1
|
Li Y, Liu L, Zhang Y, Bai S, Jiang Y, Lai C, Li X, Bai W. Paternal Cyanidin-3-O-Glucoside Diet Improved High-Fat, High-Fructose Diet-Induced Intergenerational Inheritance in Male Offspring's Susceptibility to High-Fat Diet-Induced Testicular and Sperm Damage. Reprod Sci 2025; 32:1102-1114. [PMID: 39836315 DOI: 10.1007/s43032-024-01780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored. In this study, we investigated the effects of paternal HFHFD on reproductive injury of offspring and the protective effect of C3G. Paternal mice were subjected to 12 weeks of HFHFD induction and C3G treatment was conducted for 8 weeks. Offspring obtained via in vitro fertilization were fed either a normal diet (ND) or high-fat diet (HFD). Our findings indicate that while the paternal HFHFD did not result in observable reproductive impairments in paternal mice, it did affect offspring testicular function through intergenerational inheritance, rendering them more susceptible to testicular damage and reduced sperm counts when exposed to an HFD. Notably, C3G intervention significantly mitigated these effects, suggesting its potential as a therapeutic compound for alleviating the impact of paternal intergenerational inheritance on male fertility resulting from HFHFD. These results underscore the importance of further exploring the mechanisms underlying intergenerational inheritance and the potential of interventions such as C3G in mitigating its effects, with implications for both basic research and clinical practice.
Collapse
Affiliation(s)
- Yuxi Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Liwang Liu
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Shun Bai
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Yan Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China
| | - Caiyong Lai
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
- The Sixth Affiliated Hospital of Jinan University, Dongguan, 523576, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Farias TRB, Sanches NB, Petrus RR. The amazing native Brazilian fruits. Crit Rev Food Sci Nutr 2024; 64:9382-9399. [PMID: 37195442 DOI: 10.1080/10408398.2023.2212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A number of native Brazilian plant species are under exploited by the scientific community, despite the country's precious biodiversity. The vast majority of native Brazilian fruits (NBF) is source of compounds that provide many health benefits and can potentially be used to prevent diseases and formulate high-added value products. This review covers the scientific research over the last decade (2012-2022) on eight NBF, and focuses on information about the production and market panorama, physical description, physicochemical characterization, nutritional composition, their functional value of bioactive compounds and health benefits, as well as the potential for utilizations for each. The studies herein compiled reveal the outstanding nutritional value of these NBF. They are sources of vitamins, fibers, minerals and bioactive compounds that exhibit antioxidant activity, and they contain phytochemicals with anti-inflammatory action, anti-obesity and other functions that bring many health benefits to consumers. NBF can be also used as raw material for multiple products such as nectars, juices, jams, frozen pulps, liquor, among others. The dissemination of knowledge about NBF has fundamental implications worldwide.
Collapse
Affiliation(s)
| | | | - Rodrigo Rodrigues Petrus
- Universidade de Sao Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP, Brazil
| |
Collapse
|
3
|
Mennitti LV, de Souza EA, Santamarina AB, Sertorio MN, Jucá A, De Souza DV, Ribeiro DA, Pisani LP. Maternal dietary fatty acid composition and content prior to and during pregnancy and lactation influences serum profile, liver phenotype and hepatic miRNA expression in young male and female offspring. J Nutr Biochem 2024; 129:109639. [PMID: 38583498 DOI: 10.1016/j.jnutbio.2024.109639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to investigate whether modifying the pre-gestational lipid content could mitigate metabolic damage in offspring from dams exposed to a high-fat (HF) diet before conception and during pregnancy and lactation, with a focus on sex-specific outcomes. Specific effects of maternal normolipidic diets on offspring were also assessed. Female Wistar rats received control (C) or HF diets before conception. During pregnancy and lactation, females were distributed in five groups: C-C, HF-HF, HF-C, HF-saturated (HF-S) or HF-polyunsaturated n-3 group (HF-P). Saturated and PUFA n-3 diets were normolipidic. In 21-day-old offspring, corporal parameters, adiposity, serum metabolites, OGTT, liver phenotype, and miR-34a-5p hepatic expression were determined. Pre-gestational HF diet impaired glycemic response in females, independent of any change in body weight. Female and male offspring from dams continuously exposed to HF diet exhibited hyperglycemia, increased adiposity, and disrupted serum lipid profiles. Male offspring showed increased hepatic fat accumulation and miR-34a-5p expression. Shifting maternal dietary lipid content to normolipidic diets restored offspring's phenotype; however, decreased SIRT1, IRβ and IRS1 expression in offspring from dams exposed to HF diet before conception suggested early indicators of glucose metabolism damage. Our findings indicated a pronounced metabolic impact on males. In conclusion, glucose tolerance impairment in females before conception disturbed intrauterine environment, influencing in offspring's phenotype. Modifying maternal dietary lipid content mitigated effects of pre-gestational HF diet exposure on young offspring. Nevertheless, decreased hepatic levels of critical insulin signaling proteins indicated that independently of the maternal diet, pre-existing HF diet-induced glucose intolerance before conception may adversely program the offspring's phenotype.
Collapse
Affiliation(s)
- Laís Vales Mennitti
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil; Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Esther Alves de Souza
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Aline Boveto Santamarina
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Marcela Nascimento Sertorio
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Andrea Jucá
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Daniel Vitor De Souza
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Daniel Araki Ribeiro
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil
| | - Luciana Pellegrini Pisani
- Department of Bioscience, Institute of Health and Society, Laboratory of Nutrition and Endocrine Physiology, Federal University of São Paulo, Santos, Brazil.
| |
Collapse
|
4
|
Yaskolka Meir A, Yun H, Stampfer MJ, Liang L, Hu FB. Nutrition, DNA methylation and obesity across life stages and generations. Epigenomics 2023; 15:991-1015. [PMID: 37933548 DOI: 10.2217/epi-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Obesity is a complex multifactorial condition that often manifests in early life with a lifelong burden on metabolic health. Diet, including pre-pregnancy maternal diet, in utero nutrition and dietary patterns in early and late life, can shape obesity development. Growing evidence suggests that epigenetic modifications, specifically DNA methylation, might mediate or accompany these effects across life stages and generations. By reviewing human observational and intervention studies conducted over the past 10 years, this work provides a comprehensive overview of the evidence linking nutrition to DNA methylation and its association with obesity across different age periods, spanning from preconception to adulthood and identify future research directions in the field.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meir J Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Santamarina AB, Calder PC, Estadella D, Pisani LP. Anthocyanins ameliorate obesity-associated metainflammation: Preclinical and clinical evidence. Nutr Res 2023; 114:50-70. [PMID: 37201432 DOI: 10.1016/j.nutres.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.
Collapse
Affiliation(s)
- Aline B Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Santos, São Paulo, Brazil.
| |
Collapse
|
6
|
Siqueira APS, Siqueira JM, Lopes MP, Pimentel GD. Effects of Juçara ( Euterpe edulis Martius) on Health: An Overview of Clinical and Experimental Studies and Call for Action. Nutrients 2023; 15:nu15081809. [PMID: 37111027 PMCID: PMC10145658 DOI: 10.3390/nu15081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND AIMS Juçara is a fruit of ecological and nutritional importance. Its fruits represent an option for the sustainable use of the plant due to its vulnerability to extinction. Thus, the aim of this review was to analyze clinical and experimental studies and highlight the literature gaps regarding the effects of supplementation with Juçara on health. METHODS For this scoping review, we consulted the Medline (PubMed), Science Direct, and Scopus databases in March, April, and May 2022. Experimental studies and clinical trials published in the last ten years (2012-2022) were analyzed. Data were synthesized and reported. RESULTS A total of 27 studies were included, 18 of which were experimental studies. Of these, 33% evaluated inflammatory markers associated with fat accumulation. Most of these studies (83%) used pulp in lyophilized form, and the others (17%) involved juçara extract mixed in water. In addition, 78% of the studies showed positive results with respect to the lipid profile, reduction of oncological lesions, inflammation, microbiota modulation, and improvement in obesity and glycemia-related metabolic complications. Nine clinical trials with results similar to those of experimental trials were found. The majority (56%) were chronic (four to six weeks into the intervention), and 44% were acute. Three offered juçara supplementation in the form of juice, four used freeze-dried pulp, two used fresh pulp, and one used a 9% dilution. The dose was fixed at 5 g, but the dilution ranged from 200 to 450 mL. These trials assessed mainly healthy, physically active, and obese individual adults (19-56 years old), and cardioprotective and anti-inflammatory effects, as well as improvement in the lipid profile and prebiotic potential, were observed. CONCLUSION Juçara supplementation showed promising results with respect to its effect on health. However, further studies are needed to clarify these possible effects on health and their mechanisms of action.
Collapse
Affiliation(s)
- Ana P S Siqueira
- Faculty of Nutrition, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| | - Jéssika M Siqueira
- Faculty of Nutrition, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| | - Mirella P Lopes
- Faculty of Nutrition, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| | - Gustavo D Pimentel
- Faculty of Nutrition, Federal University of Goias, Goiânia 74605-080, GO, Brazil
| |
Collapse
|
7
|
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100155. [PMID: 36582744 PMCID: PMC9793217 DOI: 10.1016/j.fochms.2022.100155] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation. In addition to their antioxidant power, polyphenols have also drawn attention for being able to modulate both gene expression and modify epigenetic alterations, suggesting an essential involvement in the prevention and/or development of some pathologies. Therefore, this review briefly explained the mechanisms in the development of some NCDs, followed by a summary of some evidence related to the interaction of polyphenols in oxidative stress, as well as the modulation of epigenetic mechanisms involved in the management of NCDs.
Collapse
Key Words
- 8-oxodG, 8-oxo-2́deosyguanosine
- ABCG, ATP Binding Cassette Subfamily G Member
- ADAM10, α-secretase
- ADRB3, adrenoceptor Beta 3
- APP, amyloid-β precursor protein
- ARF, auxin response factor
- ARH-I, aplysia ras homology member I
- ARHGAP24, Rho GTPase Activating Protein 24
- ATF6, activating transcription factor 6
- ATP2A3, ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 3
- BCL2L14, apoptosis facilitator Bcl-2-like protein 14
- Bioactive compounds
- CDH1, cadherin-1
- CDKN, cyclin dependent kinase inhibitor
- CPT, carnitine palmitoyltransferase
- CREBH, cyclic AMP-responsive element-binding protein H
- DANT2, DXZ4 associated non-noding transcript 2, distal
- DAPK1, death-associated protein kinase 1
- DNA methylation
- DNMT, DNA methyltransferase
- DOT1L, disruptor of telomeric silencing 1-like
- EWASs, epigenome-wide association studies
- EZH2, Enhancer of zeste homolog 2
- FAS, Fas cell Surface Death Receptor
- GDNF, glial cell line-derived neurotrophic factor
- GFAP, glial fibrillary acid protein
- GSTP1, Glutathione S-transferases P1
- Gut microbiota modulation
- HAT, histone acetylases
- HDAC, histone deacetylases
- HSD11B2, 11 beta-hydroxysteroid dehydrogenase type 2
- Histone modifications
- IGFBP3, insulin-like growth factor-binding protein 3
- IGT, impaired glucose tolerance
- KCNK3, potassium two pore domain channel subfamily K Member 3
- MBD4, methyl-CpG binding domain 4
- MGMT, O-6-methylguanine-DNA methyltransferase
- NAFLD, Non-alcoholic fatty liver disease
- OCT1, Organic cation transporter 1
- OGG1, 8-Oxoguanine DNA Glycosylase
- Oxidative stress
- PAI-1, plasminogen activator inhibitor 1
- PHOSPHO1, Phosphoethanolamine/Phosphocholine Phosphatase 1
- PLIN1, perilipin 1
- POE3A, RNA polymerase III
- PPAR, peroxisome proliferator-activated receptor
- PPARGC1A, PPARG coactivator 1 alpha
- PRKCA, Protein kinase C alpha
- PTEN, phosphatase and tensin homologue
- Personalized nutrition
- RASSF1A, Ras association domain family member 1
- SAH, S -adenosyl-l-homocysteine
- SAM, S-adenosyl-methionine
- SD, sleep deprivation
- SOCS3, suppressor of cytokine signaling 3
- SREBP-1C, sterol-regulatory element binding protein-1C
- TBX2, t-box transcription factor 2
- TCF7L2, transcription factor 7 like 2
- TET, ten-eleven translocation proteins
- TNNT2, cardiac muscle troponin T
- TPA, 12-O-tetradecanoylphorbol-13-acetate
- lncRNA, long non-coding RNA
- ncRNA, non-coding RNA
- oAβ-induced-LTP, oligomeric amyloid-beta induced long term potentiation
Collapse
|
8
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
9
|
Sertorio MN, César H, de Souza EA, Mennitti LV, Santamarina AB, De Souza Mesquita LM, Jucá A, Casagrande BP, Estadella D, Aguiar O, Pisani LP. Parental High-Fat High-Sugar Diet Intake Programming Inflammatory and Oxidative Parameters of Reproductive Health in Male Offspring. Front Cell Dev Biol 2022; 10:867127. [PMID: 35832794 PMCID: PMC9271829 DOI: 10.3389/fcell.2022.867127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Parental nutrition can impact the health of future generations, programming the offspring for the development of diseases. The developing germ cells of the offspring could be damaged by the maternal or the paternal environment. The germ cells in development and their function could be affected by nutritional adversity and therefore, harm the health of subsequent generations. The paternal or maternal intake of high-fat diets has been shown to affect the reproductive health of male offspring, leading to imbalance in hypothalamic-pituitary-gonadal axis, testicular oxidative stress, low testosterone production, and changes in sperm count, viability, motility, and morphology. There is a need for studies that address the combined effects of diets with a high-fat and high-sugar (H) content by both progenitors on male reproduction. In this context, our study evaluated epigenetic parameters and the inflammatory response that could be associated to oxidative stress in testis and epididymis of adult offspring. 90 days-old male rats were divided according to the combination of the parental diet: CD (control paternal and maternal diet), HP (H paternal diet and control maternal diet), HM (H maternal diet and control paternal diet) and HPM (H paternal and maternal diet).We evaluated serum levels of testosterone and FSH; testicular gene expression of steroidogenic enzymes Star and Hsd17b3 and epigenetic markers Dnmt1, Dnmt3a, Dnmt3b, and Mecp2; testicular and epididymal levels of TNF-α, IL-6, IL-10, and IL-1β; testicular and epididymal activity of SOD, CAT, and GST; the oxidative markers MDA and CP; the daily sperm production, sperm transit time, and sperm morphology. Testicular epigenetic parameter, inflammatory response, oxidative balance, and daily sperm production of the offspring were affected by the maternal diet; paternal diet influenced serum testosterone levels, and lower daily sperm production was exacerbated by the interaction effect of both parental intake of high-fat high-sugar diet in the testis. There was isolated maternal and paternal effect in the antioxidant enzyme activity in the cauda epididymis, and an interaction effect of both parents in protein oxidative marker. Maternal effect could also be observed in cytokine production of cauda epididymis, and no morphological effects were observed in the sperm. The potential programming effects of isolated or combined intake of a high-fat high-sugar diet by the progenitors could be observed at a molecular level in the reproductive health of male offspring in early adulthood.
Collapse
Affiliation(s)
| | - Helena César
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Esther Alves de Souza
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Laís Vales Mennitti
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Aline Boveto Santamarina
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | | | - Andréa Jucá
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Breno Picin Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Odair Aguiar
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
| | - Luciana Pellegrini Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, Brazil
- *Correspondence: Luciana Pellegrini Pisani,
| |
Collapse
|
10
|
Effects of Anthocyanin Supplementation on Reduction of Obesity Criteria: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13062121. [PMID: 34205642 PMCID: PMC8234970 DOI: 10.3390/nu13062121] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/15/2023] Open
Abstract
Anthocyanins, water-soluble flavonoids that produce red-to-blue pigment in plants, have antioxidant properties and have been developed as a functional food to fight obesity. In randomized controlled trials (RCTs), a systematic review with meta-analysis (SR-MA) was used to investigate these anti-obesity effects. Using search engines (PubMed, EMBASE, Cochrane-library, and CINAHL) and keywords (anthocyanins, BMI, WC, WHR, and inflammatory biomarkers), 11 out of 642 RCTs (28.3–500 mg/day of anthocyanins for 4 to 24 weeks) were included. The results showed a significant reduction in body mass index (BMI) (MD = −0.36, 95% CI = −0.58 to −0.13), but body weight (BW) and waist circumference (WC) did not change. Anthocyanins decreased BMI in the non-obese (non-OB) group in five RCTs (BMI ≤ 25; MD = −0.40 kg/m2; 95% CI = −0.64 to −0.16;) but did not affect BMI in the obese (OB) group. A subgroup analysis of six RCTs showed that fewer than 300 mg/day reduced BMI (MD = −0.37; 95% CI = −0.06 to −0.14), but ≥300 mg/day did not. A treatment duration of four weeks for four RCTs was sufficient to decrease the BMI (MD = −0.41; 95% CI = −0.66 to −0.16) as opposed to a longer treatment (6–8 or ≥12 weeks). An analysis of the effect of anthocyanins on the BMI showed a significant fall among those from the Middle East compared to those from Asia, Europe, South America, or Oceania. In conclusion, the anthocyanin supplementation of 300 mg/day or less for four weeks was sufficient to reduce the BMI and BW compared to the higher-dose and longer-treatment RCTs. However, further studies might be conducted regarding the dose- or period-dependent responses on various obese biomarkers.
Collapse
|
11
|
Vannuchi N, Jamar G, Pisani L, Braga ARC, de Rosso VV. Chemical composition, bioactive compounds extraction, and observed biological activities from jussara (Euterpe edulis): The exotic and endangered Brazilian superfruit. Compr Rev Food Sci Food Saf 2021; 20:3192-3224. [PMID: 34125477 DOI: 10.1111/1541-4337.12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/11/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
In this article, we reviewed studies on the fruits of the jussara palm (Euterpe edulis Martius), an endangered Brazilian Atlantic Forest palm tree, also coined as "Superfruit." We summarized the chemical components of the pulp and observed biological activities in murine and humans, as well as the best practices involving the extraction of its target compounds, bioavailability, and stability of extracts. Jussara has shown a rich phenolic profile that justifies its antioxidant properties, in addition to a considerable lipidic and energetic value. As the main feature, the fruit possesses large amounts of anthocyanins that can be commercially explored as a food additive or cosmetic colorants. Recent studies emphasized jussara's antioxidant, anti-inflammatory, and cardioprotective capabilities via reshaping of the gut microbiota. Further knowledge is needed to establish bioavailability and optimal serving size, as many of its antioxidant compounds go under chemical bioconversion in the intestinal tract. While extraction of phenolic compounds, anthocyanins, and oils have interesting results, more studies are required in order to reduce the use of conventional organic solvents and improve their stability and shelf life when added to food products, an area in which nanotechnology seems promising.
Collapse
Affiliation(s)
- Nicholas Vannuchi
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Giovana Jamar
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Luciana Pisani
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil.,Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Rua São Nicolau 210, Diadema, Sao Paulo, Brazil
| | - Veridiana Vera de Rosso
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil.,Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136, Santos, Brazil
| |
Collapse
|
12
|
Carvalho APAD, Conte-Junior CA. Health benefits of phytochemicals from Brazilian native foods and plants: Antioxidant, antimicrobial, anti-cancer, and risk factors of metabolic/endocrine disorders control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Rahman S, Mathew S, Nair P, Ramadan WS, Vazhappilly CG. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021; 29:907-923. [PMID: 33740221 DOI: 10.1007/s10787-021-00799-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Berries are natural sources of anthocyanins, especially cyanidin-3-glucoside (C3G), and exhibit significant antioxidant, antidiabetic, anti-inflammatory, and cytoprotective effects against various oxidative stress-induced disorders. C3G and its metabolites possess higher absorption and bioavailability, and interaction with gut microbiota may enhance their health benefits. Various in vitro studies have shown the reactive oxygen species (ROS)-mitigating potential of C3G. However, in in vivo models, C3G exerts its cytoprotective properties by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-responsive element (ARE) pathway. Despite existing reports stating various health benefits of C3G, its antioxidant potential by modulating the Nrf2 pathway remains less identified. This review discusses the Nrf2-mediated antioxidant response of C3G in modulating oxidative stress against DNA damage, apoptosis, carcinogen toxicity, and inflammatory conditions. Furthermore, we have reviewed the recent clinical trial data to establish cross talk between a berry-rich diet and disease prevention.
Collapse
Affiliation(s)
- Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, USA
| | - Shimy Mathew
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Pooja Nair
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,College of Medicine, University of Sharjah, Sharjah, UAE
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, 10021, UAE.
| |
Collapse
|
14
|
Ramos SDP, Giaconia MA, Assis M, Jimenez PC, Mazzo TM, Longo E, De Rosso VV, Braga ARC. Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules 2021; 26:molecules26051206. [PMID: 33668167 PMCID: PMC7956372 DOI: 10.3390/molecules26051206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
Jussara pulp (Euterpe edulis Mart.) is rich in bioactive compounds known to be protective mediators against several diseases. In this context, nevertheless, anthocyanins, the most abundant natural pigment in jussara, are sensitive to temperature, pH, oxygen, and light conditions, leading to instability during food storage or digestion, and, thus jeopardizing the antioxidant proprieties retained by these flavonoids and limiting industrial application of the pulp. The production of nanostructures, from synthetic and natural polymers, containing natural matrices rich in bioactive compounds, has been widely studied, providing satisfactory results in the conservation and maintenance of the stability of these compounds. The current work aimed to compare uniaxial and coaxial electrospinning operation modes to produce core-shell jussara pulp nanofibers (NFs). Additionally, the parameters employed in the electrospinning processes were optimize using response surface methodology in an attempt to solve stability issues for the bioactive compounds. The best experimental conditions provided NFs with diameters ranging between 110.0 ± 47 and 121.1 ± 54 nm. Moreover, the coaxial setup improved jussara pulp NF formation, while further allowing greater integrity of NFs structures.
Collapse
Affiliation(s)
- Sergiana dos P. Ramos
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Michele A. Giaconia
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Marcelo Assis
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Paula C. Jimenez
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Tatiana M. Mazzo
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), P.O. Box, Santos, SP 11070-100, Brazil; (P.C.J.); (T.M.M.)
| | - Elson Longo
- Department of Chemical, CDMF/LIEC (UFSCar) P.O. Box 676, São Carlos, SP 13560-970, Brazil; (M.A.); (E.L.)
| | - Veridiana V. De Rosso
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
| | - Anna R. C. Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP 11015-020, Brazil; (S.d.P.R.); (M.A.G.); (V.V.D.R.)
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, SP 09972-270, Brazil
- Correspondence: ; Tel.: +55-13-98145020
| |
Collapse
|
15
|
Baptista SDL, Copetti CLK, Cardoso AL, Di Pietro PF. Biological activities of açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutr Rev 2021; 79:1375-1391. [PMID: 33555024 DOI: 10.1093/nutrit/nuab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Açaí (E. oleracea) and juçara (E. edulis) are berries considered a source of bioactive compounds, especially anthocyanins and unsaturated fatty acids, with recognized health-promoting activities. An integrative review was conducted to identify available clinical trials that evaluated the effects of açaí and juçara intake on the human organism. Science Direct and Medline databases were searched. Human studies that evaluated any biological activities after açaí and juçara intake were included in this review. Twenty-three clinical trials were identified up to April 12, 2020. Studies evaluated the biological effects of açaí (n = 17), juçara (n = 5), or both berries simultaneously (n = 1). The results of these trials suggest both types of berries may contribute to improved antioxidant defense and to attenuating metabolic stress and inflammation. However, considerable heterogeneity was observed among trials, and few studies explored the bioactive compounds of the food matrix provided in the interventions. More clinical trials are encouraged to strengthen the current evidence on human biological outcomes, including comparative analysis between these berries.
Collapse
Affiliation(s)
- Sheyla de L Baptista
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Cândice L K Copetti
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alyne L Cardoso
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Patricia F Di Pietro
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Schulz M, Seraglio SKT, Brugnerotto P, Gonzaga LV, Costa ACO, Fett R. Composition and potential health effects of dark-colored underutilized Brazilian fruits – A review. Food Res Int 2020; 137:109744. [DOI: 10.1016/j.foodres.2020.109744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
|
17
|
Jamar G, Santamarina AB, Casagrande BP, Estadella D, de Rosso VV, Wagner R, Fagundes MB, Pisani LP. Prebiotic potencial of juçara berry on changes in gut bacteria and acetate of individuals with obesity. Eur J Nutr 2020; 59:3767-3778. [DOI: 10.1007/s00394-020-02208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
|
18
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [PMID: 31554120 DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|
19
|
Santamarina AB, Jamar G, Mennitti LV, Cesar HDC, Vasconcelos JR, Oyama LM, de Rosso VV, Pisani LP. Obesity-related inflammatory modulation by juçara berry (Euterpe edulis Mart.) supplementation in Brazilian adults: a double-blind randomized controlled trial. Eur J Nutr 2019; 59:1693-1705. [PMID: 31197507 DOI: 10.1007/s00394-019-02024-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Obesity is an inflammatory-related disease, which recruits immune system cells triggering to imbalanced production of cytokines. Obesity management and treatment using foods bioactive compounds have gained clinical and scientific relevance. Juçara (Euterpe edulis Mart.) fruit is rich in fibers, unsaturated lipids and, anthocyanins showing potential health benefits. Thus, we investigated the effect of juçara pulp intake on inflammatory status of monocytes from obese individuals. METHODS It is a placebo-controlled, randomized double-blind trial. Twenty-seven obese participants (BMI between 30.0 and 39.9 kg/m2) of both genders from 31 to 59-year-old, divided into two groups: 5 g juçara freeze-dried pulp or 5 g of placebo for 6 weeks. Before and after supplementation, blood samples were collected and monocytes obtained and stimulated with lipopolysaccharides. After 24 h of incubation, the cells and supernatants were analyzed. RESULTS Post-treatment, juçara reduced TLR4, and IL-6 mRNA compared to placebo. Juçara also increased IL-10 mRNA in post-treatment. The protein expression of TLR4 pathway post-treatment, MYD88 expression reduced in juçara group compared to placebo. The juçara post-treatment reduced pIKKα/β compared to the placebo. Ob-R protein levels were higher in the juçara group post-treatment compared to pre-treatment. IL-6, TNF-α, and MCP-1 production by monocytes were reduced by juçara in post-treatment compared to pre-treatment levels. The supplementation increased IL-10 in juçara group with LPS compared to pre-treatment and versus juçara group without LPS. CONCLUSION These results demonstrated a proinflammatory state at the beginning, which was improved by juçara pulp consumption. Our results suggest juçara pulp as a potential tool against the proinflammatory status of obesity.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Laís Vales Mennitti
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Helena de Cássia Cesar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - José Ronnie Vasconcelos
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil.
| |
Collapse
|