1
|
Oyovwi MO, Ben-Azu B, Babawale KH. Therapeutic potential of microbiome modulation in reproductive cancers. Med Oncol 2025; 42:152. [PMID: 40188410 DOI: 10.1007/s12032-025-02708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/30/2025] [Indexed: 04/08/2025]
Abstract
The human microbiome, a complex ecosystem of microbial communities, plays a crucial role in physiological processes, and emerging research indicates a potential link between it and reproductive cancers. This connection highlights the significance of understanding the microbiome's influence on cancer development and treatment. A comprehensive review of current literature was conducted, focusing on studies that investigate the relationship between microbiome composition, reproductive cancer progression, and potential therapeutic approaches to modulate the microbiome. Evidence suggests that imbalances in the microbiome, known as dysbiosis, may contribute to the development and progression of reproductive cancers. Specific microbial populations have been associated with inflammatory responses, immune modulation, and even resistance to conventional therapies. Interventions such as probiotics, dietary modifications, and fecal microbiota transplantation have shown promise in restoring healthy microbiome function and improving cancer outcomes in pre-clinical models, with pilot studies in humans indicating potential benefits. This review explores the therapeutic potential of microbiome modulation in the management of reproductive cancers, discussing the mechanisms involved and the evidence supporting microbiome-targeted therapies. Future research is warranted to unravel the complex interactions between the microbiome and reproductive cancer pathophysiology, paving the way for innovative approaches.
Collapse
Affiliation(s)
- Mega Obukohwo Oyovwi
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria.
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Delta State University, Abraka, 330106, Delta State, Nigeria
| | - Kehinde Henrietta Babawale
- Faculty of Basic Medical Sciences, Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
2
|
Zhu S, Wang YY, Hu XY, Zhou HL, Wang G, Chen HX, Zeng HB, Xie H, Wang ZX, Xu R. Akkermansia muciniphila-derived extracellular vesicles mitigate smoking-induced prostate inflammation and fibrosis. Int Immunopharmacol 2025; 149:114195. [PMID: 39904036 DOI: 10.1016/j.intimp.2025.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/26/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Cigarette smoking (CS) is a well-known risk factor for inducing prostate inflammation and fibrosis, presenting significant threats to male reproductive health. Recent research has highlighted the significant role of gut microbiota (GM) in regulating extra-intestinal organs. This study aimed to investigate the effects of Akk and its extracellular vesicles (EVs) on CS-induced prostate inflammation and fibrosis. METHODS This study utilized a mouse model of mainstream smoke exposure to investigate the effects of Akkermansia muciniphila (Akk) and its EVs on prostate tissue affected by CS. Prostate inflammation and fibrosis was assessed through HE staining, qRT-PCR, IHC staining, and immunofluorescence staining. Functional protein P9 enriched in Akk-EVs was used to intervene cigarette smoke extract (CSE)-exposed BPH-1 cells in vitro to validate the anti-inflammatory and anti-fibrotic effects. RESULTS The results revealed that CS exposure leads or led to pronounced prostatic inflammation and fibrosis, accompanied by a notable decrease in intestinal levels of Akk. Supplementation with Akk was found to effectively mitigate prostate lesions caused by CS, with the therapeutic effects primarily attributed to the Akk-derived extracellular vesicles (Akk-EVs). The transport kinetics of Akk-EVs to prostate tissue and cells were elucidated, providing insights into their mechanism of action. Both in vitro and in vivo experiments demonstrated that Akk-EVs and their enriched P9 protein effectively ameliorated CS-induced pro-inflammatory cytokine expression and collagen deposition in the prostate. CONCLUSIONS These findings highlight the anti-inflammatory and anti-fibrotic properties of Akk-EVs and P9 protein, suggesting their potential as therapeutic agents for CS-induced prostate lesions.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Xin-Yue Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hong-Liang Zhou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guang Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui-Xiang Chen
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hong-Bo Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Angmedicine, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
3
|
Yang L, Wang L, Zheng YB, Liu Y, Bao EH, Wang JH, Xia L, Wang B, Zhu PY. Causal relationship between periodontitis and prostate diseases: a bidirectional Mendelian randomization study. Clin Oral Investig 2025; 29:127. [PMID: 39945912 DOI: 10.1007/s00784-025-06211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND There is currently evidence supporting an association between periodontitis and prostate disease, but further research is needed to establish a causal relationship due to potential confounding factors and uncertainty about the direction of causality. The present study employs a bidirectional Mendelian Randomization (MR) analysis to eliminate confounding factors at the genetic level and determine the causal relationship between periodontitis and prostate diseases. METHODS Summary data for periodontitis were obtained from the GLIDE consortium (N = 45,563), while data for prostate diseases, including benign prostatic hyperplasia (N = 163,095), prostatitis (N = 134,299), and prostate cancer (N = 146,465), were sourced from the FinnGen database. Various methods were employed in the Mendelian randomization (MR) analysis, including the inverse variance-weighted (IVW) method, MR-Egger regression, weighted median, and weighted mode. Sensitivity analyses, such as the MR-Egger intercept test and MR-PRESSO method, were performed to ensure the reliability and robustness of the results. RESULTS Results from the bidirectional MR analysis using the IVW method as the primary approach, indicate that no causal relationship exists between periodontitis and prostate disease. Consequently, there is insufficient evidence to substantiate their association. Moreover, additional sensitivity analyses performed further reinforce the robustness of our findings. CONCLUSION Our MR study did not identify a causal relationship between periodontitis and prostate disease. However, we do not rule out the possibility of an underlying etiological connection and shared mechanisms between the two conditions. Therefore, further large-scale studies using various approaches are needed to explore their association in greater depth and provide more comprehensive and accurate guidance for clinical practice.
Collapse
Affiliation(s)
- Lin Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Urology, Burns and Plastic Surgery, Guangyuan First People's Hospital, Guangyuan, China
| | - Li Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China, Lanzhou, China
| | - Yong-Bo Zheng
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Urology, Yibin Fifth People's Hospital, Yibin, China
| | - Er-Hao Bao
- Department of Urology, Dazhou First People's Hospital, Dazhou, China
| | - Jia-Hao Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Long Xia
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ben Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ping-Yu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
4
|
Kumar P, Kumar A, Kumar V. Role of Microbiota-Derived Metabolites in Prostate Cancer Inflammation and Progression. Cell Biochem Funct 2025; 43:e70050. [PMID: 39891389 DOI: 10.1002/cbf.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Prostate cancer (PCa) is the most commonly detected malignancy in men worldwide. PCa is a slow-growing cancer with the absence of symptoms at early stages. The pathogenesis has not been entirely understood including the key risk factors related to PCa development like diet and microbiota derived metabolites. Microbiota may influence the host's immunological responses, inflammatory responses, and metabolic pathways, which may be crucial for the development and metastasis. Similarly, short-chain fatty acids, methylamines, hippurate, bile acids, and other metabolites generated by microbiota may have potential roles in cancer inflammation and progression of cancer. Most studies have focused on the role of metabolites and their pathways involved in chronic inflammation, tumor initiation, proliferation, and progression. In summary, the review discusses the role of microbiota and microbial-derived metabolite-built strategies in inflammation and progression of the PCa.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Virendra Kumar
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
He R, Ye Y, Zhu Q, Xie C. Systemic immune-inflammation index is associated with high risk for prostate cancer among the U.S. elderly: Evidence from NHANES 2001-2010. Front Oncol 2024; 14:1441271. [PMID: 39376981 PMCID: PMC11456397 DOI: 10.3389/fonc.2024.1441271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose The Systemic Immuno-Inflammation Index (SII) is a crucial clinical measure of inflammation, and there is currently no solid evidence linking SII to an increased risk of prostate cancer (PCa). Through the analysis of serum total prostate-specific antigen (tPSA), free prostate-specific antigen (fPSA), and the tPSA/fPSA (fPSA%) ratio, this study sought to investigate the relationship between SII and PCa risk among the U.S. elderly. Methods Elderly male participants were gathered from the NHANES database between 2001 and 2010.SII was calculated by platelet count * neutrophil count/lymphocyte count. High risk individuals for prostate cancer were defined as those with tPSA > 4 ng/ml and fPSA% < 16%. Multivariate logistic regression models, restricted cubic spline curves, and subgroup analyses were used to assess the relationship between SII and PCa risk. Results This research comprised 2664 people in total, 137 (5.14%) of whom were deemed to be at high risk of developing PCa. Multivariate logistic regression analysis, after controlling for variables, revealed a significant positive correlation between high PCa risk and an increase in SII (p = 0.009). The RCS suggested a turning point at 9.01. Restricted cubic spline curves revealed a non-linear U-shaped association between SII and high PCa risk (p for nonlinear = 0.028). Education level, marital status, PIR, alcohol status, smoking status, rheumatoid arthritis status, and heart problem were not significantly correlated with this positive connection, according to subgroup analyses and interaction tests. Conclusion The results of this study suggest that inflammation represented by SII is associated with high PCa risk.
Collapse
Affiliation(s)
- Ran He
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youjun Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qilei Zhu
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Changsheng Xie
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Auti A, Tathode M, Marino MM, Vitiello A, Ballini A, Miele F, Mazzone V, Ambrosino A, Boccellino M. Nature's weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024; 11:747-772. [PMID: 39416904 PMCID: PMC11474324 DOI: 10.3934/publichealth.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer represents a major global health burden, prompting continuous research for effective therapeutic strategies. Natural compounds derived from plants have emerged as potential strategies for preventing cancer and treatment because of their inherent pharmacological properties. This comprehensive review aimed to evaluate the therapeutic potential of five key natural compounds: apigenin, quercetin, piperine, curcumin, and resveratrol in cancer prevention and therapy. By examining their molecular mechanisms and preclinical evidence, this review seeks to elucidate their role as potential adjuvants or stand-alone therapies in cancer management. The exploration of natural compounds as cancer therapeutics offers several advantages, including low toxicity, wide availability, and compatibility with conventional chemotherapeutic agents. We highlighted the current understanding of their anticancer mechanisms and clinical applications for advancing personalized cancer care to improve patient outcomes. We discussed the empirical findings from in vitro, in vivo, and clinical studies reporting biological activity and therapeutic efficacy in antioxidant, immunomodulatory, anti-carcinogenic, and chemo-sensitizing modes. Innovative delivery systems and personalized treatment approaches may further enhance their bioavailability and therapeutic utility in a synergistic approach with chemo- and radiotherapeutic disease management. This review underscores the importance of natural compounds in cancer prevention and treatment, promoting a multidisciplinary approach to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Madhura Tathode
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, 00144 Rome, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122, Foggia, Italy
| | - Francesco Miele
- General Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valeria Mazzone
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessia Ambrosino
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
7
|
Hao Y, Xie F, He J, Gu C, Zhao Y, Luo W, Song X, Shen J, Yu L, Han Z, He J. PLA inhibits TNF-α-induced PANoptosis of prostate cancer cells through metabolic reprogramming. Int J Biochem Cell Biol 2024; 169:106554. [PMID: 38408537 DOI: 10.1016/j.biocel.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Previous studies have shown that phenyllactic acid (alpha-Hydroxyhydrocinnamic acid, 2-Hydroxy-3-phenylpropionic acid, PLA), a type of organic acid metabolite, has excellent diagnostic efficacy when used to differentiate between prostate cancer, benign prostatic hyperplasia, and prostatitis. This research aims to explore the molecular mechanism by which PLA influences the PANoptosis of prostate cancer (PCa) cell lines. First, we found that PLA was detected in all prostate cancer cell lines (PC-3, PC-3 M, DU145, LNCAP). Further experiments showed that the addition of PLA to prostate cancer cells could promote ATP generation, enhance cysteine desulfurase (NFS1) expression, and reduce tumor necrosis factor alpha (TNF-α) levels, thereby inhibiting apoptosis in prostate cancer cells. Notably, overexpression of NFS1 can inhibit the binding of TNF-α to serpin mRNA binding protein 1 (SERBP1), suggesting that NFS1 competes with TNF-α for binding to SERBP1. Knockdown of SERBP1 significantly reduced the level of small ubiquity-related modifier (SUMO) modification of TNF-α. This suggests that NFS1 reduces the SUMO modification of TNF-α by competing with SERBP1, thereby reducing the expression and stability of TNF-α and ultimately inhibiting apoptosis in prostate cancer cell lines. In conclusion, PLA inhibits TNF-α induced panapoptosis of prostate cancer cells through metabolic reprogramming, providing a new idea for targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- Yinghui Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fangmei Xie
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jieyi He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chenqiong Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Zhao
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Li Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Zeping Han
- Central Laboratory of Panyu Central Hospital, Guangzhou, China.
| | - Jinhua He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Central Laboratory of Panyu Central Hospital, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, China.
| |
Collapse
|
8
|
Gupta KR, Kyprianou N. Microbiota and the landscape of the prostate tumor microenvironment. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:352-360. [PMID: 37941651 PMCID: PMC10628624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023]
Abstract
Prostate cancer remains one of the most common causes of cancer-related death in men globally. Progression of prostate cancer to lethal metastatic disease is mediated by multiple contributors. The role of prostate microbiota and their metabolites in metastasis, therapeutic resistance to castration resistant prostate cancer (CRPC), and tumor relapse has yet to be fully investigated. Characterization of microflora can provide new mechanistic insights into the functional significance in the emergence of therapeutic resistance, identification of novel effective targeted therapies, and development of biomarkers during prostate cancer progression. The tumor microenvironment (TME) and its components work concurrently with the prostate microbiota in promoting prostate cancer development and progression to metastasis. In this article, we discuss the growing evidence on the functional contribution of microbiota to the phenotypic landscape of the TME and its effect on prostate cancer therapeutic targeting and recurrent disease.
Collapse
Affiliation(s)
- Kasmira R Gupta
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, New York 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, New York 10029, USA
- Oncological Sciences and Pathology & Cell Based Medicine, Icahn School of Medicine at Mount SinaiNew York, New York 10029, USA
| |
Collapse
|
9
|
Yin Z, Liu B, Feng S, He Y, Tang C, Chen P, Wang X, Wang K. A Large Genetic Causal Analysis of the Gut Microbiota and Urological Cancers: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4086. [PMID: 37764869 PMCID: PMC10537765 DOI: 10.3390/nu15184086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Several observational studies and clinical trials have shown that the gut microbiota is associated with urological cancers. However, the causal relationship between gut microbiota and urological cancers remains to be elucidated due to many confounding factors. METHODS In this study, we used two thresholds to identify gut microbiota GWAS from the MiBioGen consortium and obtained data for five urological cancers from the UK biobank and Finngen consortium, respectively. We then performed a two-sample Mendelian randomization (MR) analysis with Wald ratio or inverse variance weighted as the main method. We also performed comprehensive sensitivity analyses to verify the robustness of the results. In addition, we performed a reverse MR analysis to examine the direction of causality. RESULTS Our study found that family Rikenellaceae, genus Allisonella, genus Lachnospiraceae UCG001, genus Oscillibacter, genus Eubacterium coprostanoligenes group, genus Eubacterium ruminantium group, genus Ruminococcaceae UCG013, and genus Senegalimassilia were related to bladder cancer; genus Ruminococcus torques group, genus Oscillibacter, genus Barnesiella, genus Butyricicoccus, and genus Ruminococcaceae UCG005 were related to prostate cancer; class Alphaproteobacteria, class Bacilli, family Family XI, genus Coprococcus2, genus Intestinimonas, genus Lachnoclostridium, genus Lactococcus, genus Ruminococcus torques group, and genus Eubacterium brachy group were related to renal cell cancer; family Clostridiaceae 1, family Christensenellaceae, genus Eubacterium coprostanoligenes group, genus Clostridium sensu stricto 1, and genus Eubacterium eligens group were related to renal pelvis cancer; family Peptostreptococcaceae, genus Romboutsia, and genus Subdoligranulum were related to testicular cancer. Comprehensive sensitivity analyses proved that our results were reliable. CONCLUSIONS Our study confirms the role of specific gut microbial taxa on urological cancers, explores the mechanism of gut microbiota on urological cancers from a macroscopic level, provides potential targets for the screening and treatment of urological cancers, and is dedicated to providing new ideas for clinical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Z.Y.); (S.F.); (Y.H.); (C.T.); (P.C.)
| |
Collapse
|
10
|
Makkena VK, Jaramillo AP, Awosusi BL, Ayyub J, Dabhi KN, Gohil NV, Tanveer N, Hussein S, Pingili S, Khan S. Probing the Relationship Between the Human Gut Microbiome and Prospects of Prostate Cancer: A Systematic Review. Cureus 2023; 15:e43892. [PMID: 37746426 PMCID: PMC10511825 DOI: 10.7759/cureus.43892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Prostate neoplasia is one of the most commonly occurring neoplasias in males and has a high mortality rate. Prostate cancer (PCA) risk factors include tall stature, male sex, known family history, obesity, high blood pressure, lack of fitness, higher levels of testosterone for a long time, increasing age, and ethnicity are well known. The association and role of the gut microbiota in different diseases in our body have been highlighted recently. Therefore, finding the influence of gut microbiota on the prostatic cells can be useful for preventing prostatic neoplasia and/or reducing its severity. We aimed to assess its impact on PCA risk. We thoroughly searched databases for the relevant literature for our systematic review. The final research papers analyzed how bacteria played a role in the risk of PCA, either through inflammation or the production of metabolites that increase/decrease the risk of PCA. Based on the studies reviewed, we found that some gut bacteria play a role in the formation of PCA. In contrast, some bacteria can help prevent PCA, but the metabolism of the dietary components is the major factor for PCA.
Collapse
Affiliation(s)
- Vijaya Krishna Makkena
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Department of Medicine, Osmania Medical College, Hyderabad, IND
| | - Arturo P Jaramillo
- Department of Internal Medicine, Universidad Estatal de Guayaquil, Machala, ECU
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Babatope L Awosusi
- Department of Pathology and Laboratory Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Javaria Ayyub
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Karan Nareshbha Dabhi
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Namra V Gohil
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Department of Internal Medicine, Medical College Baroda, Vadodara, IND
| | - Nida Tanveer
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sally Hussein
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Shravya Pingili
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Department of Medicine, Kakatiya Medical College, Hyderabad, IND
| | - Safeera Khan
- Department of Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
11
|
Di Napoli R, Balzano N, Mascolo A, Cimmino C, Vitiello A, Zovi A, Capuano A, Boccellino M. What Is the Role of Nutraceutical Products in Cancer Patients? A Systematic Review of Randomized Clinical Trials. Nutrients 2023; 15:3249. [PMID: 37513667 PMCID: PMC10383141 DOI: 10.3390/nu15143249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy represents the main pharmacological cancer treatment. Recently, positive effects emerged with the combination of anticancer therapy and nutraceutical products. The aim of this systematic review is to collect and synthesize the available scientific evidence regarding the potential effects of nutraceuticals on cancer cells. A systematic literature search of randomized clinical trials of nutraceutical products in patients with cancer published up to 15 December 2022 was conducted using three data sources: Embase, PubMed, and Web of Science. The effect of high-dose isoflavone supplements on prostate cancer resulted in stabilization or reduction of PSA concentrations in 50% of isoflavone group patients six months after treatment. High doses of vitamin D supplementation plus chemotherapy in patients with advanced or metastatic colorectal cancer showed a median PFS of 13.0 months (95% CI, 10.1-14.7 months) for 49 patients. The effect of vitamin D supplementation on markers of inflammatory level and antioxidant capacity in women with breast cancer showed a significant increase in serum vitamin D concentration (28 ± 2.6 to 39 ± 3.5; p = 0.004) after 8 weeks of treatment. In conclusion, nutraceutical supplements represent a potentially growing sector and can be utilized in medical treatment or nutrition to provide integrated medical care.
Collapse
Affiliation(s)
- Raffaella Di Napoli
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nunzia Balzano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | | | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
12
|
Mirto BF, Scafuri L, Sicignano E, Luca CD, Angellotto P, Lorenzo GD, Terracciano D, Buonerba C, Falcone A. Nature's hidden gem: quercitrin's promising role in preventing prostate and bladder cancer. Future Sci OA 2023; 9:FSO867. [PMID: 37228856 PMCID: PMC10203909 DOI: 10.2144/fsoa-2023-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Affiliation(s)
- Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Luca Scafuri
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
| | - Enrico Sicignano
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Ciro De Luca
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Pasquale Angellotto
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| | - Giuseppe Di Lorenzo
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
- Department of Medicine & Health Science, University of Molise, Campobasso, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University ‘Federico II’, Naples, Italy
| | - Carlo Buonerba
- Oncology Unit, Hospital ‘Andrea Tortora’, ASL Salerno, Pagani, Italy
- Associazione O.R.A., Somma Vesuviana, Naples, Italy
| | - Alfonso Falcone
- Department of Neurosciences, Reproductive Sciences & Odontostomatology, Federico II University, Naples, Italy
| |
Collapse
|
13
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
14
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Barone B, Mirto BF, Falcone A, Del Giudice F, Aveta A, Napolitano L, Del Biondo D, Ferro M, Busetto GM, Manfredi C, Terracciano D, Gambardella R, Pandolfo SD, Trama F, De Luca C, Martino R, Capone F, Giampaglia G, Sicignano E, Tataru OS, Lucarelli G, Crocetto F. The Efficacy of Flogofilm ® in the Treatment of Chronic Bacterial Prostatitis as an Adjuvant to Antibiotic Therapy: A Randomized Prospective Trial. J Clin Med 2023; 12:jcm12082784. [PMID: 37109121 PMCID: PMC10142953 DOI: 10.3390/jcm12082784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Bacterial prostatitis (BP) is a common prostatic infection characterized by a bimodal distribution in young and older men, with a prevalence between 5-10% among all cases of prostatitis and a high impact on quality of life. Although the management of bacterial prostatitis involves the use of appropriate spectrum antibiotics, which represent the first choice of treatment, a multimodal approach encompassing antibiotics and nutraceutical products in order to improve the efficacy of chosen antimicrobial regimen is often required. OBJECTIVE To evaluate the efficacy of Flogofilm® in association with fluoroquinolones in patients with chronic bacterial prostatitis (CBP). METHODS Patients diagnosed with prostatitis (positivity to Meares-Stamey Test and symptoms duration > 3 months) at the University of Naples "Federico II", Italy, from July 2021 to December 2021, were included in this study. All patients underwent bacterial cultures and trans-rectal ultrasounds. Patients were randomized into two groups (A and B) receiving antibiotic alone or an association of antibiotics plus Flogofilm® tablets containing Flogomicina® for one month, respectively. The NIH-CPSI and IPSS questionnaires were administered at baseline, four weeks, twelve and twenty-four weeks. RESULTS A total of 96 (Group A = 47, Group B = 49) patients concluded the study protocol. The mean age was comparable, with a mean age of 34.62 ± 9.04 years for Group A and 35.29 ± 10.32 years for Group B (p = 0.755), and IPSS at the baseline was 8.28 ± 6.33 and 9.88 ± 6.89 (p = 0.256), respectively, while NIH-CPSI at baseline was 21.70 ± 4.38 and 21.67 ± 6.06 (p = 0.959), respectively. At 1, 3 and 6 months, the IPSS score was 6.45 ± 4.8 versus 4.31 ± 4.35 (p = 0.020), 5.32 ± 4.63 versus 3.20 ± 3.05 (p = 0.042) and 4.91 ± 4.47 versus 2.63 ± 3.28 (p = 0.005) for Groups A and B, respectively. Similarly, the NIH-CPSI total score at 1, 3 and 6 months was 16.15 ± 3.31 versus 13.10 ± 5.03 (p < 0.0001), 13.47 ± 3.07 versus 9.65 ± 4.23 (p < 0.0001) and 9.83 ± 2.53 versus 5.51 ± 2.84 (p < 0.0001), respectively. CONCLUSIONS Flogofilm®, associated with fluoroquinolones, demonstrate a significant improvement in pain, urinary symptoms and quality of life in patients affected by chronic bacterial prostatitis in both IPSS and NIH-CPSI scores compared with fluoroquinolones alone.
Collapse
Affiliation(s)
- Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Benito Fabio Mirto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Alfonso Falcone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Achille Aveta
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Luigi Napolitano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Dario Del Biondo
- Department of Urology, Ospedale del Mare, ASL NA1 Centro, 80147 Naples, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Celeste Manfredi
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Trama
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Ciro De Luca
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Raffaele Martino
- Department of Urology, Ospedale del Mare, ASL NA1 Centro, 80147 Naples, Italy
| | - Federico Capone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Gaetano Giampaglia
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Sicignano
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology from Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
16
|
Obesity and main urologic cancers: Current systematic evidence, novel biological mechanisms, perspectives and challenges. Semin Cancer Biol 2023; 91:70-98. [PMID: 36893965 DOI: 10.1016/j.semcancer.2023.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Urologic cancers (UC) account for 13.1% of all new cancer cases and 7.9% of all cancer-related deaths. A growing body of evidence has indicated a potential causal link between obesity and UC. The aim of the present review is to appraise in a critical and integrative manner evidence from meta-analyses and mechanistic studies on the role of obesity in four prevalent UC (kidney-KC, prostate-PC, urinary bladder-UBC, and testicular cancer-TC). Special emphasis is given on Mendelian Randomization Studies (MRS) corroborating a genetic causal association between obesity and UC, as well as on the role of classical and novel adipocytokines. Furthermore, the molecular pathways that link obesity to the development and progression of these cancers are reviewed. Available evidence indicates that obesity confers increased risk for KC, UBC, and advanced PC (20-82%, 10-19%, and 6-14%, respectively), whereas for TC adult height (5-cm increase) may increase the risk by 13%. Obese females tend to be more susceptible to UBC and KC than obese males. MRS have shown that a higher genetic-predicted BMI may be causally linked to KC and UBC but not PC and TC. Biological mechanisms that are involved in the association between excess body weight and UC include the Insulin-like Growth Factor axis, altered availability of sex hormones, chronic inflammation and oxidative stress, abnormal secretion of adipocytokines, ectopic fat deposition, dysbiosis of the gastrointestinal and urinary tract microbiomes and circadian rhythm dysregulation. Anti-hyperglycemic and non-steroidal anti-inflammatory drugs, statins, and adipokine receptor agonists/antagonists show potential as adjuvant cancer therapies. Identifying obesity as a modifiable risk factor for UC may have significant public health implications, allowing clinicians to tailor individualized prevention strategies for patients with excess body weight.
Collapse
|
17
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
18
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
19
|
Terrisse S, Zitvogel L, Kroemer G. Effects of the intestinal microbiota on prostate cancer treatment by androgen deprivation therapy. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:202-206. [PMID: 36483309 PMCID: PMC9714294 DOI: 10.15698/mic2022.12.787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023]
Abstract
Prostate cancer (PC) can be kept in check by androgen deprivation therapy (ADT, usually with the androgen synthesis inhibitor abiraterone acetate or the androgen receptor antagonist such as enzalutamide) until the tumor evolves to castration-resistant prostate cancer (CRPC). The transition of hormone-sensitive PC (HSPC) to CPRC has been explained by cancer cell-intrinsic resistance mechanisms. Recent data indicate that this transition is also marked by cancer cell-extrinsic mechanisms such as the failure of ADT-induced PC immunosurveillance, which depends on the presence of immunostimulatory bacteria in the gut. Moreover, intestinal bacteria that degrade drugs used for ADT, as well as bacteria that produce androgens, can interfere with the efficacy of ADT. Thus, specific bacteria in the gut serve as a source of testosterone, which accelerates prostate cancer progression, and men with CRPC exhibit an increased abundance of such bacteria with androgenic functions. In conclusion, the response of PC to ADT is profoundly influenced by the composition of the microbiota with its immunostimulatory, immunosuppressive and directly ADT-subversive elements.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France
- University Paris Saclay, Gif-sur-Yvette, France
- Gustave Roussy, ClinicObiome, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
20
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
21
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
22
|
Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J Pers Med 2022; 12:jpm12081202. [PMID: 35893296 PMCID: PMC9330416 DOI: 10.3390/jpm12081202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays an important role in brain aging and in neurodegenerative diseases. New therapeutic agents are necessary to cross the blood–brain barrier and target disease pathogenesis without causing disagreeable side effects. Resveratrol (RSV) may act as a neuroprotective compound, but little is known about its potential in improving the cognitive and metabolic aspects that are associated with neurodegenerative diseases. The objective of this study was to investigate the protective effects and the underlying mechanisms of RSV against hypoxia-induced oxidative stress in neuronal PC12 cells. For the induction of the hypoxia model, the cells were exposed to oxygen-deprived gas in a hypoxic chamber. Cell cycle and apoptosis were analyzed by a fluorescence activated cell sorting (FACS) analysis. The intracellular reactive oxygen species (ROS) level was analyzed by using dichlorodihydrofluorescein diacetate (DCFDA) and 5-(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) tests. The expression of activated caspase-3, -9, Bcl-2, Bax, p53, and SOD was investigated by a Western blot analysis. We found that hypoxia reduced PC12 viability by inducing apoptosis, while RSV treatment attenuated the ROS-induced damage by reducing caspase-3, -9, and the Bax/Bcl-2 ratio. The RSV treated groups were found to improve cellular health, with a 7.41% increase in the S phase population in the 10 µM group, compared to the control. Hence, RSV has a protective effect in neuronal cells and may halt the cell cycle in the G1/S phase to repair the intracellular damage. Therefore, RSV could be a good candidate to act as an antioxidant and promising preventive therapeutic agent in neurodegenerative diseases for personalized medicine.
Collapse
|
23
|
Boccellino M, Ambrosio P, Ballini A, De Vito D, Scacco S, Cantore S, Feola A, Di Donato M, Quagliuolo L, Sciarra A, Galasso G, Crocetto F, Imbimbo C, Boffo S, Di Zazzo E, Di Domenico M. The Role of Curcumin in Prostate Cancer Cells and Derived Spheroids. Cancers (Basel) 2022; 14:3348. [PMID: 35884410 PMCID: PMC9320241 DOI: 10.3390/cancers14143348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
A major challenge in the clinical management of prostate cancer (PC) is to inhibit tumor growth and prevent metastatic spreading. In recent years, considerable efforts have been made to discover new compounds useful for PC therapy, and promising advances in this field were reached. Drugs currently used in PC therapy frequently induce resistance and PC progresses toward metastatic castration-resistant forms (mCRPC), making it virtually incurable. Curcumin, a commercially available nutritional supplement, represents an attractive therapeutic agent for mCRPC patients. In the present study, we compared the effects of chemotherapeutic drugs such as docetaxel, paclitaxel, and cisplatin, to curcumin, on two PC cell lines displaying a different metastatic potential: DU145 (moderate metastatic potential) and PC-3 (high metastatic potential). Our results revealed a dose-dependent reduction of DU145 and PC-3 cell viability upon treatment with curcumin similar to chemotherapeutic agents (paclitaxel, cisplatin, and docetaxel). Furthermore, we explored the EGFR-mediated signaling effects on ERK activation in DU145 and PC-3 cells. Our results showed that DU145 and PC-3 cells overexpress EGFR, and the treatment with chemotherapeutic agents or curcumin reduced EGFR expression levels and ERK activation. Finally, chemotherapeutic agents and curcumin reduced the size of DU145 and PC-3 spheroids and have the potential to induce apoptosis and also in Matrigel. In conclusion, despite different studies being carried out to identify the potential synergistic curcumin combinations with chemopreventive/therapeutic efficacy for inhibiting PC growth, the results show the ability of curcumin used alone, or in combinatorial approaches, to impair the size and the viability of PC-derived spheroids.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Pasqualina Ambrosio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; (D.D.V.); (S.S.)
| | | | - Antonia Feola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Antonella Sciarra
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.C.); (C.I.)
| | - Silvia Boffo
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.B.); (P.A.); (A.F.); (M.D.D.); (L.Q.); (G.G.); (E.D.Z.); (M.D.D.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122-6078, USA;
| |
Collapse
|
24
|
Du HX, Yue SY, Niu D, Liu C, Zhang LG, Chen J, Chen Y, Guan Y, Hua XL, Li C, Chen XG, Zhang L, Liang CZ. Gut Microflora Modulates Th17/Treg Cell Differentiation in Experimental Autoimmune Prostatitis via the Short-Chain Fatty Acid Propionate. Front Immunol 2022; 13:915218. [PMID: 35860242 PMCID: PMC9289123 DOI: 10.3389/fimmu.2022.915218] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a very common urological disorder and has been gradually regarded as an immune-mediated disease. Multiple studies have indicated that the gut microflora plays a pivotal part in immune homeostasis and autoimmune disorder development. However, whether the gut microflora affects the CP/CPPS, and the underlying mechanism behind them remain unclear. Here, we built an experimental autoimmune prostatitis (EAP) mouse model by subcutaneous immunity and identified that its Th17/Treg frequency was imbalanced. Using fecal 16s rRNA sequencing and untargeted/targeted metabolomics, we discovered that the diversity and relative abundance of gut microflora and their metabolites were obviously different between the control and the EAP group. Propionic acid, a kind of short-chain fatty acid (SCFA), was decreased in EAP mice compared to that in controls, and supplementation with propionic acid reduced susceptibility to EAP and corrected the imbalance of Th17/Treg cell differentiation in vivo and in vitro. Furthermore, SCFA receptor G-protein-coupled receptor 43 and intracellular histone deacetylase 6 regulated by propionic acid in Th17 and Treg cells were also evaluated. Lastly, we observed that fecal transplantation from EAP mice induced the decrease of Treg cell frequency in recipient mice. Our data showed that gut dysbiosis contributed to a Th17/Treg differentiation imbalance in EAP via the decrease of metabolite propionic acid and provided valuable immunological groundwork for further intervention in immunologic derangement of CP/CPPS by targeting propionic acid.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao-Liang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chun Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| |
Collapse
|
25
|
Li LY, Han J, Wu L, Fang C, Li WG, Gu JM, Deng T, Qin CJ, Nie JY, Zeng XT. Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats. Mil Med Res 2022; 9:12. [PMID: 35346378 PMCID: PMC8962033 DOI: 10.1186/s40779-022-00373-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Studies had shown many diseases affect the stability of human microbiota, but how this relates to benign prostatic hyperplasia (BPH) has not been well understood. Hence, this study aimed to investigate the regulation of BPH on gut microbiota composition and metabonomics. METHODS We analyzed gut samples from rats with BPH and healthy control rats, the gut microbiota composition and metabonomics were detected by 16S rDNA sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS High-throughput sequencing results showed that gut microbiota beta-diversity increased (P < 0.01) in the BPH group vs. control group. Muribaculaceae (P < 0.01), Turicibacteraceae (P < 0.05), Turicibacter (P < 0.01) and Coprococcus (P < 0.01) were significantly decreased in the BPH group, whereas that of Mollicutes (P < 0.05) and Prevotella (P < 0.05) were significantly increased compared with the control group. Despite profound interindividual variability, the levels of several predominant genera were different. In addition, there were no statistically significant differences in several bacteria. BPH group vs. control group: Firmicutes (52.30% vs. 57.29%, P > 0.05), Bacteroidetes (46.54% vs. 41.64%, P > 0.05), Clostridia (50.89% vs. 54.66%, P > 0.05), Ruminococcaceae (25.67% vs. 20.56%, P > 0.05). LC-MS/MS of intestinal contents revealed that differential metabolites were mainly involved in cellular processes, environmental information processing, metabolism and organismal systems. The most important pathways were global and overview maps, lipid metabolism, amino acid metabolism, digestive system and endocrine system. Through enrichment analysis, we found that the differential metabolites were significantly enriched in metabolic pathways, steroid hormone biosynthesis, ovarian steroidogenesis, biosynthesis of unsaturated fatty acids and bile secretion. Pearson correlation analysis (R = 0.94) showed that there was a strong correlation between Prevotellaceae, Corynebacteriaceae, Turicibacteraceae, Bifidobacteriaceae and differential metabolites. CONCLUSION Our findings suggested an association between the gut microbiota and BPH, but the causal relationship between the two groups is unclear. Thus, further studies are warranted to elucidate the potential mechanisms and causal relationships between BPH and gut microbiota.
Collapse
Affiliation(s)
- Lu-Yao Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000 Henan China
| | - Jie Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Lan Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Wei-Guang Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jia-Min Gu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Tong Deng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000 Henan China
| | - Jia-Yan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| |
Collapse
|
26
|
Thyroid hormone and androgen signals mutually interplay and enhance inflammation and tumorigenic activation of tumor microenvironment in prostate cancer. Cancer Lett 2022; 532:215581. [DOI: 10.1016/j.canlet.2022.215581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
|
27
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Toxicity of Antioxidant Supplements in Patients with Male Factor Infertility: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel) 2021; 11:antiox11010089. [PMID: 35052594 PMCID: PMC8772951 DOI: 10.3390/antiox11010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/28/2022] Open
Abstract
Treating oxidative stress through antioxidant therapy has been considered an appealing strategy in the management of male infertility. However, evidence regarding the toxicity of antioxidant therapy is controversial. We summarized the available clinical evidence on the toxicity associated with the use of antioxidants in infertile males. A systematic review was performed in March 2021. We included randomized controlled trials evaluating the incidence of adverse events in male patients with infertility receiving antioxidant therapy. Thirteen studies involving 1999 male patients were identified. Antioxidant supplementation in patients with male factor infertility was associated with a statistically significantly increased risk of nausea (Odds Ratio: 2.16, 95% Confidence Interval: 1.05–4.43, p = 0.036), headache (Odds Ratio: 3.05, 95% Confidence Interval: 1.59– 5.85 p = 0.001), and dyspepsia (Odds Ratio: 4.12, 95% Confidence Interval: 1.43–11.85, p = 0.009) compared to a placebo. Treatment discontinuation due to adverse events was not significantly higher in patients taking antioxidants compared to a placebo (Odds Ratio: 2.29, 95% Confidence Interval: 0.76–6.88, p = 0.139). When antioxidant supplementation is considered, a more accurate risk/benefit analysis is warranted.
Collapse
|
29
|
Semenov AL, Gubareva EA, Ermakova ED, Dorofeeva AA, Tumanyan IA, Radetskaya EA, Yurova MN, Aboushanab SA, Kanwugu ON, Fedoros EI, Panchenko AV. Astaxantin and Isoflavones Inhibit Benign Prostatic Hyperplasia in Rats by Reducing Oxidative Stress and Normalizing Ca/Mg Balance. PLANTS (BASEL, SWITZERLAND) 2021; 10:2735. [PMID: 34961206 PMCID: PMC8704012 DOI: 10.3390/plants10122735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/03/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common pathology among aging men. Despite the broad pharmacological interventions, the available remedies to treat BPH are yet not devoid of side effects. Herbal compounds are suggested to be an alternative option for the BPH treatment. In our study, we evaluated the effect of kudzu isoflavones and astaxanthin on the BPH animal model. The animals were randomly divided into five groups: control; testosterone-induced BPH group; and three BPH-induced groups, which received intragastrically for 28 days finasteride (5 mg/kg) as a positive control, isoflavones (200 mg/kg), and astaxanthin (25 mg/kg). BPH was induced by castration of animals and subsequent subcutaneous injections of prolonged testosterone (25 mg/kg). Prostate index and histology, biochemical parameters, and antioxidant activity were evaluated. A significant decrease in prostate weight, immunohistochemical markers, and normalization of prostate Ca/Mg ratio was found in all treatment groups. Astaxanthin treatment also resulted in decreased epithelial proliferation and normalized superoxide dismutase activity. In conclusion, both isoflavones and astaxanthin inhibited BPH development at a level comparable to finasteride in terms of prostate weight, prostatic epithelium proliferation, and prostate tissue cumulative histology score. These results suggest that isoflavones and especially astaxanthin could serve as a potential alternative therapy to treat BHP.
Collapse
Affiliation(s)
- Alexander L. Semenov
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Ekaterina A. Gubareva
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Elena D. Ermakova
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| | - Anastasia A. Dorofeeva
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| | - Irina A. Tumanyan
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
- SCAMT Institute, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russia
| | - Ekaterina A. Radetskaya
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Maria N. Yurova
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Saied A. Aboushanab
- Institute of Chemical Technology, Ural Federal University Named after The First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia; (S.A.A.); (O.N.K.)
| | - Osman N. Kanwugu
- Institute of Chemical Technology, Ural Federal University Named after The First President of Russia B. N. Yeltsin, Mira 19, 620002 Yekaterinburg, Russia; (S.A.A.); (O.N.K.)
| | - Elena I. Fedoros
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| | - Andrey V. Panchenko
- N.N. Petrov National Medical Research Center of Oncology, Leningradskaya str, 68, 197758 St. Petersburg, Russia; (E.A.G.); (E.D.E.); (A.A.D.); (I.A.T.); (E.A.R.); (M.N.Y.); (E.I.F.); (A.V.P.)
| |
Collapse
|
30
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Fascin-1 and its role as a serological marker in prostate cancer: a prospective case-control study. Future Sci OA 2021; 7:FSO745. [PMID: 34737886 PMCID: PMC8558850 DOI: 10.2144/fsoa-2021-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aims to investigate any modification of serological FSCN1 in prostate cancer patients compared with patients without neoplasia. Material & methods: Clinical data and blood specimens from patients with and without prostate cancer were obtained. A quantitative sandwich ELISA method was used to determine serological values of FSCN1. Results: Although serum values of FSCN1 were dissimilar in the two cohorts of patients (6.90 vs 7.33 ng/ml), the difference was not statistically significant (p = 0.20). Serum values of FSCN1 stratified for Gleason score groups were not significantly distinguishable (p = 0.65). A negative correlation (rho = -0.331; p = 0.009) was reported between FSCN1 and age. Conclusion: Further studies are required to evaluate a possible diagnostic role of FSCN1 in prostate cancer. FSCN1 is a potential novel biomarker that we investigated in patients with prostate cancer and evaluated in serum through a quantitative assay. Although FSCN1 serum values were dissimilar between patients with and without prostate cancer (with lower values in the first group), data are currently inconclusive. A negative correlation between FSCN1 and age was instead reported. Further studies are required to investigate a possible diagnostic role of FSCN1.
Collapse
|
32
|
Scroppo FI, Costantini E, Zucchi A, Illiano E, Trama F, Brancorsini S, Crocetto F, Gismondo MR, Dehò F, Mercuriali A, Bartoletti R, Gaeta F. COVID-19 disease in clinical setting: impact on gonadal function, transmission risk, and sperm quality in young males. J Basic Clin Physiol Pharmacol 2021; 33:97-102. [PMID: 34714984 DOI: 10.1515/jbcpp-2021-0227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVES We want to evaluate the possible presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in semen samples and semen quality, looking for a possible relationship between the infectious disease and fertility. METHODS In this prospective study, we enrolled 15 consecutive men (age 18-50 years) with positive oropharyngeal swab to SARS-CoV-2 and classified, according to WHO criteria, in mild to moderate disease. A semen sample was collected to detect SARS-CoV viral RNA by the automated Real-Time PCR ELITe InGenius® system and the GeneFinderTM COVID-19 Plus RealAmp Kit assay (ELITechGroup, France). Analysis of semen characteristics was performed according to WHO laboratory manual 5th ed. for the examination and processing of human semen. Blood samples for the dosage of hormonal assay, procalcitonin, interleukin 6, C-reactive protein were obtained. RESULTS SARS-CoV-2 RNA has not been detected in semen samples from any of the subjects analysed. Sperm analysis exhibited abnormal seminal values in 14 out of 15 patients (93.3%). Furthermore, no difference was detected regarding sperm quality between mild and moderate SARS-CoV-2 patients. No alteration in the inflammatory indices was observed in the studied population, as well gonadotropins and testosterone levels. CONCLUSIONS COVID patients studied exhibits alteration of the seminal fluid both in microscopic and macroscopic characteristics such as hypoposia and increased viscosity, which have not been detected in previous studies. The presence of viral RNA within the seminal fluid was excluded.
Collapse
Affiliation(s)
- Fabrizio I Scroppo
- Urology Department, Ospedale di Circolo, ASST Sette Laghi, University of Insubria, Varese, Italy
| | - Elisabetta Costantini
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, Terni, Italy
| | - Alessandro Zucchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ester Illiano
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, Terni, Italy
| | - Francesco Trama
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, Terni, Italy
| | | | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology - Federico II University of Naples, Naples, Italy
| | - Maria Rita Gismondo
- Laboratory of Clinical Microbiology, Virology and Bio-Emergency Diagnostics, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Federico Dehò
- Urology Department, Ospedale di Circolo, ASST Sette Laghi, University of Insubria, Varese, Italy
| | - Anna Mercuriali
- Department of Medicine and Surgery, University of Insubria, Endocrine Unit, ASST dei Sette Laghi, Varese, Italy
| | - Riccardo Bartoletti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Gaeta
- Surgical Department, Urological and Andrological Service, Military Hospital Centre of Milan, Milan, Italy
| |
Collapse
|
33
|
Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021; 13:nu13113750. [PMID: 34836005 PMCID: PMC8621729 DOI: 10.3390/nu13113750] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions.
Collapse
|
34
|
The Role of Microbial Factors in Prostate Cancer Development-An Up-to-Date Review. J Clin Med 2021; 10:jcm10204772. [PMID: 34682893 PMCID: PMC8538262 DOI: 10.3390/jcm10204772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Up-to-date studies emphasize the role of human urinary and intestinal microbiome in maintaining urogenital health. Both microbial flora and sexually transmitted pathogens may affect metabolic or immune mechanisms and consequently promote or inhibit prostate carcinogenesis. Hereby, we review the most current evidence regarding the microbial factors and their link to prostate cancer. We conducted a literature search up to December 2020. The microbial impact on prostate cancer initiation and progression is complex. The proposed mechanisms of action include induction of chronic inflammatory microenvironment (Propionibacterium spp., sexually-transmitted pathogens) and direct dysregulation of cell cycle (Helicobacter pylori, Kaposi’s sarcoma-associated herpesvirus- KSHV, human papilloma virus 18- HPV18). Suppression of immune cell expression and downregulating immune-associated genes are also observed (Gardnerella vaginalis). Additionally, the impact of the gut microbiome proved relevant in promoting tumorigenesis (Bacteroides massiliensis). Nevertheless, certain microbes appear to possess anti-tumor properties (Listeria monocytogenes, Pseudomonas spp.), such as triggering a robust immune response and apoptotic cancer cell death. The role of microbial factors in prostate cancer development is an emerging field that merits further studies. In the future, translating microbial research into clinical action may prove helpful in predicting diagnosis and potential outcomes of the disease.
Collapse
|
35
|
Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann N Y Acad Sci 2021; 1508:54-77. [PMID: 34636052 DOI: 10.1111/nyas.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Recent data strongly indicate a relationship between prostate health and gut microbiota, in which composition and physiological function strictly depend on dietary patterns. The bidirectional interplay of foods containing polyphenols, such as ellagitannins, condensed tannins, lignans, isoflavones, and prenylated flavonoids with human gut microbiota, has been proven to contribute to their impact on prostate health. Considering the attributed role of dietary polyphenols in the prevention of prostate diseases, this paper aims to critically review the studies concerning the influence of polyphenols' postbiotic metabolites on processes associated with the pathophysiology of prostate diseases. Clinical, in vivo, and in vitro studies on polyphenols have been juxtaposed with the current knowledge regarding their pharmacokinetics, microbial metabolism, and potential interactions with microbiota harboring different niches of the human organism. Directions of future research on dietary polyphenols regarding their interaction with microbiota and prostate health have been indicated.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Stanisławska
- Faculty of Pharmacy, Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Composition of the Gut Microbiome Influences Production of Sulforaphane-Nitrile and Iberin-Nitrile from Glucosinolates in Broccoli Sprouts. Nutrients 2021; 13:nu13093013. [PMID: 34578891 PMCID: PMC8468500 DOI: 10.3390/nu13093013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.
Collapse
|
37
|
Novel insights on gut microbiota manipulation and immune checkpoint inhibition in cancer (Review). Int J Oncol 2021; 59:75. [PMID: 34396439 PMCID: PMC8360620 DOI: 10.3892/ijo.2021.5255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer affects millions of individuals worldwide. Thus, there is an increased need for the development of novel effective therapeutic approaches. Tumorigenesis is often coupled with immunosuppression which defeats the anticancer immune defense mechanisms activated by the host. Novel anticancer therapies based on the use of immune checkpoint inhibitors (ICIs) are very promising against both solid and hematological tumors, although still exhibiting heterogeneous efficacy, as well as tolerability. Such a differential response seems to derive from individual diversity, including the gut microbiota (GM) composition of specific patients. Experimental evidence supports the key role played by the GM in the activation of the immune system response against malignancies. This observation suggests to aim for patient-tailored complementary therapies able to modulate the GM, enabling the selective enrichment in microbial species, which can improve the positive outcome of ICI-based immunotherapy. Moreover, the research of GM-derived predictive biomarkers may help to identify the selected cancer population, which can benefit from ICI-based therapy, without the occurrence of adverse reactions and/or cancer relapse. The present review summarizes the landmark studies published to date, which have contributed to uncovering the tight link existing between GM composition, cancer development and the host immune system. Bridging this triangle of interactions may ultimately guide towards the identification of novel biomarkers, as well as integrated and patient-tailored anticancer approaches with greater efficacy.
Collapse
|
38
|
Crocetto F, Arcaniolo D, Napolitano L, Barone B, La Rocca R, Capece M, Caputo VF, Imbimbo C, De Sio M, Calace FP, Manfredi C. Impact of Sexual Activity on the Risk of Male Genital Tumors: A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168500. [PMID: 34444249 PMCID: PMC8392571 DOI: 10.3390/ijerph18168500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022]
Abstract
Most cancers are related to lifestyle and environmental risk factors, including smoking, alcohol consumption, dietary habits, and environment (occupational exposures). A growing interest in the association between sexual activity (SA) and the development of different types of tumors in both men and women has been recorded in recent years. The aim of the present systematic review is to describe and critically discuss the current evidence regarding the association between SA and male genital cancers (prostatic, penile, and testicular), and to analyze the different theories and biological mechanisms reported in the literature. A comprehensive bibliographic search in the MEDLINE, Scopus, and Web of Science databases was performed in July 2021. Papers in the English language without chronological restrictions were selected. Retrospective and prospective primary clinical studies, in addition to previous systematic reviews and meta-analyses, were included. A total of 19 studies, including 953,704 patients were selected. Case reports, conference abstracts, and editorial comments were excluded. Men with more than 20 sexual partners in their lifetime, and those reporting more than 21 ejaculations per month, reported a decreased risk of overall and less aggressive prostate cancer (PCa). About 40% of penile cancers (PCs) were HPV-associated, with HPV 16 being the dominant genotype. Data regarding the risk of HPV in circumcised patients are conflicting, although circumcision appears to have a protective role against PC. Viral infections and epididymo-orchitis are among the main sex-related risk factors studied for testicular cancer (TC); however, data in the literature are limited. Testicular trauma can allow the identification of pre-existing TC. SA is closely associated with the development of PC through high-risk HPV transmission; in this context, phimosis appears to be a favoring factor. Sexual behaviors appear to play a significant role in PCa pathogenesis, probably through inflammatory mechanisms; however, protective sexual habits have also been described. A direct correlation between SA and TC has not yet been proven, although infections remain the most studied sex-related factor.
Collapse
Affiliation(s)
- Felice Crocetto
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Davide Arcaniolo
- Urology Unit, Department of Woman Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy; (D.A.); (M.D.S.)
| | - Luigi Napolitano
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
- Correspondence:
| | - Biagio Barone
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Roberto La Rocca
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Marco Capece
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Vincenzo Francesco Caputo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Ciro Imbimbo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
| | - Marco De Sio
- Urology Unit, Department of Woman Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy; (D.A.); (M.D.S.)
| | - Francesco Paolo Calace
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
- Urology Unit, Department of Woman Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy; (D.A.); (M.D.S.)
| | - Celeste Manfredi
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80121 Naples, Italy; (F.C.); (B.B.); (R.L.R.); (M.C.); (V.F.C.); (C.I.); (F.P.C.); (C.M.)
- Urology Unit, Department of Woman Child and of General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy; (D.A.); (M.D.S.)
| |
Collapse
|
39
|
Massanova M, Robertson S, Barone B, Dutto L, Caputo VF, Bhatt JR, Ahmad I, Bada M, Obeidallah A, Crocetto F. The Comparison of Imaging and Clinical Methods to Estimate Prostate Volume: A Single-Centre Retrospective Study. Urol Int 2021; 105:804-810. [PMID: 34247169 DOI: 10.1159/000516681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prostate volume (PV) is a useful tool in risk stratification, diagnosis, and follow-up of numerous prostatic diseases including prostate cancer and benign prostatic hypertrophy. There is currently no accepted ideal PV measurement method. OBJECTIVE This study compares multiple means of PV estimation, including digital rectal examination (DRE), transrectal ultrasound (TRUS), and magnetic resonance imaging (MRI), and radical prostatectomy specimens to determine the best volume measurement style. METHODS A retrospective, observational, single-site study with patients identified using an institutional database was performed. A total of 197 patients who underwent robot-assisted radical prostatectomy were considered. Data collected included age, serum PSA at the time of the prostate biopsy, clinical T stage, Gleason score, and PVs for each of the following methods: DRE, TRUS, MRI, and surgical specimen weight (SPW) and volume. RESULTS A paired t test was performed, which reported a statistically significant difference between PV measures (DRE, TRUS, MRI ellipsoid, MRI bullet, SP ellipsoid, and SP bullet) and the actual prostate weight. Lowest differences were reported for SP ellipsoid volume (M = -2.37; standard deviation [SD] = 10.227; t[167] = -3.011; and p = 0.003), MRI ellipsoid volume (M = -4.318; SD = 9.53; t[167] = -5.87; and p = 0.000), and MRI bullet volume (M = 5.31; SD = 10.77; t[167] = 6.387; and p = 0.000). CONCLUSION The PV obtained by MRI has proven to correlate with the PV obtained via auto-segmentation software as well as actual SPW, while also being more cost-effective and time-efficient. Therefore, demonstrating that MRI estimated the PV is an adequate method for use in clinical practice for therapeutic planning and patient follow-up.
Collapse
Affiliation(s)
- Matteo Massanova
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Sophie Robertson
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Biagio Barone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | - Lorenzo Dutto
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Vincenzo Francesco Caputo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II,", Naples, Italy
| | - Jaimin R Bhatt
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Imran Ahmad
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Maida Bada
- Department of Urology, Ospedale San Bassiano, Bassano del Grappa, Italy
| | - Alison Obeidallah
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples "Federico II,", Naples, Italy
| |
Collapse
|
40
|
Escherichia coli Nissle 1917 as adjuvant therapy in patients with chronic bacterial prostatitis: a non-blinded, randomized, controlled trial. World J Urol 2021; 39:4373-4379. [PMID: 34213584 DOI: 10.1007/s00345-021-03773-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To evaluate the efficacy and safety of Escherichia coli Nissle 1917 (EcN) in association with levofloxacin in patients with chronic bacterial prostatitis (CBP). METHODS Patients with CBP referred to our clinic from September 2017 to July 2019 were enrolled. At baseline, the symptomatology was assessed with the NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), while the Meares-Stamey test was used to diagnose the infection. Patients were randomized (1:1) in two groups (A and B). All subjects underwent oral administration of Levoxacin® 500 mg once daily for 4 weeks. Only the patients in Group B underwent oral administration of EcN® 320 mg, twice daily for 4 weeks and then once daily for 8 weeks. After 3 months, each patient repeated the NIH-CPSI questionnaire, while the Meares-Stamey test was repeated at 3 and 6 months in patients who reported persistent symptoms. All adverse events (AEs) were recorded. RESULTS A total of 110 patients were enrolled. After 3 months patients in Group B reported a significantly lower NIH-CPSI score (5.85 ± 3.07 vs. 7.64 ± 3.86; p = 0.009) and biological recurrences rate (9.8 vs. 26.9%; p = 0.043). At 6 months the biological recurrences rate was significantly lower in Group B (8.7 vs. 28.9%; p = 0.038). Only three patients in Group A and six in Group B (p = 0.25) complained mild AEs. CONCLUSIONS Combination therapy with EcN and levofloxacin allows a better control of symptoms and biological recurrences in patients with CBP, without worsening the safety of the treatment.
Collapse
|
41
|
Xu N, Dong RN, Lin TT, Lin T, Lin YZ, Chen SH, Zhu JM, Ke ZB, Huang F, Chen YH, Xue XY. Development and Validation of Novel Biomarkers Related to M2 Macrophages Infiltration by Weighted Gene Co-Expression Network Analysis in Prostate Cancer. Front Oncol 2021; 11:634075. [PMID: 34268107 PMCID: PMC8276177 DOI: 10.3389/fonc.2021.634075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
M2-tumor-associated macrophages (TAMs) work as a promoter in the processes of bone metastases, chemotherapy resistance, and castration resistance in prostate cancer (PCa), but how M2-TAMs affect PCa has not been fully understood. In this study, we analyzed the proportion of tumor-infiltrating immune cells using the CIBERSORT algorithm, based on samples from the Cancer Genome Atlas database. Then we performed weighted gene co-expression network analysis to examine the modules concerning infiltrated M2-TAMs. Gene Ontology analysis and pathway enrichment analysis were performed for functional annotation and a protein–protein interaction network was constructed. The International Cancer Genomics Consortium cohort was used as a validation cohort. The red module showed the most correlation with M2-TAMs in PCa. Biological processes and pathways were mainly associated with the immune-related processes, as revealed by functional annotation. Four hub genes were screened: ACSL1, DLGAP5, KIF23 and NCAPG. Further validation showed that the four hub genes had a higher expression level in tumor tissues than that in normal tissues, and they were good prognosis biomarkers for PCa. In conclusion, these findings contribute to understanding the underlying molecular mechanisms of how M2-TAMs affect PCa, and looking for the potential biomarkers and therapeutic targets for PCa patients.
Collapse
Affiliation(s)
- Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ru-Nan Dong
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ting-Ting Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tian Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fei Huang
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Central Lab, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye-Hui Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
42
|
Ma W, Zhang W, Shen L, Liu J, Yang F, Maskey N, Wang H, Zhang J, Yan Y, Yao X. Can Smoking Cause Differences in Urine Microbiome in Male Patients With Bladder Cancer? A Retrospective Study. Front Oncol 2021; 11:677605. [PMID: 34168995 PMCID: PMC8217881 DOI: 10.3389/fonc.2021.677605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tobacco smoking is a carcinogen for many cancers including bladder cancer. The microbiota is involved in the occurrence, development, and treatment of tumors. We explored the composition of male urinary microbiome and the correlation between tobacco smoking and microbiome in this study. METHODS Alpha diversity, principal component analysis (PCA) and Adonis analysis, linear discriminant analysis (LDA) coupled with effect size measurement, and PICRUSt function predictive analysis were used to compare different microbiome between smokers and non-smokers in men. RESULTS There were 26 qualified samples included in the study. Eleven of them are healthy controls, and the others are from men with bladder cancer. Simpson index and the result of PCA analysis between smokers and non-smokers were not different (P > 0.05) in healthy men. However, the abundance of Bacteroidaceae, Erysipelotrichales, Lachnospiraceae, Bacteroides, and so on in the urinary tract of smokers is much higher than that of non-smokers. Compared to non-smokers, the alpha diversity in smokers was elevated in patients with bladder cancer (P < 0.05). PCA analysis showed a significant difference between smokers and non-smokers (P < 0.001), indicating that tobacco smoking plays a vital role in urinary tract microbial composition. CONCLUSION The composition of microbiome in the urinary tract is closely related to tobacco smoking. This phenomenon is more significant in patients with bladder cancer. This indicates tobacco smoking may promote the occurrence and development of bladder cancer by changing urinary tract microbiome.
Collapse
Affiliation(s)
- Wenchao Ma
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Liliang Shen
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Fuhang Yang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Niraj Maskey
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| |
Collapse
|
43
|
Tseng CH. The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 2021; 40:11-29. [PMID: 33831975 PMCID: PMC8761231 DOI: 10.5534/wjmh.210001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin is the first-line oral antidiabetic drug that shows multiple pleiotropic effects of anti-inflamation, anti-cancer, anti-aging, anti-microbia, anti-atherosclerosis, and immune modulation. Metformin's effects on men's related health are reviewed here, focusing on reproductive health under subtitles of erectile dysfunction (ED), steroidogenesis and spermatogenesis; and on prostate-related health under subtitles of prostate specific antigen (PSA), prostatitis, benign prostate hyperplasia (BPH), and prostate cancer (PCa). Updated literature suggests a potential role of metformin on arteriogenic ED but controversial and contradictory effects (either protective or harmful) on testicular functions of testosterone synthesis and spermatogenesis. With regards to prostate-related health, metformin use may be associated with lower levels of PSA in humans, but its clinical implications require more research. Although there is a lack of research on metform's effect on prostatitis, it may have potential benefits through its anti-microbial and anti-inflammatory properties. Metformin may reduce the risk of BPH by inhibiting the insulin-like growth factor 1 pathway and some but not all studies suggest a protective role of metformin on the risk of PCa. Many clinical trials are being conducted to investigate the use of metformin as an adjuvant therapy for PCa but results currently available are not conclusive. While some trials suggest a benefit in reducing the metastasis and recurrence of PCa, others do not show any benefit. More research works are warranted to illuminate the potential usefulness of metformin in the promotion of men's health.
Collapse
Affiliation(s)
- Chin Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
44
|
Clinical factors affecting prostate-specific antigen levels in prostate cancer patients undergoing radical prostatectomy: a retrospective study. Future Sci OA 2021; 7:FSO643. [PMID: 33552540 PMCID: PMC7849947 DOI: 10.2144/fsoa-2020-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Since prostate-specific antigen (PSA) levels can be influenced by some routinely available clinical factors, a retrospective study was conducted to explore the influence of obesity, smoking habit, heavy drinking and chronic obstructive pulmonary disease on PSA levels in men with histologically confirmed prostate cancer. Patients & methods: We reviewed the medical records of 833 prostate cancer patients undergoing radical prostatectomy. Results: Serum PSA levels at the time of surgery were not associated with either BMI or history of chronic obstructive pulmonary disease or heavy drinking. Conversely, PSA levels were associated with smoking status. Conclusion: Among the clinical factors explored in this homogeneous population, only tobacco use was associated with PSA levels, which should be considered when using PSA-based screening in male smokers. Smokers with prostate cancer tend to show higher PSA levels at the time of radical prostatectomy. As higher PSA levels are associated with a worse prognosis, smoking habit may have a prognostic value in prostate cancer. Further studies are required to explore the underlying biology of this finding.
Collapse
|
45
|
Antioxidant Effect of Beer Polyphenols and Their Bioavailability in Dental-Derived Stem Cells (D-dSCs) and Human Intestinal Epithelial Lines (Caco-2) Cells. Stem Cells Int 2020; 2020:8835813. [PMID: 33101420 PMCID: PMC7569455 DOI: 10.1155/2020/8835813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/07/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Beer is one of the most consumed alcoholic beverages in the world, rich in chemical compounds of natural origin with high nutritional and biological value. It is made up of water, barley malt, hops, and yeast. The main nutrients are carbohydrates, amino acids, minerals, vitamins, and other compounds such as polyphenols which are responsible for the many health benefits associated with this consumption of drinks. Hops and malt are one of the raw materials for beer and are a source of phenolic compounds. In fact, about 30% of the polyphenols in beer comes from hops and 70%-80% from malt. Natural compounds of foods or plants exert an important antioxidant activity, counteracting the formation of harmful free radicals. In the presence of an intense stressing event, cells activate specific responses to counteract cell death or senescence which is known to act as a key-task in the onset of age-related pathologies and in the loss of tissue homeostasis. Many studies have shown positive effects of natural compounds as beer polyphenols on biological systems. The main aims of our research were to determine the polyphenolic profile of three fractions, coming from stages of beer production, the mashing process (must), the filtration process (prehopping solution), and the boiling process with the addition of hops (posthopping solution), and to evaluate the effects of these fractions on Dental-derived Stem Cells (D-dSCs) and human intestinal epithelial lines (Caco-2 cells). Furthermore, we underline the bioavailability of beer fraction polyphenols by carrying out the in vitro intestinal absorption using the Caco-2 cell model. We found an antioxidant, proliferating, and antisenescent effects of the fractions deriving from the brewing process on D-dSCs and Caco-2 cells. Finally, our results demonstrated that the bioavailability of polyphenols is greater in beer than in the control standards used, supporting the future clinical application of these compounds as potential therapeutic tools in precision and translational medicine.
Collapse
|