1
|
Giménez Martínez RJ, Rivas García F, March Cerdá JC, Hernández-Ruíz Á, González Castro MI, Valverde-Merino MI, Huertas Camarasa FJ, Lloris Meseguer F, López-Viota Gallardo M. Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective. Pharmaceuticals (Basel) 2025; 18:373. [PMID: 40143149 PMCID: PMC11944704 DOI: 10.3390/ph18030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The skin is one of the largest and most important organs of our body. There are numerous factors that are related to skin health, including lifestyle factors, nutrition, or skin care. Bioactive substances from plant and marine extracts play a key role in skin health. The aim of this research was to compile the main evidence on skin and bioactive substances. An integrative review was performed, reporting the main findings according to PRISMA (2020). Thirteen search equations were developed. After the applications of the equations and the process of screening and selection of articles, 95 references were compiled. The main results related to bioactive compounds were classified into food-derived components, nutraceuticals, symbiotics, active substances of marine origin, and substances from plant extracts). There are several factors that indicate that the use of bioactive compounds are interesting for skin health, highlighting some dietary nutrients, substances obtained from plant extracts and metabolites of marine origin that, showing anti-inflammatory and antimicrobial effects, are related to the improvement of some skin conditions or are active principles for cosmetics.
Collapse
Affiliation(s)
| | - Francisco Rivas García
- Municipal Health and Consumer Unit, Guadix City Council, 18500 Guadix, Spain;
- School of Health Sciences, Valencia International University, 46002 Valencia, Spain
| | - Joan Carles March Cerdá
- Andalusian School of Public Health, 18011 Granada, Spain;
- Biosanitary Research Institute (ibs. GRANADA), 18012 Granada, Spain
- Biomedical Research Network Centre (CiberESP), 28029 Madrid, Spain
| | - Ángela Hernández-Ruíz
- Department of Physiotherapy, Nutrition and Sports Sciences, Faculty of Health Sciences, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain;
- Faculty of Health Sciences, Miguel de Cervantes European University, C. del Padre Julio Chevalier, 2, 47012 Valladolid, Spain
| | | | | | | | - Fuensanta Lloris Meseguer
- Department of Educational Development and Vocational Training, Andalusian Government, 18016 Granada, Spain;
| | | |
Collapse
|
2
|
L'Orphelin J, Dompmartin A, Dréno B. The Skin Microbiome: A New Key Player in Melanoma, From Onset to Metastatic Stage. Pigment Cell Melanoma Res 2025; 38:e13224. [PMID: 40016867 PMCID: PMC11868406 DOI: 10.1111/pcmr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
The skin microbiome plays a crucial role in maintaining skin health, defending the body against harmful pathogens, and interacting with melanoma. The composition of the skin microbiome can be affected by factors like age, gender, ethnicity, lifestyle, diet, and UV exposure. Certain bacteria like Staphylococcus and Veillonella are important for wound healing, while Cutibacterium acnes can play a role in dermatoses. UV radiation alters the skin microbiome, originates a "UV-resistome" and can lead to skin cancer initiation. Specifically, Staphylococcus epidermidis has shown protective effects against skin cancer, whereas Cutibacterium acnes can induce apoptosis in melanocytes postirradiation. The microbiome also interacts with melanoma treatment, affecting responses to immune checkpoint inhibitors. Strategies like bacteriotherapy, involving the manipulation of the gut microbiome but also the skin microbiome (with the gut-skin axis or through topical treatment) could improve treatment outcomes and show promise in melanoma therapy. Understanding the complex interplay between the skin microbiome, UV exposure, and melanoma development is crucial for developing personalized therapeutic approaches. Investigation into the skin microbiome and its potential role in melanoma progression continues to be an exciting area of research with implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Jean‐Matthieu L'Orphelin
- Unicaen, Inserm U1086 AnticipeNormandie UnivCaenFrance
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Anne Dompmartin
- Department of DermatologyCaen‐Normandy University HospitalCaenFrance
| | - Brigitte Dréno
- Inserm, Cnrs, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001Nantes UniversitéNantesFrance
| |
Collapse
|
3
|
Gilaberte Y, Piquero‐Casals J, Schalka S, Leone G, Brown A, Trullàs C, Jourdan E, Lim HW, Krutmann J, Passeron T. Exploring the impact of solar radiation on skin microbiome to develop improved photoprotection strategies. Photochem Photobiol 2025; 101:38-52. [PMID: 38767119 PMCID: PMC11737011 DOI: 10.1111/php.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
The skin microbiome undergoes constant exposure to solar radiation (SR), with its effects on health well-documented. However, understanding SR's influence on host-associated skin commensals remains nascent. This review surveys existing knowledge on SR's impact on the skin microbiome and proposes innovative sun protection methods that safeguard both skin integrity and microbiome balance. A team of skin photodamage specialists conducted a comprehensive review of 122 articles sourced from PubMed and Research Gateway. Key terms included skin microbiome, photoprotection, photodamage, skin cancer, ultraviolet radiation, solar radiation, skin commensals, skin protection, and pre/probiotics. Experts offered insights into novel sun protection products designed not only to shield the skin but also to mitigate SR's effects on the skin microbiome. Existing literature on SR's influence on the skin microbiome is limited. SR exposure can alter microbiome composition, potentially leading to dysbiosis, compromised skin barrier function, and immune system activation. Current sun protection methods generally overlook microbiome considerations. Tailored sun protection products that prioritize both skin and microbiome health may offer enhanced defense against SR-induced skin conditions. By safeguarding both skin and microbiota, these specialized products could mitigate dysbiosis risks associated with SR exposure, bolstering skin defense mechanisms and reducing the likelihood of SR-mediated skin issues.
Collapse
Affiliation(s)
- Yolanda Gilaberte
- Department of DermatologyMiguel Servet University Hospital, IIS AragónZaragozaSpain
| | - Jaime Piquero‐Casals
- Department of DermatologyDermik Multidisciplinary Dermatology ClinicBarcelonaSpain
| | - Sergio Schalka
- Medcin Skin Research Center and Biochemistry DepartmentChemistry Institute of São Paulo UniversitySão PauloBrazil
| | - Giovanni Leone
- Photodermatology and Vitiligo Treatment UnitIsraelite HospitalRomeItaly
| | | | | | | | - Henry W. Lim
- The Henry W. Lim Division of Photobiology and Photomedicine, Department of DermatologyHenry Ford HealthDetroitMichiganUSA
| | - Jean Krutmann
- IUF – Leibniz‐Institut für umweltmedizinische ForschungDüsseldorfGermany
| | - Thierry Passeron
- Department of DermatologyCentre Hospitalier Universitaire de Nice, Université Côte d'AzurNiceFrance
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065Université Côte d'AzurNiceFrance
| |
Collapse
|
4
|
Boira C, Chapuis E, Lapierre L, Auriol D, Jarrin C, Robe P, Tiguemounine J, Scandolera A, Reynaud R. Epigallocatechin Gallate Enzymatic Alpha Glucosylation Potentiates Its Skin-Lightening Activity-Involvement of Skin Microbiota. Molecules 2024; 29:5391. [PMID: 39598779 PMCID: PMC11597265 DOI: 10.3390/molecules29225391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Ultraviolet radiation takes part in photoaging and pigmentation disorders on skin. Epigallocatechin gallate (EGCG) is a well-known brightening and photoprotective compound but it faces limitations in terms of stability and solubility. (2) Methods: A more stable and water-soluble glucoside called EGCG-G1 was obtained by enzymatic glucosylation of EGCG. In vitro and ex vivo experiments evaluated EGCG-G1 skin penetration, antioxidant activity, and antimelanogenic properties compared to EGCG. This gene expression study characterized the pathways impacted by EGCG-G1. Four clinical studies covering phototypes I to V, at various ages, and different skin areas, using several tools, were conducted to assess the effect of EGCG-G1 on skin hyperpigmentation and tone. The impact of glucoside on skin microbiota, especially Lactobacillus sp., was assessed through in vitro and in vivo investigations. (3) Results: EGCG-G1 better penetrated the epidermis than EGCG due to a possible interaction with GLUT1. EGCG-G1 presented similar antioxidant activity to that of EGCG and decreased melanogenesis through the inhibition of 13 genes, including MITF. The skin Lactobacillus population increased with EGCG-G1, which promoted bacterial growth in vitro as prebiotic, and induced the release of a microbial brightening metabolite. Clinical trials demonstrated EGCG-G1 to decrease hyperpigmented spots and increase skin brightness and homogeneity in a large panel of phototypes, outperforming EGCG and vitamin C. (4) Conclusions: Glucosylation of EGCG maintained its photoprotective antioxidant properties and enhanced penetration across the epidermis. EGCG-G1 demonstrated brightening properties on all skin types by down-regulation of melanogenesis pathways and indirectly by skin microbiota stimulation.
Collapse
Affiliation(s)
- Cloé Boira
- Givaudan Active Beauty, R&D, 51110 Pomacle, France
| | | | | | | | | | - Patrick Robe
- Givaudan Active Beauty, R&D, 31400 Toulouse, France
| | | | | | | |
Collapse
|
5
|
Jung Y, Kim I, Jung DR, Ha JH, Lee EK, Kim JM, Kim JY, Jang JH, Bae JT, Shin JH, Cho YS. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms 2024; 12:2179. [PMID: 39597568 PMCID: PMC11596587 DOI: 10.3390/microorganisms12112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Skin aging involves biomechanical changes like decreased elasticity, increased wrinkle formation, and altered barrier function. The skin microbiome significantly impacts this process. Here, we investigated the effects of decreased Cutibacterium acnes abundance and increase in other skin microorganisms on skin biomechanical properties in 60 healthy Koreans from Seoul, divided into younger (20-29 years) and older (60-75 years) groups. Metagenomic sequencing and skin assessments showed that the older group exhibited decreased C. acnes dominance and increased microbial diversity, correlating with reduced skin elasticity and increased wrinkles. In the younger age group, the enriched pathways included zeatin biosynthesis, distinct biotin metabolism pathways, and cofactor and vitamin metabolism in the younger age group, whereas pathways related to lipid metabolism, energy metabolism, and responses to environmental stressors, including UV damage and pollution, were enriched in the older group, according to functional analysis results. Network analysis indicated higher microbial connectivity in the younger group, suggesting a more stable community, whereas the older group's community displayed higher modularity, indicating more independent and specialized clusters. This study enhances our understanding of the impact of skin microbiome changes on skin aging, particularly the anti-aging effects of C. acnes. Future research should focus on the physiological mechanisms of skin microbiota on skin aging and explore therapeutic potentials to enhance skin health.
Collapse
Affiliation(s)
- YeonGyun Jung
- Burn Institute, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Ikwhan Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hoon Ha
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Eun Kyung Lee
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| | - Jin Mo Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jin Young Kim
- R&D Center, Kolmar Korea, Seoul 06800, Republic of Korea; (J.H.H.); (J.M.K.); (J.Y.K.)
| | - Jun-Hwan Jang
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jun-Tae Bae
- J2KBIO, Chungbuk 28104, Republic of Korea; (J.-H.J.); (J.-T.B.)
| | - Jae-Ho Shin
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea; (I.K.)
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07247, Republic of Korea;
| |
Collapse
|
6
|
Park S, Yeo CS, Jung W, Choi KY. Gallic acid melanin pigment hydrogel as a flexible macromolecule for articular motion sensing. N Biotechnol 2024; 84:85-95. [PMID: 39326785 DOI: 10.1016/j.nbt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
In this study, water-soluble melanin was synthesized through the genetic recombination of Escherichia coli using gallic acid as a substrate. The recombinant host produced 2.83 g/L of gallic acid-based melanin (GA melanin) from 20 mM gallic acid. Notably, the isolated GA melanin demonstrated exceptional antioxidant and antimicrobial activities, exhibiting a 25.7 % inhibition ratio against Candida albicans. The structure and composition of GA melanin were analyzed using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and X-ray diffraction (XRD). Remarkably, GA melanin displayed high thermal stability, maintaining integrity up to 1000 °C. Additionally, it exhibited unique electrical properties in terms of conductivity and resistivity compared to other common types of melanin. Subsequently, GA melanin was cross-linked with hydrogel to create a sensing template. The resulting GA melanin hydrogel demonstrated lower resistance (80.08 ± 3.0 kohm) compared to conventional hydrogels (108.62 ± 10.4 kohm), indicating an approximately 1.77-fold improvement in adhesion. Given its physical, biological, and electrical properties, the GA melanin hydrogel was further utilized as a flexible motion-sensing material to detect resistivity changes induced by knee, wrist, and finger bending, as well as vocal cord vibrations. In all cases, the sensing module displayed notable sensitivity to motion-induced resistivity variations.
Collapse
Affiliation(s)
- SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, Republic of Korea
| | - Chan-Seo Yeo
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon-si, Republic of Korea
| | - Wonjong Jung
- Department of Mechanical, Smart, and Industrial Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Kwon-Young Choi
- Advanced college of Bio-Convergence Engineering, Ajou University, Suwon-si, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon-si, Republic of Korea.
| |
Collapse
|
7
|
Dey S, Vieyra-Garcia PA, Joshi AA, Trajanoski S, Wolf P. Modulation of the skin microbiome in cutaneous T-cell lymphoma delays tumour growth and increases survival in the murine EL4 model. Front Immunol 2024; 15:1255859. [PMID: 38646524 PMCID: PMC11026597 DOI: 10.3389/fimmu.2024.1255859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.
Collapse
MESH Headings
- Animals
- Microbiota/drug effects
- Mice
- Skin/microbiology
- Skin/pathology
- Skin/immunology
- Skin/drug effects
- Skin Neoplasms/microbiology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Lymphoma, T-Cell, Cutaneous/microbiology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice, Inbred C57BL
- Disease Models, Animal
- Anti-Bacterial Agents/therapeutic use
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/administration & dosage
- Cell Line, Tumor
- Female
- Humans
Collapse
Affiliation(s)
- Saptaswa Dey
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | | | - Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
8
|
Kim HJ, Kim YH. Molecular Frontiers in Melanoma: Pathogenesis, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:2984. [PMID: 38474231 DOI: 10.3390/ijms25052984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma, a highly aggressive skin cancer, is characterized by rapid progression and high mortality. Recent advances in molecular pathogenesis have shed light on genetic and epigenetic changes that drive melanoma development. This review provides an overview of these developments, focusing on molecular mechanisms in melanoma genesis. It highlights how mutations, particularly in the BRAF, NRAS, c-KIT, and GNAQ/GNA11 genes, affect critical signaling pathways. The evolution of diagnostic techniques, such as genomics, transcriptomics, liquid biopsies, and molecular biomarkers for early detection and prognosis, is also discussed. The therapeutic landscape has transformed with targeted therapies and immunotherapies, improving patient outcomes. This paper examines the efficacy, challenges, and prospects of these treatments, including recent clinical trials and emerging strategies. The potential of novel treatment strategies, including neoantigen vaccines, adoptive cell transfer, microbiome interactions, and nanoparticle-based combination therapy, is explored. These advances emphasize the challenges of therapy resistance and the importance of personalized medicine. This review underlines the necessity for evidence-based therapy selection in managing the increasing global incidence of melanoma.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Zarfl M, Patra V, Bordag N, Quehenberger F, Golob-Schwarzl N, Gruber-Wackernagel A, Wolf P. Eradication of skin microbiota restores cytokine production and release in polymorphic light eruption. Exp Dermatol 2024; 33:e15034. [PMID: 38459631 DOI: 10.1111/exd.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Polymorphic light eruption (PLE) has been mechanistically linked to cytokine abnormalities. Emerging preclinical evidence posits the skin microbiome as a critical modulator of ultraviolet (UV)-induced cytokine expression, thereby influencing subsequent immune responses. This intricate relationship remains underexplored in the context of PLE. Hence, we investigated the differential responses between disinfected and non-disinfected skin following both single and repetitive exposures to solar-simulated UV radiation in patients with PLE. An experimental, half-body pilot study was conducted involving six PLE patients and 15 healthy controls. Participants' skin was exposed to single and multiple doses of solar-simulated UV radiation, both in disinfected and in non-disinfected skin areas. The co-primary outcomes were PLE score and cytokine expression in blister fluid analysed through OLINK proteomic profiling. Secondary outcomes were erythema, pigmentation, induction of apoptotic cells in vacuum-generated suction blisters, and density of infiltrate in skin biopsies of PLE patients. Among the 71 cytokines analysed, baseline expression levels of 20 specific cytokines-integral to processes such as apoptosis, inflammation, immune cell recruitment, cellular growth, and differentiation-were significantly impaired in PLE patients compared with healthy controls. Notably, skin disinfection reversed the observed cytokine imbalances following a single UV exposure at the minimal erythema dose (MED) level and exhibited even more pronounced effects after multiple UV exposures. However, no significant differences were evident in PLE score, erythema, pigmentation, or rates of apoptotic cell induction upon UV radiation. These findings provide evidence for UV-driven cytokine regulation by the skin microbiota and imply microbiome involvement in the PLE immune response.
Collapse
Affiliation(s)
- Maximilian Zarfl
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Natalie Bordag
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz, Austria
| | - Nicole Golob-Schwarzl
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Alexandra Gruber-Wackernagel
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
- Medical University of Graz, BioMedTech, Graz, Austria
| |
Collapse
|
10
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
11
|
Schuetz R, Claypool J, Sfriso R, Vollhardt JH. Sunscreens can preserve human skin microbiome upon erythemal UV exposure. Int J Cosmet Sci 2024; 46:71-84. [PMID: 37664974 DOI: 10.1111/ics.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Ultraviolet radiation (UVR) is a known environmental key factor for premature skin ageing. Only few scientific evidence is available to support the effects of UVR on the skin microbiome. This in vivo pilot study aimed to evaluate the impact on the skin microbiome upon erythemal UV exposure and the protection of UV-exposed skin microbiome by UV filters. METHODS Ten female volunteers were treated with an sun protection factor (SPF) 20 sunscreen and placebo formulation (without UV filters) on their upper middle backs and irradiated with an erythemal dose (2 MED) by a solar simulator. Skin swabbing samples from four zones (i.e., unexposed, exposed, sunscreen- and placebo-treated on exposed skin) were collected for the microbiome analysis before and 2 h after UV exposure, respectively, and processed via shallow 16S rRNA Amplicon and Shotgun metagenomic sequencing. An in vitro UV method was developed to confirm the protection of isolated bacterial strains by single UV filters and combinations. RESULTS Alpha diversity was impacted by significant inter-individual differences and by treatment rather than by irradiation. Cutibacterium acnes was found to be the most abundant and a confounding factor for diversity. On a species level, Lactobacillus crispatus was negatively associated with UVR and placebo treatment, whereas there was a positive association with sunscreen treatment. The sunscreen treatment also favoured an interaction network with central Micrococcus genus. The in vitro results showed that both single UV filters and combinations had specific effects on the survival rates of L. crispatus, C. acnes, and Staphylococcus epidermidis. CONCLUSION We identified potential microorganisms and bacterial interactions that were associated with an SPF 20 sunscreen treatment. The specific protection of L. crispatus as a key player in the UV-exposed skin microbiome and reduction of C. acnes population by UV filters might lead to new cosmetic concepts for photoprotection.
Collapse
Affiliation(s)
- Rolf Schuetz
- Personal Care and Aroma, DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| | - Joshua Claypool
- Biodata and Translation, DSM Nutritional Products, Lexington, Massachusetts, USA
| | - Riccardo Sfriso
- Personal Care and Aroma, DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| | - Juergen H Vollhardt
- Personal Care and Aroma, DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
| |
Collapse
|
12
|
Lou J, Cui S, Li J, Jin G, Fan Y, Huang N. Causal relationship between the gut microbiome and basal cell carcinoma, melanoma skin cancer, ease of skin tanning: evidence from three two-sample mendelian randomisation studies. Front Immunol 2024; 15:1279680. [PMID: 38304424 PMCID: PMC10830803 DOI: 10.3389/fimmu.2024.1279680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives The present study used publicly available genome-wide association study (GWAS) summary data to perform three two-sample Mendelian randomization (MR) studies, aiming to examine the causal links between gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Methods SNPs associated with exposures to basal cell carcinoma, melanoma skin cancer and ease of skin tanning from the genome-wide association study data of UK Biobank and MRC-IEU (MRC Integrative Epidemiology Unit), and the meta-analysis data from Biobank and MRC-IEU were used as instrumental variables (IVs). The casual estimates were assessed with a two-sample Mendelian randomisation test using the inverse-variance-weighted (IVW) method, Wald ratio, MR-Egger method, maximum likelihood, weighted median, simple mode, and weighted mode. Results After the application of MR analysis, diffirent effects of multiple groups of gut microbiota was observed for BCC, melanoma skin cancer and ease of skin tanning. The relationships between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning were supported by a suite of sensitivity analyses, with no statistical evidence of instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the relationship between between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning. Conclusion Our study initially identified potential causal roles between the gut microbiome and BCC, melanoma skin cancer, ease of skin tanning, and highlighted the role of gut microbiome in the progression of basal cell carcinoma, melanoma skin cancer, ease of skin tanning.
Collapse
|
13
|
Grant GJ, Kohli I, Mohammad TF. A narrative review of the impact of ultraviolet radiation and sunscreen on the skin microbiome. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12943. [PMID: 38288770 DOI: 10.1111/phpp.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.
Collapse
Affiliation(s)
- Garett J Grant
- Department of Internal Medicine, Transitional Year Residency Program, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indermeet Kohli
- The Henry W Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Tasneem F Mohammad
- The Henry W Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
14
|
Luo R, Zhang T, Wang L, Feng Y. Emissions and mitigation potential of endocrine disruptors during outdoor exercise: Fate, transport, and implications for human health. ENVIRONMENTAL RESEARCH 2023; 236:116575. [PMID: 37487926 DOI: 10.1016/j.envres.2023.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The endocrine system is responsible for secreting and controlling hormones crucial in regulating key body activities. However, endocrine disruptors or endocrine-disrupting chemicals (EDCs) can harm human health and well-being by interfering with this complex process. This report seeks to assess the present state of understanding about endocrine disruptors in China, including their origins, impacts, and obstacles, and to provide actionable recommendations for reducing exposure and mitigating negative effects. Strong negative correlations between ANOE and rural ecological compensation (REC) and a negative correlation between ANOE and forest coverage (FC) were found in this analysis of the relationships between agricultural nitrous oxide emissions (ANOE), agricultural methane emissions (AME), and land use and land cover variables (LUPC). Just as LUPC is significantly inversely related to FC, AME is positively related. The team uses a gradient-boosted model (GBM) with a Gaussian loss function and fine-tunes the model's parameters to achieve optimal performance and reliable prediction results. With a relative relevance score of 90.36 for ANOE and 67.64 for AME, the analysis shows that LUPC is the most important factor in influencing emission levels. This study aims to increase knowledge of endocrine disruptors' potential advantages and disadvantages in outdoor exercise. The study aims to aid in preventing and managing many diseases and disorders caused by hormonal imbalances or disruptions by examining the origins, effects, and potential mitigation of these substances during outdoor activity. Safe and healthful outdoor exercise is promoted by the study's efforts to discover and implement effective and sustainable solutions to decrease emissions and exposure to endocrine disruptors. This comprehensive study aims to promote a healthier and more sustainable environment for individuals engaging in outdoor exercise by synthesizing current knowledge, providing practical recommendations, and emphasizing the importance of awareness and action.
Collapse
Affiliation(s)
- Rui Luo
- Chengdu Sport University, Tiyuan Road, Chengdu, Sichuan Province, 610041, China; College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China.
| | - Tao Zhang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Li Wang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Yong Feng
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| |
Collapse
|
15
|
Damiani G, Pacifico A, Scoditti E, di Gregorio S, Del Fabbro M, Cozzolino C, Buja A, Mercuri SR, Bianchi VG, Grada A, Garbarino S, Bunick CG. Circadian Oscillations of Minimal Erythema Dose (MED) are Also Influenced by Diet in Patients with Psoriasis: A Chronomedical Study. Dermatol Ther (Heidelb) 2023; 13:2229-2246. [PMID: 37573289 PMCID: PMC10539244 DOI: 10.1007/s13555-023-00987-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
INTRODUCTION Minimal erythema dose (MED) remains a parameter of paramount importance to orient narrow-band (NB)-UVB phototherapy in psoriatic (PsO) patients. Recently, circadian rhythm and diet were recognized as potential MED modulators, but their mutual interaction remains understudied. Thus, we aimed to evaluate the potential diet modulation of MED circadian oscillations. METHODS In the first phase, a cohort study was performed comparing potential MED oscillations (morning, afternoon, and evening) among omnivorous psoriatic patients before and after a phototherapy cycle and omnivorous healthy controls. The two groups were age-, gender-, skin-type-, MED-, and diet-matched. Then, in the second phase, another cohort study was carried out comparing MED oscillations 24 h after the last phototherapeutic session only in psoriatic patients cleared with NB-UVB and undergoing different diets (vegan, vegetarian, paleo , ketogenic, intermittent circadian fasting, and omnivore). Patients with different diets were age-, gender-, and skin-type matched. RESULTS In the first phase, we enrolled only omnivores, specifically 54 PsO patients and 54 healthy individuals. Their MED before and after NB-UVB therapy changed significantly among the three different time-points (morning, afternoon, and evening) (p < 0.001). The time effect was statistically significant in both groups before and after phototherapy. In the second phase, we enrolled 144 PsO patients (vegan, vegetarian, paleo, ketogenic, intermittent circadian fasting, and omnivore). MED circadian oscillations preserved a significant difference also after clearance and were influenced by diet type and time of day (p < 0.001). In particular, vegans displayed the lowest MED values, whilst Ramadan fasting showed the highest values in morning, afternoon, and evening. CONCLUSIONS Diet, like other ongoing therapies, should be reported in the medical records of patients with psoriasis undergoing NB-UVB and patients with lower MEDs should be preferentially treated in the morning when the MED is higher.
Collapse
Affiliation(s)
- Giovanni Damiani
- Italian Center for Precision Medicine in Chronic Inflammation, University of Milan, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- PhD Degree Program in Pharmacological Sciences, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy
| | - Alessia Pacifico
- Clinical Dermatology Department, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council (CNR), 73100 Lecce, Italy
| | - Sara di Gregorio
- Italian Center for Precision Medicine in Chronic Inflammation, University of Milan, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Claudia Cozzolino
- Department of Cardiologic, Vascular and Thoracic Sciences, and Public Health, University of Padova, 35128 Padua, Italy
| | - Alessandra Buja
- Italian Center for Precision Medicine in Chronic Inflammation, University of Milan, 20122 Milan, Italy
- Department of Cardiologic, Vascular and Thoracic Sciences, and Public Health, University of Padova, 35128 Padua, Italy
| | - Santo R. Mercuri
- Unit of Dermatology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | | | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Christopher G. Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
16
|
Savoia P, Azzimonti B, Rolla R, Zavattaro E. Role of the Microbiota in Skin Neoplasms: New Therapeutic Horizons. Microorganisms 2023; 11:2386. [PMID: 37894044 PMCID: PMC10608979 DOI: 10.3390/microorganisms11102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The skin and the gut are regularly colonized by a variety of microorganisms capable of interacting with the immune system through their metabolites and influencing the balance between immune tolerance and inflammation. Alterations in the composition and diversity of the skin microbiota have been described in various cutaneous diseases, including skin cancer, and the actual function of the human microbiota in skin carcinogenesis, such as in progression and metastasis, is currently an active area of research. The role of Human Papilloma Virus (HPV) in the pathogenesis of squamous cell carcinoma is well consolidated, especially in chronically immunosuppressed patients. Furthermore, an imbalance between Staphylococcus spp., such as Staphylococcus epidermidis and aureus, has been found to be strongly related to the progression from actinic keratosis to squamous cell carcinoma and differently associated with various stages of the diseases in cutaneous T-cell lymphoma patients. Also, in melanoma patients, differences in microbiota have been related to dissimilar disease course and prognosis and may affect the effectiveness and tolerability of immune checkpoint inhibitors, which currently represent one of the best chances of a cure. From this point of view, acting on microbiota can be considered a possible therapeutic option for patients with advanced skin cancers, even if several issues are still open.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy; (B.A.); (R.R.); (E.Z.)
| | | | | | | |
Collapse
|
17
|
Deng T, Zheng H, Zhu Y, Liu M, He G, Li Y, Liu Y, Wu J, Cheng H. Emerging Trends and Focus in Human Skin Microbiome Over the Last Decade: A Bibliometric Analysis and Literature Review. Clin Cosmet Investig Dermatol 2023; 16:2153-2173. [PMID: 37583484 PMCID: PMC10424697 DOI: 10.2147/ccid.s420386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Background Human skin microbiome is the first barrier against exogenous attack and is associated with various skin disease pathogenesis and progression. Advancements in high-throughput sequencing technologies have paved the way for a deeper understanding of this field. Based on the bibliometric analysis, this investigation aimed to identify the hotspots and future research trends associated with human skin microbiomes studied over the past decade. Methods The published research on skin microbiome from January 2013 to January 2023 was retrieved from the Web of Science Core Collection. Data cleaning processes to ensure robust data and the bibliometrix packages R, CiteSpace, VOSviewer, Origin, and Scimago Graphica for bibliometric and visual analyses were utilized. Results A total of 1629 published documents were analyzed. The overall publication trend steadily increased, with relatively fast growth in 2017 and 2020. The United States of America has the highest number of publications and citations and shows close collaborations with China and Germany. The University of California, San Diego, indicated a higher number of publications than other institutions and the fastest growth rate. The top three most publishing journals on this topic are Microorganisms, Frontiers in Microbiology, and Experimental dermatology. Gallo RL is the most influential author with the highest h- and g-index and most publications in skin microecology, followed by Grice EA and Kong HH. The top 10 most frequently used keywords in recent years included skin microbiome, microbiome, staphylococcus aureus, diversity, atopic dermatitis, skin, bacteria, infections, gut microbiota, and disease. Conclusion The skin microbiome is an area of research that requires continuous analysis, and even with much-achieved progress, future research will further be aided as technology develops.
Collapse
Affiliation(s)
- Tinghan Deng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Huilan Zheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ying Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Guanjin He
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Ya Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Yichen Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
18
|
Willmott T, Campbell PM, Griffiths CEM, O’Connor C, Bell M, Watson REB, McBain AJ, Langton AK. Behaviour and sun exposure in holidaymakers alters skin microbiota composition and diversity. FRONTIERS IN AGING 2023; 4:1217635. [PMID: 37614517 PMCID: PMC10442491 DOI: 10.3389/fragi.2023.1217635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
Introduction: The skin microbiota plays a crucial role in maintaining epidermal homeostasis. Ultraviolet radiation (UVR) and other environmental challenges can impact the skin microbiota through direct and indirect mechanisms. This study aimed to investigate the effects of sun exposure on the skin microbiota and its relationship with individual skin phototypes. Methods: Healthy volunteers (n = 21 [4M, 17 F], mean age 33.2 years) holidayed in a sunny destination for a minimum of 7 days with swabs taken pre-holiday and up to 84 days post-holiday. Participant group was categorised by individual typology angle (ITA) classification and the composition of the skin microbiota was examined using 16S rRNA gene sequencing. Results: In the entire cohort and at all time points, the major bacterial phyla were Actinobacteria, Proteobacteria and Firmicutes. There was a significant change in microbial beta diversity at day 28 post-holiday, compared to baseline, for all participants. However, when participants were segregated into three cohorts dependent on the degree of skin tanning response between baseline (pre-holiday) and immediately one-day post-holiday, there was a reduction in Proteobacteria in the sun-seeking participants 1 day after the holiday, which recovered over time. Discussion: These findings suggest that sun exposure can affect the diversity and composition of the skin microbiota, which may have downstream effects on skin health.
Collapse
Affiliation(s)
- Thomas Willmott
- School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Paul M. Campbell
- School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Clare O’Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, United Kingdom
| | - Michael Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, United Kingdom
| | - Rachel E. B. Watson
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester, United Kingdom
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andrew J. McBain
- School of Health Sciences, The University of Manchester, Manchester, United Kingdom
| | - Abigail K. Langton
- Centre for Dermatology Research, Manchester Academic Health Science Centre, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
19
|
Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules 2023; 28:molecules28041648. [PMID: 36838636 PMCID: PMC9967237 DOI: 10.3390/molecules28041648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Ergothioneine, a sulfur-containing micromolecular histidine derivative, has attracted increasing attention from scholars since it was confirmed in the human body. In the human body, ergothioneine is transported and accumulated specifically through OCTN-1, especially in the mitochondria and nucleus, suggesting that it can target damaged cells and tissues as an antioxidant. It shows excellent antioxidant, anti-inflammatory effects, and anti-aging properties, and inhibits melanin production. It is a mega antioxidant that may participate in the antioxidant network system and promote the reducing glutathione regeneration cycle. This review summarizes studies on the antioxidant effects of ergothioneine on various free radicals in vitro to date and systematically introduces its biological activities and potential mechanisms, mostly in dermatology. Additionally, the application of ergothioneine in cosmetics is briefly summarized. Lastly, we propose some problems that require solutions to understand the mechanism of action of ergothioneine. We believe that ergothioneine has good prospects in the food and cosmetics industries, and can thus meet some needs of the health and beauty industry.
Collapse
|
20
|
Teng Y, Huang Y, Danfeng X, Tao X, Fan Y. The Role of Probiotics in Skin Photoaging and Related Mechanisms: A Review. Clin Cosmet Investig Dermatol 2022; 15:2455-2464. [PMID: 36420112 PMCID: PMC9677255 DOI: 10.2147/ccid.s388954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 07/21/2023]
Abstract
Solar ultraviolet radiation (UVR) is the primary pathogenetic factor in skin photoaging. It can disrupt cellular homeostasis by damaging DNA, inducing an inflammatory cascade, immunosuppression, and extracellular matrix (ECM) remodeling, resulting in a variety of dermatologic conditions. The skin microbiome plays an important role in the homeostasis and maintenance of healthy skin. Emerging evidence has indicated that highly diverse gut microbiome may also have an impact on the skin health, referred to as the gut-skin axis (GSA). Oral and topical probiotics through modulating the skin microbiome and gut-skin microbial interactions could serve as potential management to prevent and treat the skin photoaging by multiple pathways including reducing oxidative stress, inhibiting ECM remodeling, inhibiting the inflammatory cascade reaction, and maintaining immune homeostasis. In this review, the effects of oral and topical probiotics in skin photoaging and related mechanisms are both described systematically and comprehensively.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xu Danfeng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
21
|
Puce L, Hampton-Marcell J, Trabelsi K, Ammar A, Chtourou H, Boulares A, Marinelli L, Mori L, Cotellessa F, Currà A, Trompetto C, Bragazzi NL. Swimming and the human microbiome at the intersection of sports, clinical, and environmental sciences: A scoping review of the literature. Front Microbiol 2022; 13:984867. [PMID: 35992695 PMCID: PMC9382026 DOI: 10.3389/fmicb.2022.984867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The human microbiota is comprised of more than 10-100 trillion microbial taxa and symbiotic cells. Two major human sites that are host to microbial communities are the gut and the skin. Physical exercise has favorable effects on the structure of human microbiota and metabolite production in sedentary subjects. Recently, the concept of "athletic microbiome" has been introduced. To the best of our knowledge, there exists no review specifically addressing the potential role of microbiomics for swimmers, since each sports discipline requires a specific set of techniques, training protocols, and interactions with the athletic infrastructure/facility. Therefore, to fill in this gap, the present scoping review was undertaken. Four studies were included, three focusing on the gut microbiome, and one addressing the skin microbiome. It was found that several exercise-related variables, such as training volume/intensity, impact the athlete's microbiome, and specifically the non-core/peripheral microbiome, in terms of its architecture/composition, richness, and diversity. Swimming-related power-/sprint- and endurance-oriented activities, acute bouts and chronic exercise, anaerobic/aerobic energy systems have a differential impact on the athlete's microbiome. Therefore, their microbiome can be utilized for different purposes, including talent identification, monitoring the effects of training methodologies, and devising ad hoc conditioning protocols, including dietary supplementation. Microbiomics can be exploited also for clinical purposes, assessing the effects of exposure to swimming pools and developing potential pharmacological strategies to counteract the insurgence of skin infections/inflammation, including acne. In conclusion, microbiomics appears to be a promising tool, even though current research is still limited, warranting, as such, further studies.
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Khaled Trabelsi
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, Sfax University, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Sport Science, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), Université Paris Lumières, Paris Nanterre University, Nanterre, France
| | - Hamdi Chtourou
- Institut Supérieur du Sport et de l’Éducation Physique de Sfax, Université de Sfax, Sfax, Tunisia
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia
| | - Ayoub Boulares
- Higher Institute of Sports and Physical Education of Ksar-Said, University of Manouba, Tunis, Tunisia
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Sapienza University of Rome, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Makaranka S, Scutt F, Frixou M, Wensley KE, Sharma R, Greenhowe J. The gut microbiome and melanoma: A review. Exp Dermatol 2022; 31:1292-1301. [PMID: 35793428 DOI: 10.1111/exd.14639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/16/2022]
Abstract
Disturbances in the microbial ecosystem have been implemented in chronic inflammation, immune evasion and carcinogenesis, with certain microbes associated with the development of specific cancers. In recent times, the gut microbiome has been recognised as a potential novel player in the pathogenesis and treatment of malignant melanoma. It has been shown that the composition of gut microbiota in early-stage melanoma changes from in situ to invasive and then to metastatic disease. The gut bacterial and fungal profile has also been found to be significantly different in melanoma patients compared to controls. Multiple studies of immune checkpoint inhibitor (ICI) therapies have shown that the commensal microbiota may have an impact on anti-tumor immunity and therefore ICI response in cancer patients. When it comes to chemotherapy and radiotherapy treatments, studies demonstrate that gut microbiota are invaluable in the repair of radiation and chemotherapy-induced damage and therapeutic manipulation of gut microbiota can be an effective strategy to deal with side effects. Studies demonstrate the oncogenic and tumor-suppressive properties of the gut microbiome, which may play a role in the pathogenesis of melanoma. Despite this, investigations into specific interactions are still in its infancy, but starting to gain momentum as more significant and clinically relevant effects are emerging.
Collapse
Affiliation(s)
| | - Freya Scutt
- Department of Plastic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Mikaela Frixou
- Department of Gastroenterology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Ravi Sharma
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | |
Collapse
|
23
|
Chen H, Li Y, Xie X, Chen M, Xue L, Wang J, Ye Q, Wu S, Yang R, Zhao H, Zhang J, Ding Y, Wu Q. Exploration of the Molecular Mechanisms Underlying the Anti-Photoaging Effect of Limosilactobacillus fermentum XJC60. Front Cell Infect Microbiol 2022; 12:838060. [PMID: 35573770 PMCID: PMC9104571 DOI: 10.3389/fcimb.2022.838060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Although lactic acid bacteria (LAB) were shown to be effective for preventing photoaging, the underlying molecular mechanisms have not been fully elucidated. Accordingly, we examined the anti-photoaging potential of 206 LAB isolates and discovered 32 strains with protective activities against UV-induced injury. All of these 32 LABs exhibited high levels of 2,2-diphenyl-picrylhydrazyl, as well as hydroxyl free radical scavenging ability (46.89–85.13% and 44.29–95.97%, respectively). Genome mining and metabonomic verification of the most effective strain, Limosilactobacillus fermentum XJC60, revealed that the anti-photoaging metabolite of LAB was nicotinamide (NAM; 18.50 mg/L in the cell-free serum of XJC60). Further analysis revealed that LAB-derived NAM could reduce reactive oxygen species levels by 70%, stabilize the mitochondrial membrane potential, and increase the NAD+/NADH ratio in UV-injured skin cells. Furthermore, LAB-derived NAM downregulated the transcript levels of matrix metalloproteinase (MMP)-1, MMP-3, interleukin (IL)-1β, IL-6, and IL-8 in skin cells. In vivo, XJC60 relieved imflammation and protected skin collagen fiber integrity in UV-injured Guinea pigs. Overall, our findings elucidate that LAB-derived NAM might protect skin from photoaging by stabilizing mitochondrial function, establishing a therotical foundation for the use of probiotics in the maintenance of skin health.
Collapse
Affiliation(s)
- Huizhen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Qingping Wu, ; Yu Ding,
| |
Collapse
|
24
|
Mousavi SE, Delgado-Saborit JM, Adivi A, Pauwels S, Godderis L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151654. [PMID: 34785217 DOI: 10.1016/j.scitotenv.2021.151654] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 05/25/2023]
Abstract
A rich body of literature indicates that environmental factors interact with the human microbiome and influence its composition and functions contributing to the pathogenesis of diseases in distal sites of the body. This systematic review examines the scientific evidence on the effect of environmental toxicants, air pollutants and endocrine disruptors (EDCs), on compositional and diversity of human microbiota. Articles from PubMed, Embase, WoS and Google Scholar where included if they focused on human populations or the SHIME® model, and assessed the effects of air pollutants and EDCs on human microbiome. Non-human studies, not written in English and not displaying original research were excluded. The Newcastle-Ottawa Scale was used to assess the quality of individual studies. Results were extracted and presented in tables. 31 studies were selected, including 24 related to air pollutants, 5 related to EDCs, and 2 related to EDC using the SHIME® model. 19 studies focussed on the respiratory system (19), gut (8), skin (2), vaginal (1) and mammary (1) microbiomes. No sufficient number of studies are available to observe a consistent trend for most of the microbiota, except for streptococcus and veillionellales for which 9 out of 10, and 3 out of 4 studies suggest an increase of abundance with exposure to air pollution. A limitation of the evidence reviewed is the scarcity of existing studies assessing microbiomes from individual systems. Growing evidence suggests that exposure to environmental contaminants could change the diversity and abundance of resident microbiota, e.g. in the upper and lower respiratory, gastrointestinal, and female reproductive system. Microbial dysbiosis might lead to colonization of pathogens and outgrowth of pathobionts facilitating infectious diseases. It also might prime metabolic dysfunctions disrupting the production of beneficial metabolites. Further studies should elucidate the role of environmental pollutants in the development of dysbiosis and dysregulation of microbiota-related immunological processes.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- Department of Water and Wastewater Treatment, Water and Wastewater Consulting Engineers (Design & Research), Isfahan, Iran
| | - Juana Maria Delgado-Saborit
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Sara Pauwels
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Belgium; IDEWE, External Service for Prevention and Protection at work, Interleuvenlaan 58, 3001 Heverlee, Belgium.
| |
Collapse
|
25
|
Eco-evolutionary impact of ultraviolet radiation (UVR) exposure on microorganisms, with a special focus on our skin microbiome. Microbiol Res 2022; 260:127044. [DOI: 10.1016/j.micres.2022.127044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
|
26
|
González S, Aguilera J, Berman B, Calzavara-Pinton P, Gilaberte Y, Goh CL, Lim HW, Schalka S, Stengel F, Wolf P, Xiang F. Expert Recommendations on the Evaluation of Sunscreen Efficacy and the Beneficial Role of Non-filtering Ingredients. Front Med (Lausanne) 2022; 9:790207. [PMID: 35433750 PMCID: PMC9008233 DOI: 10.3389/fmed.2022.790207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
A variety of non-filtering agents have been introduced to enhance sunscreen photoprotection. Most of those agents have only weak erythema protective properties but may be valuable and beneficial in supporting protection against other effects of UV radiation, such as photoimmunosuppression, skin aging, and carcinogenesis, as well as photodermatoses. The question arises how to measure and evaluate this efficacy since standard SPF testing is not appropriate. In this perspective, we aim to provide a position statement regarding the actual value of SPF and UVA-PF to measure photoprotection. We argue whether new or additional parameters and scales can be used to better indicate the protection conferred by these products against the detrimental effects of natural/artificial, UV/visible light beyond sunburn, including DNA damage, photoimmunosuppression and pigmentation, and the potential benefits of the addition of other ingredients beyond traditional inorganic and organic filters to existing sunscreens. Also, we debate the overall usefulness of adding novel parameters that measure photoprotection to reach two tiers of users, that is, the general public and the medical community; and how this can be communicated to convey the presence of additional beneficial effects deriving from non-filtering agents, e.g., biological extracts. Finally, we provide a perspective on new challenges stemming from environmental factors, focusing on the role of the skin microbiome and the role of air pollutants and resulting needs for photoprotection.
Collapse
Affiliation(s)
- Salvador González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
- *Correspondence: Salvador González,
| | - José Aguilera
- Dermatological Photobiology Laboratory, Medical Research Center, School of Medicine, University of Málaga, Málaga, Spain
| | - Brian Berman
- Department of Dermatology and Cutaneous Surgery, University of Miami-Florida, Miami, FL, United States
| | | | - Yolanda Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Sergio Schalka
- Photoprotection Laboratory, Medicine Skin Research Center, São Paulo, Brazil
| | | | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Flora Xiang
- Department of Dermatology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Efficacy of postbiotics against free radicals and UV radiation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Gueniche A, Valois A, Kerob D, Rasmont V, Nielsen M. A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier. J Eur Acad Dermatol Venereol 2022; 36 Suppl 2:16-25. [PMID: 34979591 DOI: 10.1111/jdv.17786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
Probiotics are live microorganisms, which, when administered in adequate amounts, confer a health benefit on the host. Semiactive, non-replicating bacteria or extracts used in dermocosmetics have interesting properties for skin quality. Vitreoscilla filiformis is cultured by a fermentation process to obtain an extract. It is considered as a probiotic fraction and topical application of this extract has shown activity to strengthen the skin physical barrier function and maintain good homeostasis of skin defenses. Vichy volcanic mineralizing water (VVMW) is a pure, highly mineralized water that has been shown to strengthen the skin against exposome aggressions. This manuscript reviews properties of probiotic fractions used in skin care, especially studies on an extract of V. filiformis grown in a medium containing VVMW (VfeV) and evaluated in combination with VVMW. Skin barrier function: In normal human epidermal keratinocyte cultures, the combination of 10% VVMW and 0.002% VfeV significantly increased transglutaminase, filaggrin, involucrin, claudin-1, and zonula occludens-1 in comparison with the controls. Antimicrobial peptide defenses: The combination of 16.7% VVMW and 0.1% VfeV increased the expression of β-defensin-4A and S100A7. Skin immune defense functions: In lipopolysaccharide-stimulated peripheral blood mononuclear cells, the combination of 16.7% VVMW and 0.1% VfeV down-regulated IL-8, TNF-α, IL-12/IL-23p40, and increased IL10 and IL-10/IL-12 ratio compared to the control. Additionally, the combination of 79% VVMW plus 5% VfeV protected Langerhans cells in skin explants exposed to ultraviolet radiation. In conclusion, the combination of VfeV plus VVMW has properties to strengthen the skin barrier by stimulating skin differentiation and tight junctions, biochemical defenses by stimulating antimicrobial peptides, and cellular immune defenses by increasing the IL-10/IL-12 ratio and by protecting Langerhans cells challenged by ultraviolet radiation.
Collapse
Affiliation(s)
- A Gueniche
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - A Valois
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - D Kerob
- Laboratoires Vichy, Levallois Perret, France
| | - V Rasmont
- Laboratoires Vichy, Levallois Perret, France
| | - M Nielsen
- Laboratoires Vichy, Levallois Perret, France
| |
Collapse
|
29
|
Boyajian JL, Ghebretatios M, Schaly S, Islam P, Prakash S. Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients 2021; 13:nu13124550. [PMID: 34960102 PMCID: PMC8705837 DOI: 10.3390/nu13124550] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The role of the microbiome in human aging is important: the microbiome directly impacts aging through the gastrointestinal system. However, the microbial impact on skin has yet to be fully understood. For example, cellular senescence is an intrinsic aging process that has been recently associated with microbial imbalance. With age, cells become senescent in response to stress wherein they undergo irreversible growth arrest while maintaining high metabolic activity. An accumulation of senescent cells has been linked to various aging and chronic pathologies due to an overexpression of the senescence-associated secretory phenotype (SASP) comprised of proinflammatory cytokines, chemokines, growth factors, proteases, lipids and extracellular matrix components. In particular, dermatological disorders may be promoted by senescence as the skin is a common site of accumulation. The gut microbiota influences cellular senescence and skin disruption through the gut-skin axis and secretion of microbial metabolites. Metabolomics can be used to identify and quantify metabolites involved in senescence. Moreover, novel anti-senescent therapeutics are warranted given the poor safety profiles of current pharmaceutical drugs. Probiotics and prebiotics may be effective alternatives, considering the relationship between the microbiome and healthy aging. However, further research on gut composition under a senescent status is needed to develop immunomodulatory therapies.
Collapse
|
30
|
Zou DD, Xu D, Deng YY, Wu WJ, Zhang J, Huang L, He L. Identification of key genes in cutaneous squamous cell carcinoma: a transcriptome sequencing and bioinformatics profiling study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1497. [PMID: 34805359 PMCID: PMC8573448 DOI: 10.21037/atm-21-3915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. Methods In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). Results A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. Conclusions Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Yuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
Effects of Heat-Killed Lactococcus lactis Strain Plasma on Skin Homeostasis-Related Genes and the Skin Microbiome among Healthy Adults: A Randomized Controlled Double-Blind Study. Microorganisms 2021; 9:microorganisms9102029. [PMID: 34683350 PMCID: PMC8539941 DOI: 10.3390/microorganisms9102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/03/2022] Open
Abstract
Lactococcus lactis subsp. lactis strain plasma (LC-plasma) is a bacterial strain that activates plasmacytoid dendritic cells and induces viral resistance genes via the TLR9/MyD88 pathway. We recently showed that oral administration of LC-plasma prevents skin infection by Staphylococcus aureus, possibly by activating skin immunity. In this study, we conducted a double-blind clinical trial to investigate the effect of oral administration of heat-killed LC-plasma on the skin microbiome, gene expression in the skin, and the skin condition of healthy volunteers. Seventy healthy volunteers were randomly assigned to receive either heat-killed LC-plasma or a placebo for eight weeks. Analysis of the skin microbiome by next-generation sequencing suggested that the alpha-diversity of the skin microbiome did not change during the test period in either group. However, the proportion of species that changed significantly during the test period was 10-fold smaller in the LC-plasma group than in the placebo group, suggesting that LC-plasma may maintain the skin microbiome. Quantitative PCR analysis indicated that tight-junction genes, such as CLDN1 and CLDN12, and the antimicrobial peptide gene BD3 were significantly up-regulated in the LC-plasma group but not in the placebo group. Our results suggest that administration of LC-plasma helps to maintain the skin microbiome and that it affects homeostasis-related genes.
Collapse
|
32
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
33
|
Gruber-Wackernagel A, Schug T, Graier T, Legat FJ, Rinner H, Hofer A, Quehenberger F, Wolf P. Long-Term Course of Polymorphic Light Eruption: A Registry Analysis. Front Med (Lausanne) 2021; 8:694281. [PMID: 34336899 PMCID: PMC8323194 DOI: 10.3389/fmed.2021.694281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Little is known about the long-term course of polymorphic light eruption (PLE). Objective: To predict disease course, a questionnaire was sent to patients whose PLE had been diagnosed between March 1990 and December 2018 and documented in the Austrian Cooperative Registry for Photodermatoses. Methods: In January 2019, 205 PLE patients were contacted by mail and asked to complete a questionnaire on their disease course, including whether the skin's sun sensitivity had normalized (i.e., PLE symptoms had disappeared), improved, stayed the same, or worsened over time. Patients who reported normalization of sun sensitivity were asked to report when it had occurred. Results: Ninety-seven patients (79 females, 18 males) returned a completed questionnaire. The mean (range) duration of follow-up from PLE onset was 29.6 (17–54) years for females and 29.4 (16–47) years for males. The disease disappeared in 32 (41%) females after 17.4 (2–41) years and in 4 (24%) males after 11.8 (5–26) years. Twenty-nine (37%) females and 6 (35%) males reported improvement of symptoms over time; 15 females (19%) and 7 males (41%) reported no change; and 3 females (4%) and no males reported worsening of symptoms. Kaplan-Meier analysis revealed that after 20 years 74% (95%CI, 64–82%) of patients still suffered from PLE. PLE lesion persistence (>1 week) tended to predict a prolonged course of PLE. Conclusions: PLE usually takes a long-term course over many years though in most patients its symptoms improve or disappear over time. How improvement relates to the pathophysiology of the disease remains to be determined.
Collapse
Affiliation(s)
| | - Tanja Schug
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Thomas Graier
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Franz J Legat
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Hanna Rinner
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Angelika Hofer
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Franz Quehenberger
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
34
|
Kim D, Lee KR, Kim NR, Park SJ, Lee M, Kim OK. Combination of Bifidobacterium longum and Galacto-Oligosaccharide Protects the Skin from Photoaging. J Med Food 2021; 24:606-616. [PMID: 34077675 DOI: 10.1089/jmf.2021.k.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexposure to ultraviolet B (UVB) irradiation induces photoaging that is characterized by the formation of wrinkles and loss of skin elasticity. To understand the mechanism of action of probiotics and prebiotics in skin protection against photoaging, we investigated the effects of dietary supplementation with the probiotic, Bifidobacterium longum, and prebiotic, galacto-oligosaccharide, on UVB-induced photoaging in hairless mice. We measured short chain fatty acid (SCFA) levels, antioxidant enzyme activity, and inflammatory signaling protein levels to elucidate the possible mechanisms underlying the effects of the dietary supplements B. longum and galacto-oligosaccharide. We observed that dietary supplementation with B. longum and galacto-oligosaccharide, individually and in combination, exerted protective effects against UVB-induced photoaging, showing anti-inflammatory and antioxidative effects. In particular, supplementation with the combination of B. longum and galacto-oligosaccharide showed stronger protective effects than supplementation with the probiotic or prebiotic alone. In addition, the serum levels of SCFAs and acetate were increased following dietary supplementation with B. longum and galacto-oligosaccharide, especially in combination. Therefore, we suggest that the combination of B. longum and galacto-oligosaccharide may potentially be used as a functional food to protect UVB-induced photoaging.
Collapse
Affiliation(s)
- Dakyung Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Kyu Ri Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Korea
| | | | - Soo-Jeung Park
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Minhee Lee
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
35
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
36
|
Souak D, Barreau M, Courtois A, André V, Duclairoir Poc C, Feuilloley MGJ, Gault M. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage. Microorganisms 2021; 9:microorganisms9050936. [PMID: 33925587 PMCID: PMC8145394 DOI: 10.3390/microorganisms9050936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.
Collapse
Affiliation(s)
- Djouhar Souak
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Magalie Barreau
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Aurélie Courtois
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Valérie André
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Cécile Duclairoir Poc
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Marc G. J. Feuilloley
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Manon Gault
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| |
Collapse
|
37
|
Plessas S, Kiousi DE, Rathosi M, Alexopoulos A, Kourkoutas Y, Mantzourani I, Galanis A, Bezirtzoglou E. Isolation of a Lactobacillus paracasei Strain with Probiotic Attributes from Kefir Grains. Biomedicines 2020; 8:biomedicines8120594. [PMID: 33322295 PMCID: PMC7764135 DOI: 10.3390/biomedicines8120594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Κefir is a rich source of potentially probiotic bacteria. In the present study, firstly, in vitro screening for probiotic characteristics of ten lactic acid bacteria (LAB) isolated from kefir grains was performed. Strain AGR 4 was selected for further studies. Molecular characterization of strain AGR 4, confirmed that AGR 4 belongs to the Lactobacillus paracasei (reclassified to Lacticaseibacillus paracasei subsp. paracasei) species. Further testing revealed that L. paracasei AGR 4 displayed adhesion capacity on human adenocarcinoma cells, HT-29, similar to that of the reference strain, L. casei ATCC 393. In addition, the novel strain exerted significant time- and dose-dependent antiproliferative activity against HT-29 cells and human melanoma cell line, A375, as demonstrated by the sulforhodamine B cytotoxicity assay. Flow cytometry analysis was employed to investigate the mechanism of cellular death; however, it was found that AGR 4 did not act by inducing cell cycle arrest and/or apoptotic cell death. Taken together, these findings promote the probiotic character of the newly isolated strain L. paracasei AGR 4, while further studies are needed for the detailed description of its biological properties.
Collapse
Affiliation(s)
- Stavros Plessas
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
- Correspondence: ; Tel./Fax: +30-25520-41141
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Marina Rathosi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Athanasios Alexopoulos
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece; (A.A.); (I.M.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (M.R.); (A.G.)
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| |
Collapse
|
38
|
Skin Protective Activity of LactoSporin-the Extracellular Metabolite from Bacillus Coagulans MTCC 5856. COSMETICS 2020. [DOI: 10.3390/cosmetics7040076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Probiotics and their products are increasingly used in skincare in recent years. Postbiotics are defined as any substance derived through the metabolic activity of a probiotic microorganism, which exerts a direct or indirect beneficial effect on the host. The extracellular metabolites of probiotic bacteria have antimicrobial activities, protect against acne, and improve skin condition. We studied skin protective activities of the extracellular metabolite (LactoSporin) of a spore-forming probiotic Bacillus coagulans MTCC 5856 in vitro. Methods: LactoSporin was evaluated for antioxidant activity by free radical scavenging activity and reactive oxygen quenching activity in human dermal fibroblast cells. Protection of fibroblasts from UV-induced apoptosis and cell death was studied by flow cytometry and neutral red uptake assays. Enzyme inhibition assays were carried out for collagenase, Elastase, and Hyaluronidase. Gene expression studies were carried out using polymerase chain reaction. Results: LactoSporin showed antioxidant activity and was found to protect skin cells from UV-induced apoptosis and cell death. LactoSporin inhibited collagenase, elastase, and hyaluronidase activity and upregulated the expression of hyaluronan synthase, transforming growth factor and epidermal growth factor, which are associated with extracellular matrix integrity. Conclusions: These results suggest LactoSporin is a skin protective postbiotic with wide application in cosmetic formulations.
Collapse
|