metabolic processes (e.g., Krebs cycle, fatty acid synthesis, ATP synthesis, glycolysis, and mitophagy). In this review, we will investigate the antibacterial activity of bare and surface-modified IONPs and the influence of physiochemical parameters on their antibacterial activity. Additionally, we will report the potential mechanism of IONPs' action in driving this antimicrobial activity.
Collapse
Affiliation(s)
- Kishan
Nandi Shoudho
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
- Department
of Chemical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shihab Uddin
- Department
of Bioengineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Md Mahamudul Hasan Rumon
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department
of Mathematics and Natural Sciences, Brac
University, Kha-224 Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
17
|
Zhang TG, Miao CY. Iron Oxide Nanoparticles as Promising Antibacterial Agents of New Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1311. [PMID: 39120416 PMCID: PMC11314400 DOI: 10.3390/nano14151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) is growing into a major public health crisis worldwide. The reducing alternatives to conventional agents starve for novel antimicrobial agents. Due to their unique magnetic properties and excellent biocompatibility, iron oxide nanoparticles (IONPs) are the most preferable nanomaterials in biomedicine, including antibacterial therapy, primarily through reactive oxygen species (ROS) production. IONP characteristics, including their size, shape, surface charge, and superparamagnetism, influence their biodistribution and antibacterial activity. External magnetic fields, foreign metal doping, and surface, size, and shape modification improve the antibacterial effect of IONPs. Despite a few disadvantages, IONPs are expected to be promising antibacterial agents of a new generation.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
18
|
Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. NANOSCALE 2024; 16:14033-14056. [PMID: 38990143 DOI: 10.1039/d4nr01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In recent years, there has been a growing interest in multifunctional theranostic agents capable of delivering therapeutic payloads while facilitating simultaneous diagnostic imaging of diseased sites. This approach offers a comprehensive strategy particularly valuable in dynamically evolving diseases like cancer, where combining therapy and diagnostics provides crucial insights for treatment planning. Nanoscale platforms, specifically nanogels, have emerged as promising candidates due to their stability, tunability, and multifunctionality as carriers. As a well-studied subgroup of soft polymeric nanoparticles, nanogels exhibit inherent advantages due to their size and chemical compositions, allowing for passive and active targeting of diseased tissues. Moreover, nanogels loaded with therapeutic and diagnostic agents can be designed to respond to specific stimuli at the disease site, enhancing their efficacy and specificity. This capability enables fine-tuning of theranostic platforms, garnering significant clinical interest as they can be tailored for personalized treatments. The ability to monitor tumor progression in response to treatment facilitates the adaptation of therapies according to individual patient responses, highlighting the importance of designing theranostic platforms to guide clinicians in making informed treatment decisions. Consequently, the integration of therapy and diagnostics using theranostic platforms continues to advance, offering intelligent solutions to address the challenges of complex diseases such as cancer. In this context, nanogels capable of delivering therapeutic payloads and simultaneously armed with diagnostic modalities have emerged as an attractive theranostic platform. This review focuses on advances made toward the fabrication and utilization of theranostic nanogels by highlighting examples from recent literature where their performances through a combination of therapeutic agents and imaging methods have been evaluated.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
19
|
Siyabidi Pariya K, Navid P, Mohammad Javad R. Separation and purification of hyaluronic acid by Fe 3O 4 nano and micro particles coated with chitosan and silica. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124212. [PMID: 38936266 DOI: 10.1016/j.jchromb.2024.124212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Hyaluronic acid (HA), a glycosaminoglycan, is comprised of alternating units of D-glucuronic acid and N-acetylglucosamine. This compound harbors numerous biomedical applications, including its use in pharmaceuticals, wound healing, osteoarthritis treatment, and drug delivery. Its unique composition and exceptional features, such as its high water-absorbing and retaining capacity, have also led to its use in the cosmetics industry. The employment of this biopolymer has given rise to an escalation in the request for its manufacture. The present investigation has explored the correlation between hyaluronic acid and chitosan and silica for the purpose of separation. Consequently, Iron oxide magnetic nano particles and micro particles were produced via co-precipitation method and were layered with chitosan and silica to purify the hyaluronic acid from the fermentation broth that was generated by Streptococcus Zooepidemicus. The size distribution and zeta potentials of the two kinds of particles were gauged with the aid of a dynamic laser light scattering apparatus and zeta potential meter (Malvern, Zeta master) respectively. The confirmation of the chemical structure of the Fe3O4 nanoparticles and Fe3O4 particles conjugated with chitosan and silica was accomplished through the utilization of Fourier Transform Infrared Spectroscopy (FT-IR). Protein contamination was thoroughly characterized by means of sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Nanodrop 2000/2000c spectrophotometers protein estimation method. The maximum HA adsorption capacity, under optimal pH conditions of 4, was determined to be 87 mg/g, 112 mg/g, 51 mg/g, and 44 mg/g for Fe3O4 -chitosan nanoparticle, Fe3O4 -chitosan micro particle, Fe3O4 -silica microparticle, and Fe3O4 -silica nanoparticle, respectively.
Collapse
Affiliation(s)
| | | | - Rasaee Mohammad Javad
- Clinical Biochemistry Dept. Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| |
Collapse
|
20
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
21
|
Boontongto T, Santaladchaiyakit Y, Burakham R. Biomass waste-derived magnetic material coated with dual-dummy-template molecularly imprinted polymer for simultaneous extraction of organophosphorus and carbamate pesticides. Food Chem 2024; 441:138325. [PMID: 38183727 DOI: 10.1016/j.foodchem.2023.138325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024]
Abstract
An eco-friendly biomass waste-derived magnetic material coated with a dual-dummy-template molecularly imprinted polymer was fabricated using aqueous ethanol as a green porogen, lower amounts of toxic compounds as template molecules, and tyrosine and tryptophan as biocompatible binary monomers. The binding characteristics and selectivity of the material toward pesticides were assessed. High adsorption capacities ranging from 150.11 to 509.09 mg g-1 and imprinting factors reaching 2.2 were achieved within just 30 s. The material was applied for extraction of organophosphorus and carbamate pesticides prior to HPLC analysis. Under the optimum conditions, low limits of detection and quantitation were achieved, with ranges of 0.05-1.49 μg/L and 0.18-5.00 μg/L, respectively. The established approach enables efficient analysis of vegetable and fruit samples, yielding satisfactory recoveries ranging between 80 and 110 %. The method showed promise as an analytical method for the sensitive enrichment of pesticide residues in vegetable and fruit samples.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
22
|
Gama Cavalcante AL, Dari DN, Izaias da Silva Aires F, Carlos de Castro E, Moreira Dos Santos K, Sousa Dos Santos JC. Advancements in enzyme immobilization on magnetic nanomaterials: toward sustainable industrial applications. RSC Adv 2024; 14:17946-17988. [PMID: 38841394 PMCID: PMC11151160 DOI: 10.1039/d4ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Enzymes are widely used in biofuels, food, and pharmaceuticals. The immobilization of enzymes on solid supports, particularly magnetic nanomaterials, enhances their stability and catalytic activity. Magnetic nanomaterials are chosen for their versatility, large surface area, and superparamagnetic properties, which allow for easy separation and reuse in industrial processes. Researchers focus on the synthesis of appropriate nanomaterials tailored for specific purposes. Immobilization protocols are predefined and adapted to both enzymes and support requirements for optimal efficiency. This review provides a detailed exploration of the application of magnetic nanomaterials in enzyme immobilization protocols. It covers methods, challenges, advantages, and future perspectives, starting with general aspects of magnetic nanomaterials, their synthesis, and applications as matrices for solid enzyme stabilization. The discussion then delves into existing enzymatic immobilization methods on magnetic nanomaterials, highlighting advantages, challenges, and potential applications. Further sections explore the industrial use of various enzymes immobilized on these materials, the development of enzyme-based bioreactors, and prospects for these biocatalysts. In summary, this review provides a concise comparison of the use of magnetic nanomaterials for enzyme stabilization, highlighting potential industrial applications and contributing to manufacturing optimization.
Collapse
Affiliation(s)
- Antônio Luthierre Gama Cavalcante
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Francisco Izaias da Silva Aires
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - Erico Carlos de Castro
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
| | - Kaiany Moreira Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará Campus Pici Fortaleza CEP 60455760 CE Brazil
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira Campus das Auroras Redenção CEP 62790970 CE Brazil
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará Campus do Pici, Bloco 940 Fortaleza CEP 60455760 CE Brazil
| |
Collapse
|
23
|
Kadian P, Singh A, Kumar M, Kumari K, Sharma D, Randhawa JK. Synthesis of highly luminescent core-shell nanoprobes in a single pot for ofloxacin detection in blood serum and water. Dalton Trans 2024; 53:8958-8968. [PMID: 38747069 DOI: 10.1039/d3dt04295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Antibiotics are commonly used as antibacterial medications due to their extensive and potent therapeutic properties. However, the overconsumption of these chemicals leads to their accumulation in the human body via the food chain, amplifying drug resistance and compromising immunity, thus presenting a significant hazard to human health. Antibiotics are classified as organic pollutants. Therefore, it is crucial to conduct research on precise methodologies for detecting antibiotics in many substances, including food, pharmaceutical waste, and biological samples like serum and urine. The methodology described in this research paper introduces an innovative technique for producing nanoparticles using silica as the shell material, iron oxide as the core material, and carbon as the shell dopant. By integrating a carbon-doped silica shell, this substance acquires exceptional fluorescence characteristics and a substantial quantum yield value of 80%. By capitalising on this characteristic of the substance, we have effectively constructed a fluorescent sensor that enables accurate ofloxacin analysis, with a detection limit of 1.3 × 10-6 M and a linear range of concentrations from 0 to 120 × 10-6 M. We also evaluated the potential of CSIONPs for OLF detection in blood serum and tap water analysis. The obtained relative standard deviation values were below 3.5%. The percentage of ofloxacin recovery from blood serum ranged from 95.52% to 103.28%, and from 89.9% to 96.0% from tap water.
Collapse
Affiliation(s)
- Pallavi Kadian
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Astha Singh
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Manish Kumar
- School of Materials and Mechanical Engineering, Indian Institute of Technology, Mandi, India.
| | - Kanchan Kumari
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Deepika Sharma
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Jaspreet Kaur Randhawa
- School of Materials and Mechanical Engineering, Indian Institute of Technology, Mandi, India.
| |
Collapse
|
24
|
Karkhaneh F, Sadr ZK, Rad AM, Divsalar A. Detection of tetanus toxoid with iron magnetic nanobioprobe. Biomed Phys Eng Express 2024; 10:045030. [PMID: 38479000 DOI: 10.1088/2057-1976/ad33a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.
Collapse
Affiliation(s)
- Farzaneh Karkhaneh
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ziba Karimi Sadr
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ahmad Molai Rad
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Adele Divsalar
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
25
|
Upadhyay LSB, Rana S, Kumar A, Haritha M, Manasa B, Bhagat P. Iron oxide immobilized lipase bioconjugate platform for sensing of triglycerides in biological samples. Microchem J 2024; 200:110363. [DOI: 10.1016/j.microc.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Arora K, Sherilraj PM, Abutwaibe KA, Dhruw B, Mudavath SL. Exploring glycans as vital biological macromolecules: A comprehensive review of advancements in biomedical frontiers. Int J Biol Macromol 2024; 268:131511. [PMID: 38615867 DOI: 10.1016/j.ijbiomac.2024.131511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.
Collapse
Affiliation(s)
- Kanika Arora
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - P M Sherilraj
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - K A Abutwaibe
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Bharti Dhruw
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India; Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad 500046, Telangana, India.
| |
Collapse
|
27
|
Doğaç Yİ, Tamfu AN, Bozkurt S, Kayhan M, Teke M, Ceylan O. Inhibition of biofilm, quorum-sensing, and swarming motility in pathogenic bacteria by magnetite, manganese ferrite, and nickel ferrite nanoparticles. Biotechnol Appl Biochem 2024; 71:356-371. [PMID: 38062650 DOI: 10.1002/bab.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/20/2023] [Accepted: 11/25/2023] [Indexed: 04/11/2024]
Abstract
Resistance to antibiotics by pathogenic bacteria constitutes a health burden and nanoparticles (NPs) are being developed as alternative and multipurpose antimicrobial substances. Magnetite (Fe3O4 np), manganese ferrite (MnFe2O4 np) and nickel ferrite (NiFe3O4 np) NPs were synthesized and characterized using thermogravimetric analysis, transmission electron microscopy, Fourier transformed infra-red, and X-ray diffraction. The minimal inhibitory concentrations (MIC) ranged from 0.625 to 10 mg/mL against gram-positive (Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212), gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) and candida (Candida albicans ATCC 10239 and Candida tropicalis ATCC 13803) species. The NPs exhibited violacein inhibition against Chromobacterium violaceum CV12472 of 100% at MIC and reduced to 27.2% ± 0.8% for magnetite NPs, 12.7% ± 0.3% for manganese ferrite NPs and 43.1% ± 0.2% for nickel ferrite NPs at MIC/4. Quorum-sensing (QS) inhibition zones against C. violaceum CV026 were 12.5 ±0.6 mm for Fe3O4 np, 09.1 ± 0.5 mm for MnFe3O4 NP and 17.0 ± 1.2 mm for NiFe3O4 np. The NPs inhibited swarming motility against P. aeruginosa PA01 and biofilm against six pathogens and the gram-positive biofilms were more susceptible than the gram-negative ones. The NiFe2O4 np had highest antibiofilm activity against gram-positive and gram-negative bacteria as well as highest QS inhibition while Fe3O4 NP had highest biofilm inhibition against candida species. The synthesized magnetic NPs can be used in developing anti-virulence drugs which reduce pathogenicity of bacteria as well as resistance.
Collapse
Affiliation(s)
- Yasemin İspirli Doğaç
- Department of Chemistry and Chemical Processing Technology, Mugla Vocational School, Mugla Sitki Kocman University, Mugla, Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Scientific Analysis Technological Application and Research Center (UBATAM), Usak University, Usak, Turkey
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Muğla Sitki Koçman University, Ula, , Muğla, Turkey
| | - Selahattin Bozkurt
- Scientific Analysis Technological Application and Research Center (UBATAM), Usak University, Usak, Turkey
- Vocational School of Health Services, Usak University, Usak, Turkey
| | - Mehmet Kayhan
- Scientific Analysis Technological Application and Research Center (UBATAM), Usak University, Usak, Turkey
| | - Mustafa Teke
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Muğla Sitki Koçman University, Ula, , Muğla, Turkey
| |
Collapse
|
28
|
Zuben de Valega Negrão CV, Cerize NN, Silva Justo-Junior AD, Liszbinski RB, Meneguetti GP, Araujo L, Rocco SA, Almeida Gonçalves KD, Cornejo DR, Leo P, Perecin C, Adamoski D, Gomes Dias SM. HER2 aptamer-conjugated iron oxide nanoparticles with PDMAEMA-b-PMPC coating for breast cancer cell identification. Nanomedicine (Lond) 2024; 19:231-254. [PMID: 38284384 DOI: 10.2217/nnm-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024] Open
Abstract
Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 μg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.
Collapse
Affiliation(s)
- Cyro von Zuben de Valega Negrão
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Natália Np Cerize
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Amauri da Silva Justo-Junior
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Raquel Bester Liszbinski
- Graduate Program in Genetics & Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-864, Campinas, São Paulo, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Giovanna Pastore Meneguetti
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Larissa Araujo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Kaliandra de Almeida Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Daniel R Cornejo
- Department of Materials & Mechanics, Institute of Physics, University of São Paulo, 05508-090, São Paulo, São Paulo, Brazil
| | - Patrícia Leo
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Caio Perecin
- Bionanomanufacturing Center, Institute for Technological Research (IPT), 05508-901, São Paulo, São Paulo, Brazil
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| | - Sandra M Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy & Materials (CNPEM), 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Shen Q, Yu C. Advances in superparamagnetic iron oxide nanoparticles modified with branched polyethyleneimine for multimodal imaging. Front Bioeng Biotechnol 2024; 11:1323316. [PMID: 38333548 PMCID: PMC10851169 DOI: 10.3389/fbioe.2023.1323316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Multimodal imaging are approaches which combines multiple imaging techniques to obtain multi-aspect information of a target through different imaging modalities, thereby greatly improve the accuracy and comprehensiveness of imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) modified with branched polyethyleneimine have revealed good biocompatibility and stability, high drug loading capacity and nucleic acid transfection efficiency. SPIONs have been developed as functionalized platforms which can be further modified to enhance their functionalities. Those further modifications facilitate the application of SPIONs in multimodal imaging. In this review, we discuss the methods, advantages, applications, and prospects of BPEI-modified SPIONs in multimodal imaging.
Collapse
Affiliation(s)
- Qiaoling Shen
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Wang W. Magnesium-Doped Nano-Hydroxyapatite/Polyvinyl Alcohol/Chitosan Composite Hydrogel: Preparation and Characterization. Int J Nanomedicine 2024; 19:651-671. [PMID: 38269254 PMCID: PMC10807547 DOI: 10.2147/ijn.s434060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Background Polyvinyl alcohol/Chitosan hydrogel is often employed as a carrier because it is non-toxic, biodegradable, and has a three-dimensional network structure. Meanwhile, Magnesium-doped nano-hydroxyapatite(Mg-nHA) demonstrated high characterization to promote the osteogenic differentiation of bone marrow derived mesenchymal stem cell(BMSCs). Therefore, in order to develop a porous hydrogel scaffold for the application of bone tissue engineering, an appropriate-type Mg-nHA hydrogel scaffold was developed and evaluated. Methods A composite hydrogel containing magnesium-doped nano-hydroxyapatite (Mg-nHA/PVA/CS) was developed using a magnetic stirring-ion exchange method and cyclic freeze-thaw method design, with polyvinyl alcohol and chitosan as the main components. Fourier transform infrared spectra (FTIR), electron energy dispersive spectroscopy (EDS), X-ray photoelectron spectrometer (XPS) and scanning electron microscopy (SEM) were employed to analyze the chemical structure, porosity, and elemental composition of each hydrogels. The equilibrium swelling degree, moisture content, pH change, potential for biomineralization, biocompatibility, the osteogenic potential and magnesium ion release rate of the composite hydrogel were also evaluated. Results SEM analysis revealed a well-defined 3D spatial structure of micropores in the synthesised hydrogel. FTIR analysis showed that doping nanoparticles had little effect on the hydrogel's structure and both the 5% Mg-nHA/PVA/CS and 10% Mg-nHA/PVA/CS groups promoted amide bond formation. EDS observation indicated that the new material exhibited favourable biomineralization ability, with optimal performance seen in the 5% Mg-nHA/PVA/CS group. The composite hydrogel not only displayed favourable water content, enhanced biocompatibility, and porosity (similar to human cancellous bone), but also maintained an equilibrium swelling degree and released magnesium ions that created an alkaline environment around it. Additionally, it facilitated the proliferation of bone marrow mesenchymal stem cells and their osteogenic differentiation. Conclusion The Mg-nHA/PVA/CS hydrogel demonstrates significant potential for application in the field of bone repair, making it an excellent composite material for bone tissue engineering.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi ‘an Medical College, Xi’ an, People’s Republic of China
| | - Zhenrui Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Wenji Wang
- Department of Orthopedics, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
31
|
Mathes N, Comas M, Bleul R, Everaert K, Hermle T, Wiekhorst F, Knittel P, Sperling RA, Vidal X. Nitrogen-vacancy center magnetic imaging of Fe 3O 4 nanoparticles inside the gastrointestinal tract of Drosophila melanogaster. NANOSCALE ADVANCES 2023; 6:247-255. [PMID: 38125606 PMCID: PMC10729879 DOI: 10.1039/d3na00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Widefield magnetometry based on nitrogen-vacancy centers enables high spatial resolution imaging of magnetic field distributions without a need for spatial scanning. In this work, we show nitrogen-vacancy center magnetic imaging of Fe3O4 nanoparticles within the gastrointestinal tract of Drosophila melanogaster larvae. Vector magnetic field imaging based on optically detected magnetic resonance is carried out on dissected larvae intestine organs containing accumulations of externally loaded magnetic nanoparticles. The distribution of the magnetic nanoparticles within the tissue can be clearly deduced from the magnetic stray field measurements. Spatially resolved magnetic imaging requires the nitrogen-vacancy centers to be very close to the sample making the technique particularly interesting for thin tissue samples. This study is a proof of principle showing the capability of nitrogen-vacancy center magnetometry as a technique to detect magnetic nanoparticle distributions in Drosophila melanogaster larvae that can be extended to other biological systems.
Collapse
Affiliation(s)
- Niklas Mathes
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Maria Comas
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Katrijn Everaert
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
- Department of Solid State Sciences, Ghent University Krijgslaan 281/S1 Ghent Belgium
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg Hugstetter Straße 55 79106 Freiburg Germany
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Abbestraße 2-12 Berlin Germany
| | - Peter Knittel
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
| | - Ralph A Sperling
- Fraunhofer Institute for Microengineering and Microsystems IMM Carl-Zeiss-Str. 18-20 55129 Mainz Germany
| | - Xavier Vidal
- Fraunhofer Institute of Applied Solid State Physics IAF Freiburg Germany
- TECNALIA, Basque Research and Technology Alliance (BRTA) Derio 48160 Spain
| |
Collapse
|
32
|
Malabanan JWT, Alcantara KP, Jantaratana P, Pan Y, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Enhancing Physicochemical Properties and Biocompatibility of Hollow Porous Iron Oxide Nanoparticles through Polymer-Based Surface Modifications. ACS APPLIED BIO MATERIALS 2023; 6:5426-5441. [PMID: 37956113 DOI: 10.1021/acsabm.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this study, we synthesized hollow porous iron oxide nanoparticles (HPIONPs) with surface modifications using polymers, specifically chitosan (Chi), polyethylene glycol (PEG), and alginate (Alg), to improve colloidal stability and biocompatibility. For colloidal stability, Alg-coated HPIONPs maintained size stability up to 24 h, with only an 18% increase, while Chi, PEG, and uncoated HPIONPs showed larger size increases ranging from 64 to 140%. The biocompatibility of polymer-coated HPIONPs was evaluated by assessing their cell viability, genotoxicity, and hemocompatibility. Across tested concentrations from 6.25 to 100 μg/mL, both uncoated and polymer-coated HPIONPs showed minimal cytotoxicity against three normal cell lines: RAW264.7, 3T3-L1, and MCF10A, with cell viability exceeding 80% at the highest concentration. Notably, polymer-coated HPIONPs exhibited nongenotoxicity based on the micronucleus assay and showed hemocompatibility, with only 2-3% hemolysis in mouse blood, in contrast to uncoated HPIONPs which exhibited 4-5%. Furthermore, we evaluated the cytotoxicity of HPIONPs on MDA-MB-231 breast cancer cells after a 2 h exposure to a stationary magnetic field, and the results showed the highest cell death of 38 and 29% when treated with uncoated and polymer-coated HPIONPs at 100 μg/mL, respectively. This phenomenon is attributed to iron catalyzing the Fenton and Haber-Weiss reactions, leading to reactive oxygen species (ROS)-dependent cell death (r ≥ 0.98). In conclusion, the hydrothermal synthesis and subsequent surface modification of HPIONPs with polymers showed improved colloidal stability, nongenotoxicity, and hemocompatibility compared to uncoated HPIONPs while maintaining closely similar levels of cytotoxicity against both normal and cancer cells. This research has paved the way for further exploration of polymer coatings to enhance the overall performance and safety profile of magnetic nanoparticles in delivering anticancer drugs.
Collapse
Affiliation(s)
- John Wilfred T Malabanan
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongsakorn Jantaratana
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Peng M, Chuan JL, Zhao GP, Fu Q. Construction of silver-coated high translucent zirconia implanting abutment material and its property of antibacterial. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:441-452. [PMID: 37594201 DOI: 10.1080/21691401.2023.2244013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
High translucent zirconia (HTZ) has excellent mechanical properties, biocompatibility, and good semi-translucency making it an ideal material for aesthetic anterior dental implant abutments without antibacterial properties. In the oral environment, the surface of the abutment material is susceptible to microbial adhesion and biofilm formation, which can lead to infection or peri-implantitis and even implant failure. This study aims to promote the formation of a biological seal at the implant-soft tissue interface by modifying the HTZ surface, using the load-bearing capacity of the aluminosilicate porous structure and the broad-spectrum antibacterial effect of silver nanoparticles to prevent peri-implant bacterial infection and inflammation and to improve the success rate and prolong the use of the implant. FE-SEM (field emission scanning electron microscopes), EDS (energy dispersive spectroscopy), and XPS (X-ray photoelectron spectroscopy) results showed that aluminosilicate non-vacuum sintering can form open micro- and nanoporous structures on HTZ surfaces, and that porous aluminosilicate coatings obtain a larger number, smaller size, and more uniformly shaped silver nanoparticles than smooth aluminosilicate coatings, and could be deposited deeper in the coating. The ICP-AES (inductively coupled plasma-atomic emission spectroscopy) results showed that the early silver ion release of both the smooth silver coating and the porous silver coating was obvious, the silver ion concentration released by the former was higher than that of the latter. However, the silver ion concentration released by the porous silver coating was higher than that of the smooth coating when the release slowed down. Both smooth and porous silver coatings both inhibited E. coli (Escherichia coli), S. aureus (Staphylococcus aureus), and L. acidophilus (L. acidophilus), and porous silver coatings had stronger antibacterial properties. The silver coating was successfully constructed on the surface of HTZ, through aluminium silicate sintering and silver nitrate solution impregnation. It was found that the high concentration environment of silver nitrate solution was more advantageous for nano-Ag deposition, and the non-vacuum sintered porous surface was able to obtain a larger number of nano-Ag particles with smaller sizes. The porous Ag coating exhibited superior antibacterial properties. It was suggested that the HTZ with silver coating had clinical application, and good antibacterial properties that can improve the survival rate and service life of implants.
Collapse
Affiliation(s)
- Min Peng
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, China
| | - Jun-Lan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gao-Ping Zhao
- Department of Gastroinstestinal Surgery, Sichuan Academy of medical sciences and Sichuan Provincial People's Hospital, University of Medical sciences and technology of China, Chengdu, Sichuan, China
| | - Qiang Fu
- Organ Transplantation Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
34
|
Aadinath W, Muthuvijayan V. Antibacterial and angiogenic potential of iron oxide nanoparticles-stabilized acrylate-based scaffolds for bone tissue engineering applications. Colloids Surf B Biointerfaces 2023; 231:113572. [PMID: 37797467 DOI: 10.1016/j.colsurfb.2023.113572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Pickering emulsion polymerization, stabilized by inorganic nanoparticles such as iron oxide nanoparticles (IONPs), can be used to fabricate scaffolds with the desired porosity and pore size. These nanoparticles create stable emulsions that can be processed under harsh polymerization conditions. IONPs, apart from serving as an emulsifier, impart beneficial bioactivities such as antibacterial and pro-angiogenic activity. Here, we coated IONPs with three different weights of oleic acid (5.0 g, 7.5 g, and 10.0 g) to synthesize oleic acid-IONPs (OA-IONPs) that possess the desired hydrophobicity (contact angle > 100°). Next, glycidyl methacrylate and trimethylolpropane triacrylate were polymerized using the Pickering emulsion polymerization technique stabilized by the OA-IONPs. The physicochemical properties of the resulting porous scaffolds were thoroughly characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometry (VSM), and a universal testing machine (UTM). The SEM images confirmed the formation of a porous scaffold. The IONPs content, measured using inductively coupled plasma mass spectrometry (ICP-MS), was in the range of 22-26 µg/mg of the scaffold. The mechanical strengths of the scaffolds were in the range of cancellous bone. The degradation profile of the scaffolds varied between 29% and 41% degradation over 30 days. In vitro cytotoxicity studies conducted using the fibroblast (L929) and osteosarcoma (MG-63) cell lines proved that these scaffolds were non-toxic. SEM images showed that the MG-63 cells adhered firmly to the scaffolds and exhibited a well-spread morphology. The antibacterial activity was confirmed by percentage inhibition studies, SEM analysis of bacterial membrane distortion, and reactive oxygen species (ROS) generation in the bacteria. Chick chorioallantoic membrane assay showed that the total vessel length and branch points were significantly increased in the presence of the scaffolds. These results confirm the pro-angiogenic potential of the fabricated scaffolds. The physicochemical, mechanical, and biological properties of the material suggest that the developed scaffolds would be suitable for bone tissue engineering applications.
Collapse
Affiliation(s)
- W Aadinath
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
35
|
Shlapa Y, Siposova K, Veltruska K, Maraloiu VA, Garcarova I, Rajnak M, Musatov A, Belous A. Design of Magnetic Fe 3O 4/CeO 2 "Core/Shell"-Like Nanocomposites with Pronounced Antiamyloidogenic and Antioxidant Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49346-49361. [PMID: 37826912 DOI: 10.1021/acsami.3c10845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
"Core/shell" nanocomposites based on magnetic magnetite (Fe3O4) and redox-active cerium dioxide (CeO2) nanoparticles (NPs) are promising in the field of biomedical interests because they can combine the ability of magnetic NPs to heat up in an alternating magnetic field (AMF) with the pronounced antioxidant activity of CeO2 NPs. Thus, this report is devoted to Fe3O4/CeO2 nanocomposites (NCPs) synthesized by precipitation of the computed amount of "CeO2-shell" on the surface of prefabricated Fe3O4 NPs. The X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy data validated the formation of Fe3O4/CeO2 "core/shell"-like NCPs, in which ultrafine CeO2 NPs with an average size of approximately 3-3.5 nm neatly surround Fe3O4 NPs. The presence of a CeO2 "shell" significantly increased the stability of Fe3O4/CeO2 NCPs in aqueous suspensions: Fe3O4/CeO2 NCPs with "shell thicknesses" of 5 and 7 nm formed highly stable magnetic fluids with ζ-potential values of >+30 mV. The magnetization values of Fe3O4/CeO2 NCPs decreased with a growing CeO2 "shell" around the magnetic NPs; however, the resulting composites retained the ability to heat efficiently in an AMF. The presence of a CeO2 "shell" generates a possibility to precisely regulate tuning of the maximum heating temperature of magnetic NCPs in the 42-50 °C range and stabilize it after a certain time of exposure to an AMF by changing the thickness of the "CeO2-shell". A great improvement was observed in both antioxidant and antiamyloidogenic activities. It was found that inhibition of insulin amyloid formation, expressed in IC50 concentration, using NCPs with a "shell thickness" of 7 nm was approximately 10 times lower compared to that of pure CeO2. For these NCPs, more than 2 times higher superoxide dismutase-like activity was observed. The coupling of both Fe3O4 and CeO2 results in higher bioactivity than either of them individually, probably due to a synergistic catalytic mechanism.
Collapse
Affiliation(s)
- Yuliia Shlapa
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| | - Katarina Siposova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 04001, Slovakia
| | - Katerina Veltruska
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V. Holesovickach 2, Prague 8 18000, Czech Republic
| | | | - Ivana Garcarova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 04001, Slovakia
| | - Michal Rajnak
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 04001, Slovakia
| | - Andrey Musatov
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice 04001, Slovakia
| | - Anatolii Belous
- V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32/34 Palladina Avenue, Kyiv 03142, Ukraine
| |
Collapse
|
36
|
Vaezi-Kakhki A, Asoodeh A. Comparison of different methods for synthesis of iron oxide nanoparticles and investigation of their cellular properties, and antioxidant potential. Int J Pharm 2023; 645:123417. [PMID: 37714316 DOI: 10.1016/j.ijpharm.2023.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Iron oxide nanoparticles could play a useful role in lung cancer therapy. Iron oxide nanoparticles (NPs) were synthesized by plant mediated synthesis, chemical, and microbial mediated synthesis. iron oxide nanoparticle polyethylene glycol cis-diamminedichloroplatinum (Fe2O3@PEG@CDDP(, iron oxide nanoparticle polyethylene glycol (Fe2O3@PEG), and cis-diamminedichloroplatinum (CDDP) were evaluated for their antioxidant,and in vitro cytotoxicity tests. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), mapping, and zeta potential were used to characterize the synthesized iron oxides NPs. Cell toxicity was determined using A549 and HFF cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antioxidant scavenging activity of Fe2O3@PEG@CDDP, Fe2O3@PEG, and CDDP displayed IC50 values (11.96, 26.74, and 3.17 μg/ml) and (8.54, 11.4, and 1.14 μg/ml) in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Nanoparticles obtained from plant mediated synthesis method showed the great antioxidant activity. Results showed that, green-method synthesized nanoparticles were the most effective at killing cancer cells. Thus, the characteristics of nanoparticles from green synthesis are more valuable than the other methods. Green synthesis is environmental friendly cost-effective, and easy approach for synthesize NPs.
Collapse
Affiliation(s)
- Abbas Vaezi-Kakhki
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
37
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Orzechowska M, Rećko K, Klekotka U, Czerniecka M, Tylicki A, Satuła D, Soloviov DV, Beskrovnyy AI, Miaskowski A, Kalska-Szostko B. Structural and Thermomagnetic Properties of Gallium Nanoferrites and Their Influence on Cells In Vitro. Int J Mol Sci 2023; 24:14184. [PMID: 37762487 PMCID: PMC10532423 DOI: 10.3390/ijms241814184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetite and gallium substituted cuboferrites with a composition of GaxFe3-xO4 (0 ≤ x ≤ 1.4) were fabricated by thermal decomposition from acetylacetonate salts. The effect of Ga3+ cation substitution on the structural and thermomagnetic behavior of 4-12 nm sized core-shell particles was explored by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements. Superparamagnetic (SPM) behavior and thermal capacity against increasing gallium concentration in nanoferrites were revealed. The highest heat capacity typical for Fe3O4@Ga0.6Fe2.4O4 and Ga0.6Fe2.4O4@Fe3O4 is accompanied by a slight stimulation of fibroblast culture growth and inhibition of HeLa cell growth. The observed effect is concentration dependent in the range of 0.01-0.1 mg/mL and particles of Ga0.6Fe2.4O4@Fe3O4 design have a greater effect on cells. Observed magnetic heat properties, as well as interactions with tumor and healthy cells, provide a basis for further biomedical research to use the proposed nanoparticle systems in cancer thermotherapy (magnetic hyperthermia).
Collapse
Affiliation(s)
- Marta Orzechowska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Katarzyna Rećko
- Faculty of Physics, University of Bialystok, K. Ciołkowskiego 1L, 15-245 Bialystok, Poland; (K.R.); (D.S.)
| | - Urszula Klekotka
- Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland; (U.K.); (B.K.-S.)
| | - Magdalena Czerniecka
- Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1J, 15-245 Białystok, Poland; (M.C.); (A.T.)
| | - Adam Tylicki
- Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1J, 15-245 Białystok, Poland; (M.C.); (A.T.)
| | - Dariusz Satuła
- Faculty of Physics, University of Bialystok, K. Ciołkowskiego 1L, 15-245 Bialystok, Poland; (K.R.); (D.S.)
| | - Dmytro V. Soloviov
- European Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany;
| | - Anatoly I. Beskrovnyy
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia;
| | - Arkadiusz Miaskowski
- Department of Applied Mathematics and Computer Sciences, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Beata Kalska-Szostko
- Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland; (U.K.); (B.K.-S.)
| |
Collapse
|
39
|
Chaparro CIP, Simões BT, Borges JP, Castanho MARB, Soares PIP, Neves V. A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics. Pharmaceutics 2023; 15:2316. [PMID: 37765284 PMCID: PMC10536416 DOI: 10.3390/pharmaceutics15092316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.
Collapse
Affiliation(s)
- Catarina I. P. Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Beatriz T. Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - João P. Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - Paula I. P. Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| |
Collapse
|
40
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
41
|
Matías-Reyes AE, Alvarado-Noguez ML, Pérez-González M, Carbajal-Tinoco MD, Estrada-Muñiz E, Fuentes-García JA, Vega-Loyo L, Tomás SA, Goya GF, Santoyo-Salazar J. Direct Polyphenol Attachment on the Surfaces of Magnetite Nanoparticles, Using Vitis vinifera, Vaccinium corymbosum, or Punica granatum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2450. [PMID: 37686958 PMCID: PMC10490419 DOI: 10.3390/nano13172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.
Collapse
Affiliation(s)
- Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, UAEH, Mineral de la Reforma 42184, Mexico;
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Elizabeth Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Jesús A. Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico (L.V.-L.)
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| | - Gerardo F. Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Mexico City 07360, Mexico; (M.L.A.-N.); (M.D.C.-T.)
| |
Collapse
|
42
|
Fujisawa S, Daicho K, Yurtsever A, Fukuma T, Saito T. Morphological Changes of Polymer-Grafted Nanocellulose during a Drying Process. Biomacromolecules 2023; 24:3908-3916. [PMID: 37499269 PMCID: PMC10428159 DOI: 10.1021/acs.biomac.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Indexed: 07/29/2023]
Abstract
Nanocellulose is emerging as a sustainable building block in materials science. Surface modification via polymer grafting has proven to be effective in tuning diverse material properties of nanocellulose, including wettability of films and the reinforcement effect in polymer matrices. Despite its widespread use in various environments, the structure of a single polymer-grafted nanocellulose remains poorly understood. Here, we investigate the morphologies of polymer-grafted CNFs at water-mica and air-mica interfaces by using all-atom molecular dynamics simulation and atomic force microscopy. We show that the morphologies of the polymer-grafted CNFs undergo a marked change in response to the surrounding environment due to variations in the conformation of the surface polymer chains. Our results provide novel insights into the molecular structure of polymer-grafted CNFs and can facilitate the design and development of innovative biomass-based nanomaterials.
Collapse
Affiliation(s)
- Shuji Fujisawa
- Department
of Biomaterial Sciences, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuho Daicho
- Department
of Biomaterial Sciences, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Nano
Life Science Institute (WPI NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ayhan Yurtsever
- Nano
Life Science Institute (WPI NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Nano
Life Science Institute (WPI NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsuguyuki Saito
- Department
of Biomaterial Sciences, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
43
|
Nisar M, Galland GB, Geshev J, Bergmann C, Quijada R. Magnetically Stimulable Graphene Oxide/Polypropylene Nanocomposites. ACS OMEGA 2023; 8:21983-21995. [PMID: 37360436 PMCID: PMC10286093 DOI: 10.1021/acsomega.3c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Core-shell magnetic air-stable nanoparticles have attracted increasing interest in recent years. Attaining a satisfactory distribution of magnetic nanoparticles (MNPs) in polymeric matrices is difficult due to magnetically induced aggregation, and supporting the MNPs on a nonmagnetic core-shell is a well-established strategy. In order to obtain magnetically active polypropylene (PP) nanocomposites by melt mixing, the thermal reduction of graphene oxides (TrGO) at two different temperatures (600 and 1000 °C) was carried out, and, subsequently, metallic nanoparticles (Co or Ni) were dispersed on them. The XRD patterns of the nanoparticles show the characteristic peaks of the graphene, Co, and Ni nanoparticles, where the estimated sizes of Ni and Co were 3.59 and 4.25 nm, respectively. The Raman spectroscopy presents typical D and G bands of graphene materials as well as the corresponding peaks of Ni and Co nanoparticles. Elemental and surface area studies show that the carbon content and surface area increase with thermal reduction, as expected, following a reduction in the surface area by the support of MNPs. Atomic absorption spectroscopy demonstrates about 9-12 wt % metallic nanoparticles supported on the TrGO surface, showing that the reduction of GO at two different temperatures has no significant effect on the support of metallic nanoparticles. Fourier transform infrared (FT-IR) spectroscopy shows that the addition of a filler does not alter the chemical structure of the polymer. Scanning electron microscopy of the fracture interface of the samples demonstrates consistent dispersion of the filler in the polymer. The TGA analysis shows that, with the incorporation of the filler, the initial (Tonset) and maximum (Tmax) degradation temperatures of the PP nanocomposites increase up to 34 and 19 °C, respectively. The DSC results present an improvement in the crystallization temperature and percent crystallinity. The filler addition slightly enhances the elastic modulus of the nanocomposites. The results of the water contact angle confirm that the prepared nanocomposites are hydrophilic. Importantly, the diamagnetic matrix is transformed into a ferromagnetic one with the addition of the magnetic filler.
Collapse
Affiliation(s)
- Muhammad Nisar
- Facultad
de Ingeniería, Universidad Católica
de la Santísima Concepción, Alonso de Ribera 2850, Concepción 4090541, Chile
| | - Griselda Barrera Galland
- Instituto
de Química, Universidade Federal
do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, Brazil
| | - Julian Geshev
- Instituto
de Física, Universidade Federal do
Rio Grande do Sul, Av.
Bento Gonçalves, 9500, 91501-970 Porto Alegre, Brazil
| | - Carlos Bergmann
- Laboratório
de Materiais Cerâmicos, Departamento de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre 90010-150, Brazil
| | - Raúl Quijada
- Departamento
de Ingeniería Química, Biotecnología y Materiales,
Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
44
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
45
|
Sabouri Z, Sabouri M, Moghaddas SSTH, Darroudi M. Design and preparation of amino-functionalized core-shell magnetic nanoparticles for photocatalytic application and investigation of cytotoxicity effects. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:93-105. [PMID: 37159737 PMCID: PMC10163196 DOI: 10.1007/s40201-022-00842-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/13/2022] [Indexed: 05/11/2023]
Abstract
The goal of the current paper was a synthesis of Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles as a unique efficient photocatalyst for removing organic dyes from aqueous environments. The magnetic Fe3O4@SiO2 core-shell was produced by a silica source to avoid aggregation by the co-precipitation method. Next, functionalized by using 3-Aminopropyltriethoxysilane (APTES) via a post-synthesis link. The chemical structure, magnetic properties, and shape of the manufactured photocatalyst (Fe3O4@SiO2-NH2) were described by XRD, VSM, FT-IR, FESEM, EDAX, and DLS/Zeta potential analyses. The XRD findings approved the successful synthesis of nanoparticles. The photocatalytic activity of Fe3O4@SiO2-NH2 nanoparticles was examined for MB degradation and the degradation performance was about 90% in the optimum conditions. Also, the cytotoxicity of Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles was examined on CT-26 cells using an MTT assay, the finding has shown that nanoparticles can be used for inhibiting cancer cells. Graphical abstract
Collapse
Affiliation(s)
- Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Sabouri
- School of Civil Engineering, University of Science and Technology (UST), Tehran, Iran
| | | | - Majid Darroudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
46
|
Vazhnichaya E, Lytvyn S, Kurapov Y, Semaka O, Lutsenko R, Chunikhin A. The influence of pure (ligandless) magnetite nanoparticles functionalization on blood gases and electrolytes in acute blood loss. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2023; 50:102675. [PMID: 37028737 DOI: 10.1016/j.nano.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Objective was to compare the effect of functionalization of magnetite (Fe3O4) nanoparticles (NPs) with sodium chloride (NaCl), or its combination with ethylmethylhydroxypyrydine succinate (EMHPS) and polyvinylpyrrolidone (PVP) on blood gases and electrolytes in acute blood loss. Ligandless magnetite NPs were synthesized by the electron beam technology and functionalized by mentioned agents. Size of NPs in colloidal solutions Fe3O4@NaCl, Fe3O4@NaCl@EMHPS, Fe3O4@NaCl@PVP, Fe3O4@NaCl@EMHPS@PVP (nanosystems 1-4) was determined by dynamic light scattering. In vivo experiments were performed on 27 Wistar rats. Acute blood loss was modeled by removal 25 % circulating blood. Nanosystems 1-4 were administered to animals intaperitoneally after the blood loss with followed determination of blood gases, pH and electrolytes. In blood loss, nanosystems Fe3O4@NaCl and Fe3O4@NaCl@PVP were able to improve the state of blood gases, pH, and the ratio of sodium/potassium in the blood. So, magnetite NPs with a certain surface modification can promote oxygen transport under hypoxic conditions.
Collapse
Affiliation(s)
- Elena Vazhnichaya
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Stanislav Lytvyn
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine.
| | - Yurii Kurapov
- Laboratory of Electron Beam Nanotechnology of Inorganic Materials for Medicine, E. O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11 Kazymyr Malevych Street, 03150 Kyiv, Ukraine
| | - Oleksandr Semaka
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Ruslan Lutsenko
- Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava State Medical University, 23 Shevchenko Street, 36011 Poltava, Ukraine
| | - Alexander Chunikhin
- Department of Smooth Muscle, O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 9 Leontovich Street, 01054 Kyiv, Ukraine
| |
Collapse
|
47
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
48
|
González-Martínez DA, González Ruíz G, Escalante-Bermúdez C, García Artalejo JA, Gómez Peña T, Gómez JA, González-Martínez E, Cazañas Quintana Y, Fundora Barrios T, Hernández T, Varela Pérez RC, Díaz Goire D, Castro López D, Ruíz Ramirez I, Díaz-Águila CR, Moran-Mirabal JM. Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. NANOSCALE 2023; 15:7854-7869. [PMID: 37060148 DOI: 10.1039/d3nr01109g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.
Collapse
Affiliation(s)
- David A González-Martínez
- Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Gustavo González Ruíz
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Cesar Escalante-Bermúdez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
- Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | | | - Tania Gómez Peña
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - José Alberto Gómez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | | | - Thais Fundora Barrios
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Tays Hernández
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | | | - Dayli Díaz Goire
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Diaselys Castro López
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Ingrid Ruíz Ramirez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Carlos R Díaz-Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M, Canada
- Brockhouse Institute for Materials Research, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
49
|
Braim FS, Razak NNANA, Aziz AA, Dheyab MA, Ismael LQ. Optimization of ultrasonic-assisted approach for synthesizing a highly stable biocompatible bismuth-coated iron oxide nanoparticles using a face-centered central composite design. ULTRASONICS SONOCHEMISTRY 2023; 95:106371. [PMID: 36934677 PMCID: PMC10034128 DOI: 10.1016/j.ultsonch.2023.106371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/27/2023]
Abstract
The incorporation of additional functional groups such as bismuth nanoparticles (Bi NPs) into magnetite nanoparticles (Fe3O4 NPs) is critical for their properties modification, stabilization, and multi-functionalization in biomedical applications. In this work, ultrasound has rapidly modified iron oxide (Fe3O4) NPs via incorporating their surface through coating with Bi NPs, creating unique Fe3O4@Bi composite NPs. The Fe3O4@Bi nanocomposites were synthesized and statistically optimized using an ultrasonic probe and response surface methodology (RSM). A face-centered central composite design (FCCD) investigated the effect of preparation settings on the stability, size, and size distribution of the nanocomposite. Based on the numerical desirability function, the optimized preparation parameters that influenced the responses were determined to be 40 ml, 5 ml, and 12 min for Bi concentration, sodium borohydride (SBH) concentration, and sonication time, respectively. It was found that the sonication time was the most influential factor in determining the responses. The predicted values for the zeta potential, hydrodynamic size, and polydispersity index (PDI) at the highest desirability solution (100%) were -45 mV, 122 nm, and 0.257, while their experimental values at the optimal preparation conditions were -47.1 mV, 125 nm, and 0.281, respectively. Dynamic light scattering (DLS) result shows that the ultrasound efficiently stabilized and functionalized Fe3O4NPs following modification to Fe3O4@Bi NPs, improved the zeta potential value from -33.5 to -47.1 mV, but increased the hydrodynamic size from 98 to 125 nm. Energy dispersive spectroscopy (EDX) validated the elemental compositions and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of Sumac (Rhus coriaria) compounds in the composition of the nanocomposites. The stability and biocompatibility of Fe3O4@Bi NPs were improved by using the extract solution of the Sumacedible plant. Other physicochemical results revealed that Fe3O4NPs and Fe3O4@Bi NPs were crystalline, semi-spherical, and monodisperse with average particle sizes of 11.7 nm and 19.5 nm, while their saturation magnetization (Ms) values were found to be 132.33 emu/g and 92.192 emu/g, respectively. In vitro cytotoxicity of Fe3O4@Bi NPs on the HEK-293 cells was dose- and time-dependent. Based on our findings, the sonochemical approach efficiently produced (and RSM accurately optimized) an extremely stable, homogeneous, and biocompatible Fe3O4@Bi NPs with multifunctional potential for various biomedical applications.
Collapse
Affiliation(s)
- Farhank Saber Braim
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Iraq; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Nik Noor Ashikin Nik Ab Razak
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.
| | - Azlan Abdul Aziz
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Mohammed Ali Dheyab
- Nano-Optoelectronic Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Layla Qasim Ismael
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
50
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|