1
|
Ping K, Yang R, Chen H, Xie S, Li M, Xiang Y, Lu Y, Dong J. Gypenoside XLIX alleviates intestinal injury by inhibiting sepsis-induced inflammation, oxidative stress, apoptosis, and autophagy. Chem Biol Interact 2024; 397:111077. [PMID: 38810818 DOI: 10.1016/j.cbi.2024.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Intestinal barrier dysfunction is a significant complication induced by sepsis, yet therapeutic strategies targeting such dysfunction remain inadequate. This study investigates the protective effects of Gypenoside XLIX (Gyp XLIX) against intestinal damage induced by sepsis. Septic intestinal injury in mice was induced by cecum ligation and puncture (CLP) surgery. The biological activity and potential mechanisms of Gyp XLIX were explored through intraperitoneal injection of Gyp XLIX (40 mg/kg). The study demonstrates that Gyp XLIX improves the pathological structural damage of the intestine and increases tight junction protein expression as well as the number of cup cells. Through activation of the nuclear factor erythroid 2-related factor 2 - Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathway, Gyp XLIX enhances antioxidant enzyme levels while reducing the excessive accumulation of reactive oxygen species (ROS). In addition, Gyp XLIX effectively alleviates sepsis-induced intestinal inflammation by inhibiting the nuclear factor kappa B (NF-κB) pathway and activation of the NLRP3 inflammasome. Moreover, Gyp XLIX inhibits cell death through modifying phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, further enhancing its ability to shield the intestinal barrier. The combined action of these molecular mechanisms promotes the restoration of immune balance and reduces excessive autophagy activity induced under septic conditions. In summary, Gyp XLIX exhibits a significant preventive action against intestinal damage brought on by sepsis, with its mechanisms involving the improvement of intestinal barrier function, antioxidative stress, inhibition of inflammatory response, and cell apoptosis. This research offers a potential strategy for addressing intestinal barrier impairment brought on by sepsis.
Collapse
Affiliation(s)
- Kaixin Ping
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Huizhen Chen
- Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Shaocheng Xie
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Institute of Neuroscience, Neurosurgery Department, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Yannan Xiang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China; Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Yingzhi Lu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Hu J, Zou H, Qiao X, Wang Y, Lv M, Zhang K, Wang F. The relationship between oxidative balance scores and chronic diarrhea and constipation: a population-based study. BMC Public Health 2024; 24:1366. [PMID: 38773415 PMCID: PMC11106991 DOI: 10.1186/s12889-024-18683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Oxidative stress is closely related to gut health. Exposures to oxidative stress in one's diet and lifestyle can be evaluated by the oxidative balance score (OBS). However, the relationship between OBS and intestinal habits is unknown. This study aimed to investigate the relationships between OBS and intestinal habits (chronic diarrhea and chronic constipation) and the underlying mechanisms involved. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, we included a total of 8065 participants. Twenty dietary and lifestyle factors were selected for the OBS calculates. Chronic constipation and chronic diarrhea were defined using the Bristol stool form scale (BSFS) types 1 and 2 and the BSFS 6 and 7, respectively. Multivariate logistic regression, subgroup analysis, and restricted cubic splines (RCS) analysis were used to evaluate the relationship between OBS and defecation habits. Finally, we used mediation analysis to explore the indirect effects of oxidative stress and inflammatory markers on these associations. RESULTS After adjusting for all the covariates, multivariate logistic regression analysis revealed that OBS was negatively correlated with diarrhea (OR = 0.57; 95%CI = 0.39-0.83; P = 0.008)and positively correlated with constipation (OR = 1.75; 95%CI = 1.19-2.25; P = 0.008). The RCS showed a nonlinear relationship between OBS and diarrhea (P for nonlinearity = 0.02) and a linear relationship between OBS and constipation (P for nonlinearity = 0.19). Mediation analysis showed that the C-reactive protein (CRP) concentration and white blood cell (WBC) count mediated the correlation between OBS and diarrhea by 6.28% and 6.53%, respectively (P < 0.05). CONCLUSIONS OBS is closely related to changes in patients' defecation habits. Oxidative stress and inflammation may play a role in the relationship between the two. This result emphasizes the importance of the public adjusting their lifestyle and dietary habits according to their own situation. However, further prospective studies are needed to analyze the relationship between oxidative stress and changes in defecation habits.
Collapse
Affiliation(s)
- Jiayan Hu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hede Zou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiyun Qiao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxi Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Mi Lv
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunli Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Song Y, Li Y, Hu W, Li F, Sheng H, Huang C, Gou X, Hou J, Zheng J, Xiao Y. Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. BURNS & TRAUMA 2024; 12:tkad054. [PMID: 38444636 PMCID: PMC10910847 DOI: 10.1093/burnst/tkad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 03/07/2024]
Abstract
Background The breakdown of intestinal barrier integrity occurs after severe burn injury and is responsible for the subsequent reactions of inflammation and oxidative stress. A new protective strategy for the intestinal barrier is urgently needed due to the limitations of the traditional methods. Recently, the application of nanoparticles has become one of the promising therapies for many inflammation-related diseases or oxidative damage. Herein, we developed a new anti-inflammatory and antioxidant nanoparticle named luminol-conjugated cyclodextrin (LCD) and aimed to evaluate its protective effects in severe burn-induced intestinal injury. Methods First, LCD nanoparticles, engineered with covalent conjugation between luminol and β-cyclodextrin (β-CD), were synthesized and examined. Then a mouse burn model was successfully established before the mouse body weight, intestinal histopathological manifestation, permeability, tight junction (TJ) expression and pro-inflammatory cytokines were determined in different groups. The proliferation, apoptosis, migration and reactive oxygen species (ROS) of intestinal epithelial cells (IECs) were assessed. Intraepithelial lymphocytes (IELs) were isolated and cultured for analysis by flow cytometry. Results LCD nanoparticle treatment significantly relieved the symptoms of burn-induced intestinal injury in the mouse model, including body weight loss and intestinal permeability abnormalities. Moreover, LCD nanoparticles remarkably recovered the mechanical barrier of the intestine after severe burn, renewed TJ structures, promoted IEC proliferation and migration, and inhibited IEC apoptosis. Mechanistically, LCD nanoparticles dramatically alleviated pro-inflammation factors (tumor necrosis factor-α, IL-17A) and ROS accumulation, which could be highly involved in intestinal barrier disruption. Furthermore, an increase in IL-17A and the proportion of IL-17A+Vγ4+ γδ T subtype cells was also observed in vitro in LPS-treated Vγ4+ γδ T cells, but the use of LCD nanoparticles suppressed this increase. Conclusions Taken together, these findings demonstrate that LCD nanoparticles have the protective ability to ameliorate intestinal barrier disruption and provide a therapeutic intervention for burn-induced intestinal injury.
Collapse
Affiliation(s)
- Yajun Song
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Yang Li
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Wengang Hu
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Feng Li
- Department of Urology, Chongqing University Three Gorges Hospital, No. 165, Xincheng Road, Wanzhou District, Chongqing, 404031, China
| | - Hao Sheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Chibing Huang
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Yuanjiagang Road, Yuzhong District, Chongqing, 400016, China
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, The Army Medical University, No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, The Army Medical University, No. 184, Xinqiao Street, Shapingba District, Chongqing, 400037, China
| |
Collapse
|
4
|
Li K, Song X, Li H, Kuang X, Liu S, Liu R, Li D. Mussel oil is superior to fish oil in preventing atherosclerosis of ApoE -/- mice. Front Nutr 2024; 11:1326421. [PMID: 38410635 PMCID: PMC10894946 DOI: 10.3389/fnut.2024.1326421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives The present study aimed to explore the preventive effect of mussel oil (MO) on atherosclerosis and the potential mechanism in apolipoprotein E-null (ApoE-/-) mice. Methods ApoE-/- mice were fed with a high-fat and high-cholesterol chow and given corn oil (CO), fish oil (FO), MO, or aspirin (ASP, dissolved in CO) by gavage for 12 weeks. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.01%) and FO (46.82%) were comparable (mainly C22:6n-3 and C20:5n-3). Wild-type mice were fed with a normal chow and given equivalent CO as health control (CON). Results Compared with the CON group, obvious atherosclerotic plaque appeared at aorta and aortic sinus in the CO group. Compared with the CO group, MO but not FO had a significantly smaller atherosclerotic plaque area in the aorta. The aortic atherosclerotic plaque area was comparable in the MO, CON, and ASP groups. The MO group had a significantly smaller atherosclerotic plaque area, lower lipid deposition, lower contents of smooth muscle cell (SMC), and slightly lower contents of macrophage at the aortic sinus than the FO group. Serum concentrations of IL-1β, NF-κB, and VCAM-1 were comparable in the MO and FO groups and were significantly lower than the CO group. Compared with the CO group, the MO group but not FO group had significantly lower aortic protein levels of p65NF-κB, p38MAPK, and VCAM-1. The aortic protein levels of p-p65NF-κB and p-p38MAPK were significantly lower in the MO group than the FO group. Conclusion In conclusion, MO is more potent than FO in preventing atherosclerosis, and the possible mechanism may be by downregulating p38MAPK/NF-κB signaling pathway, decreasing VCAM-1 and macrophage, and inhibiting proliferation and migration of SMC.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Khursheed M, Ghelani H, Jan RK, Adrian TE. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar Drugs 2023; 21:524. [PMID: 37888459 PMCID: PMC10608083 DOI: 10.3390/md21100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine, and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates; (M.K.); (H.G.); (R.K.J.)
| |
Collapse
|
6
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Berberine-Based Carbon Quantum Dots Improve Intestinal Barrier Injury and Alleviate Oxidative Stress in C57BL/6 Mice with 5-Fluorouracil-Induced Intestinal Mucositis by Enhancing Gut-Derived Short-Chain Fatty Acids Contents. Molecules 2023; 28:molecules28052148. [PMID: 36903391 PMCID: PMC10004514 DOI: 10.3390/molecules28052148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This study aims to evaluate the effect of berberine-based carbon quantum dots (Ber-CDs) on improving 5-fluorouracil (5-FU)-induced intestinal mucositis in C57BL/6 mice, and explored the mechanisms behind this effect. Thirty-two C57BL/6 mice were divided into four groups: normal control (NC), 5-FU-induced intestinal mucositis model (5-FU), 5-FU + Ber-CDs intervention (Ber-CDs), and 5-FU + native berberine intervention (Con-CDs). The Ber-CDs improved body weight loss in 5-FU-induced mice with intestinal mucositis compared to the 5-FU group. The expressions of IL-1β and NLRP3 in spleen and serum in Ber-CDs and Con-Ber groups were significantly lower than those in the 5-FU group, and the decrease was more significant in the Ber-CDs group. The expressions of IgA and IL-10 in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, but the up-regulation was more significant in the Ber-CDs group. Compared with the 5-FU group, the relative contents of Bifidobacterium, Lactobacillus and the three main SCFAs in the colon contents were significantly increased the Ber-CDs and Con-Ber groups. Compared with the Con-Ber group, the concentrations of the three main short-chain fatty acids in the Ber-CDs group were significantly increased. The expressions of Occludin and ZO-1 in intestinal mucosa in the Ber-CDs and Con-Ber groups were higher than those in the 5-FU group, and the expressions of Occludin and ZO-1 in the Ber-CDs group were more higher than that in the Con-Ber group. In addition, compared with the 5-FU group, the damage of intestinal mucosa tissue in the Ber-CDs and Con-Ber groups were recovered. In conclusion, berberine can attenuate intestinal barrier injury and oxidative stress in mice to mitigate 5-fluorouracil-induced intestinal mucositis, moreover, the above effects of Ber-CDs were more significant than those of native berberine. These results suggest that Ber-CDs may be a highly effective substitute for natural berberine.
Collapse
|
8
|
Yang H, Yu C, Yin Z, Guan P, Jin S, Wang Y, Feng X. Curcumin: a potential exogenous additive for the prevention of LPS-induced duck ileitis by the alleviation of inflammation and oxidative stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1550-1560. [PMID: 36208473 DOI: 10.1002/jsfa.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are the main pathogenic substances in Gram-negative bacteria. The aim of this study was to investigate the preventive effects of dietary curcumin (CUR) on LPS toxicity in the duck ileum. The duck diet was supplemented with CUR (0.5 g kg-1 ) for 28 days, while the birds were injected with LPS (0.5 mg kg-1 body weight per injection, administered as seven injections in the last week of the experimental period). RESULTS LPS significantly decreased the ileal villus-to-crypt ratio in the non-supplemented CUR group. Dietary CUR alleviated LPS-induced morphological damage to the ileum. Moreover, dietary CUR alleviated oxidative stress by increasing the levels of total superoxide dismutase (T-SOD) (P < 0.05) and glutathione S-transferase (GST) (P < 0.05) and decreasing the production of malonic dialdehyde (MDA) (P < 0.05) in control ducks and LPS-challenged ducks. Dietary CUR significantly inhibited the LPS-induced massive production of inflammatory factors (IL-1β, IL-6, and TNF-α) (P < 0.05). CUR induced the inhibition of TLR4 and activation of Nrf2 to reduce the expression of inflammation-related genes (TLR4, NF-κB, IKK, TXNIP, NLRP3, caspase-1, IL-1β, IL-6, and TNF-α). Moreover, dietary CUR ameliorated the decrease in claudin-1 and occludin expression (P < 0.05) and improved ZO-1 expression in the duck ileum (P < 0.05). CONCLUSION In conclusion, dietary CUR has beneficial effects on LPS-induced ileal damage, oxidative damage, and inflammatory response by inhibiting the TLR/NF-κB and activating the Nrf2 signaling pathways in ducks. This study provides valuable information regarding the therapeutic uses of CUR in duck ileitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chunting Yu
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Zesheng Yin
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Peiyue Guan
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Sanjun Jin
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yingjie Wang
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xingjun Feng
- Laboratory of Molecular Nutrition, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Zeng H, Safratowich BD, Cheng WH, Bukowski MR. Identification of oncogenic signatures in the inflammatory colon of C57BL/6 mice fed a high-fat diet. J Nutr Biochem 2023; 111:109188. [PMID: 36272693 DOI: 10.1016/j.jnutbio.2022.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Adoption of an obesogenic diet such as a high-fat diet (HFD) results in obesity, bacterial dysbiosis, chronic inflammation, and cancer. Gut bacteria and their metabolites are recognized by interleukin-1 (IL-1R)/toll-like receptors (TLRs) which are essential to maintain intestinal homeostasis. Moreover, host extracellular microRNAs (miRNAs) can alter bacterial growth in the colon. Characterization of the underlying mechanisms may lead to identifying fecal oncogenic signatures reflecting colonic health. We hypothesize that an HFD accelerates the inflammatory process and modulates IL-1R/TLR pathways, gut microbiome, and disease-related miRNA in the colon. In this study, 4-week-old C57BL/6 mice were fed a modified AIN93G diet (AIN, 16% energy fat) or an HFD (45% energy fat) for 15 weeks. In addition to increased body weight and body fat composition, the concentrations of plasma interleukin 6 (IL-6), inflammatory cell infiltration, β-catenin, and cell proliferation marker (Ki67) in the colon were elevated > 68% in the HFD group compared to the AIN group. Using a PCR array analysis, we identified 14 out of 84 genes with a ≥ 24% decrease in mRNA content related to IL-1R and TLR pathways in colonic epithelial cells in mice fed an HFD compared to the AIN. Furthermore, the content of Alistipes bacteria, the Firmicutes/Bacteroidetes ratio, microRNA-29a, and deoxycholic and lithocholic acids (secondary bile acids with oncogenic potential) were 55% greater in the feces of the HFD group compared to the AIN group. Collectively, this composite, a multimodal profile may represent a unique HFD-induced fecal signature for colonic inflammation and cancer in C57BL/6 mice.
Collapse
Affiliation(s)
- Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA.
| | - Bryan D Safratowich
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, USA
| | - Michael R Bukowski
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, USA
| |
Collapse
|
10
|
Xu M, Xue H, Qiao G, Liao M, Kong L, Zhang Q, Lin L, Yang L, Zheng G. Regulating the Imbalance of Gut Microbiota by Smilax china L. Polyphenols to Alleviate Dextran Sulfate Sodium-induced Inflammatory Bowel Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:553-568. [PMID: 35114911 DOI: 10.1142/s0192415x22500215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smilax china L. is used not only as a kind of traditional Chinese herbal medicinal ingredients with various pharmacological properties, but also as food in certain parts of China. However, it is by far still unclear whether Smilax china L. polyphenols (SCP), as important bioactive constituents in Smilax china L., have effects on inflammatory bowel diseases (IBD). This study investigated the impact of SCP on the dextran sulfate sodium (DSS)-induced IBD and gut microbiota in mice. SCP treatments ameliorated typical symptoms of IBD as what was reflected through suppressing body weight loss, colonic shortening, intestinal barrier damage, and increasing intestinal disease activity index. SCP treatments simultaneously decreased the release of proinflammatory cytokines and oxidative stress, as well as promoted the release of anti-inflammatory factors. Furthermore, SCP ameliorated the ecological imbalance of gut microbiota and regulated the key bacteria associated with IBD (including Akkermansiaceae, Ruminococcaceae, Acidaminococcaceae, Muribaculaceae, and Anaeroplasmataceae). In general, SCP may improve DSS-induced IBD in mice by regulating inflammatory factors, inhibiting oxidative stress, reducing intestinal tissue damage, and regulating the ecological imbalance of intestinal microbiota. Thus, SCP might serve as a potential therapeutic agent against the inflammation-driven diseases.
Collapse
Affiliation(s)
- Meng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Gaoxiang Qiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Mingfu Liao
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Li Kong
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| |
Collapse
|
11
|
Zhang X, Wang S, Wu Y, Liu X, Wang J, Han D. Ellagic Acid Alleviates Diquat-Induced Jejunum Oxidative Stress in C57BL/6 Mice through Activating Nrf2 Mediated Signaling Pathway. Nutrients 2022; 14:1103. [PMID: 35268077 PMCID: PMC8912502 DOI: 10.3390/nu14051103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Ellagic acid (EA) is the main constituent found in pomegranate rind, which has anti-inflammatory and antioxidant effects. However, whether EA can alleviate diquat-induced oxidative stress is still unknown. Here, the effects and mechanisms of EA on jejunum oxidative stress induced by diquat was investigated. Oxidative stress was induced in mice by administrating diquat (25 mg/kg body weight) followed by treatment with 100 mg/kg body weight EA for 5 days. Results showed that oral administration of EA significantly ameliorated diquat-induced weight loss and oxidative stress (p < 0.05) evidenced by reduced ROS production in the jejunum. Furthermore, EA up-regulated the mRNA expression of the antioxidant enzymes (Nrf2, GPX1 and HO-1) when mice were challenged with diquat, compared with the diquat group (p < 0.05). Importantly, pharmacological inhibition of Nrf2 by ML385 counteracted the EA-mediated alleviation of jejunum oxidative stress, as evidence by body weight and ROS production. Also, immunohistochemistry staining confirmed the markedly decreased jejunal Nrf2 expression. The up-regulated effect on NQO1 and HO-1 mRNA expression induced by EA was diminished in mice treated with ML385 (p < 0.05). Together, our results demonstrated that therapeutic and preventative EA treatment was effective in reducing weight loss and oxidative stress induced by diquat through the Nrf2 mediated signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Z.); (S.W.); (Y.W.); (X.L.); (J.W.)
| |
Collapse
|
12
|
Manno-oligosaccharide attenuates inflammation and intestinal epithelium injury in weaned pigs upon enterotoxigenic Escherichia coli K88 challenge. Br J Nutr 2021; 126:993-1002. [PMID: 33298213 DOI: 10.1017/s0007114520004948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To explore the effect of manno-oligosaccharide (MOS) on intestinal health in weaned pigs upon enterotoxigenic Escherichia coli K88 (ETEC) challenge, thirty-two male weaned pigs were randomly assigned into four groups. Pigs fed with a basal diet or basal diet containing MOS (0·6 g/kg) were orally infused with ETEC or culture medium. Results showed that MOS significantly elevated the digestibility of crude protein and gross energy in both ETEC-challenged and non-challenged pigs (P < 0·05). MOS also elevated serum concentrations of IgA and IgM (P < 0·05), but decreased serum concentrations of TNF-α, IL-1β and IL-6 (P < 0·05) in ETEC-challenged pigs. Interestingly, MOS increased villus height and the ratio of villus height:crypt depth in duodenum and ileum (P < 0·05). MOS also increased duodenal sucrase and ileal lactase activity in ETEC-challenged pigs (P < 0·05). MOS decreased the abundance of E. coli, but increased the abundance of Lactobacillus, Bifidobacterium and Bacillus in caecum (P < 0·05). Importantly, MOS not only elevated the expression levels of zonula occludens-1 (ZO-1), claudin-1 and GLUT-2 in duodenum (P < 0·05) but also elevated the expression levels of ZO-1, GLUT-2 and L-type amino acid transporter-1 in ileum (P < 0·05) upon ETEC challenge. These results suggested that MOS can alleviate inflammation and intestinal injury in weaned pigs upon ETEC challenge, which was associated with suppressed secretion of inflammatory cytokines and elevated serum Ig, as well as improved intestinal epithelium functions and microbiota.
Collapse
|
13
|
A New Zealand green-lipped mussel oil-enriched high-fat diet exhibits beneficial effects on body weight and metabolism in mice. Br J Nutr 2021; 125:972-982. [PMID: 32594917 DOI: 10.1017/s0007114520002342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To induce diet-induced obesity (DIO) in rodents, diets high in saturated fat and/or carbohydrates are commonly used. In the laboratory, standardised diets evolved over time without paying particular attention to the effect of fat composition on metabolic alterations. In the present study, customised high-fat diets (HFD) enriched with a combination of lard and different concentrations of New Zealand green-lipped mussel (Perna canaliculus) oil or MSC Hoki (Macruronus novaezelandiae, blue grenadier) liver oil, important sources of n-3 PUFA, in comparison with a solely lard-based diet, were fed to lean and DIO male C57BL/6 mice and their effects on metabolic parameters were monitored. Intriguingly, an isoenergetic HFD containing 63 % of total fat in the form of mussel oil and only 28 % in the form of lard attenuated HFD-induced body weight gain after 1 and 4 weeks, respectively. Consistently, changing a lard-enriched HFD to the mussel oil diet reduced body weight markedly even after mice had been exposed to the former diet for 10 months. The weight-reducing effect of the diet was not caused by altered energy intake or expenditure, but was associated with reduced visceral fat mass. Collectively, these data suggest a novel weight-reducing potential of green-lipped mussel oil.
Collapse
|
14
|
Chondroprotection and Molecular Mechanism of Action of Phytonutraceuticals on Osteoarthritis. Molecules 2021; 26:molecules26082391. [PMID: 33924083 PMCID: PMC8074261 DOI: 10.3390/molecules26082391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease and an important cause of incapacitation. There is a lack of drugs and effective treatments that stop or slow the OA progression. Modern pharmacological treatments, such as analgesics, have analgesic effects but do not affect the course of OA. Long-term use of these drugs can lead to serious side effects. Given the OA nature, it is likely that lifelong treatment will be required to stop or slow its progression. Therefore, there is an urgent need for disease-modifying OA treatments that are also safe for clinical use over long periods. Phytonutraceuticals are herbal products that provide a therapeutic effect, including disease prevention, which not only have favorable safety characteristics but may have an alleviating effect on the OA and its symptoms. An estimated 47% of OA patients use alternative drugs, including phytonutraceuticals. The review studies the efficacy and action mechanism of widely used phytonutraceuticals, analyzes the available experimental and clinical data on the effect of some phytonutraceuticals (phytoflavonoids, polyphenols, and bioflavonoids) on OA, and examines the known molecular effect and the possibility of their use for chondroprotection.
Collapse
|
15
|
Fu YJ, Xu B, Huang SW, Luo X, Deng XL, Luo S, Liu C, Wang Q, Chen JY, Zhou L. Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol Sin 2021; 42:88-96. [PMID: 32457419 PMCID: PMC7921675 DOI: 10.1038/s41401-020-0411-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that baicalin, an active ingredient of the Chinese traditional medicine Huangqin, attenuates LPS-induced inflammation by inhibiting the activation of TLR4/NF-κBp65 pathway, but how it affects this pathway is unknown. It has been shown that CD14 binds directly to LPS and plays an important role in sensitizing the cells to minute quantities of LPS via chaperoning LPS molecules to the TLR4/MD-2 signaling complex. In the present study we investigated the role of CD14 in the anti-inflammatory effects of baicalin in vitro and in vivo. Exposure to LPS (1 μg/mL) induced inflammatory responses in RAW264.7 cells, evidenced by marked increases in the expression of MHC II molecules and the secretion of NO and IL-6, and by activation of MyD88/NF-κB p65 signaling pathway, as well as the expression of CD14 and TLR4. These changes were dose-dependently attenuated by pretreatment baicalin (12.5-50 μM), but not by baicalin post-treatment. In RAW264.7 cells without LPS stimulation, baicalin dose-dependently inhibit the protein and mRNA expression of CD14, but not TLR4. In RAW264.7 cells with CD14 knockdown, baicalin pretreatment did not prevent inflammatory responses and activation of MyD88/NF-κB p65 pathway induced by high concentrations (1000 μg/mL) of LPS. Furthermore, baicalin pretreatment also inhibited the expression of CD14 and activation of MyD88/NF-κB p65 pathway in LPS-induced hepatocyte-derived HepG2 cells and intestinal epithelial-derived HT-29 cells. In mice with intraperitoneal injection of LPS and in DSS-induced UC mice, oral administration of baicalin exerted protective effects by inhibition of CD14 expression and inflammation. Taken together, we demonstrate that baicalin pretreatment prevents LPS-induced inflammation in RAW264.7 cells in CD14-dependent manner. This study supports the therapeutic use of baicalin in preventing the progression of LPS-induced inflammatory diseases.
Collapse
Affiliation(s)
- Ya-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Wei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiang-Liang Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China.
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jin-Yan Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7591840. [PMID: 31885814 PMCID: PMC6915002 DOI: 10.1155/2019/7591840] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Abstract
Oxidative stress is implicated in a wide range of intestinal disorders and closely associated with their pathological processes. Resveratrol (RSV), a plant extract, plays a vital role in protecting various organs in vitro and in vivo. However, the benefits of RSV are controversial, and underlying mechanisms for its antioxidant effects on intestinal epithelial cells remain unclear. In this study, we evaluated the effects of RSV on oxidative stress induced by H2O2 in IPEC-J2 cells. We found that pretreatment with RSV significantly increased cell viability; increased expression levels of tight junction (TJ) proteins (claudin-1, occludin, and ZO-1); improved activities of superoxide dismutase-1 (SOD-1), catalase (CAT), and glutathione peroxidase (GSH-Px); and decreased intracellular reactive oxygen species (ROS) levels and apoptosis induced by H2O2 (P < 0.05). In addition, RSV upregulated Akt phosphorylation, Nrf2 phosphorylation, and expression levels of antioxidant genes HO-1, SOD-1, and CAT in a dose-dependent manner (P < 0.05) under oxidative stress. Knockdown of Nrf2 by short-hairpin RNA (shRNA) abrogated RSV-mediated protection against H2O2-induced apoptosis, RSV-induced increase of TJ protein levels, and antioxidant gene expression (SOD-1, CAT, and GSH-Px) (P < 0.05). Consistent with Nrf2 knockdown, the PI3K/Akt inhibitor LY294002 significantly suppressed RSV-induced Nrf2 phosphorylation and RSV-induced increase of TJ protein levels and antioxidant gene expression under H2O2 treatment (P < 0.05). Collectively, these results demonstrate that RSV can directly protect IPEC-J2 cells against oxidative stress through the PI3K/Akt-mediated Nrf2 signaling pathway, suggesting that RSV may be an effective feed additive against intestinal damage in livestock production.
Collapse
|
17
|
Ma C, Vasu R, Zhang H. The Role of Long-Chain Fatty Acids in Inflammatory Bowel Disease. Mediators Inflamm 2019; 2019:8495913. [PMID: 31780872 PMCID: PMC6874876 DOI: 10.1155/2019/8495913] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complicated disease involving multiple pathogenic factors. The complex relationships between long-chain fatty acids (LCFAs) and the morbidity of IBD drive numerous studies to unravel the underlying mechanisms. A better understanding of the role of LCFAs in IBD will substitute or boost the current IBD therapies, thereby obtaining mucosal healing. In this review, we focused on the roles of LCFAs on the important links of inflammatory regulation in IBD, including in the pathogen recognition phase and in the inflammatory resolving phase, and the effects of LCFAs on immune cells in IBD.
Collapse
Affiliation(s)
- Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Reshma Vasu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|