1
|
Peng L, Yin Q, Wang X, Zhong Y, Wang Y, Cai W, Zhou R, Chen Y, Hu Y, Cheng Z, Jiang W, Yue X, Huang L. Pasteurized Akkermansia muciniphila Ameliorates Preeclampsia in Mice by Enhancing Gut Barrier Integrity, Improving Endothelial Function, and Modulating Gut Metabolic Dysregulation. Microorganisms 2024; 12:2483. [PMID: 39770686 PMCID: PMC11727688 DOI: 10.3390/microorganisms12122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy linked to endothelial dysfunction and an imbalance in the gut microbiota. While Akkermansia muciniphila (AKK) has shown promise in alleviating PE symptoms, the use of live bacteria raises safety concerns. This study explored the potential of pasteurized A. muciniphila (pAKK) as a safer alternative for treating PE, focusing on its effects on endothelial function and metabolic regulation. A PE mouse model was induced via the nitric oxide synthase inhibitor L-NAME, followed by treatment with either pAKK or live AKK. Fecal metabolomic profiling was performed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in vivo and in vitro experiments were used to assess the effects of pAKK on endothelial function and metabolic pathways. pAKK exhibited therapeutic effects comparable to those of live AKK in improving L-NAME-induced PE-like phenotypes in mice, including enhanced gut barrier function and reduced endotoxemia. pAKK also promoted placental angiogenesis by restoring endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production. The in vitro experiments further confirmed that pAKK alleviated L-NAME-induced NO reduction and endothelial dysfunction in human umbilical vein endothelial cells (HUVECs). Metabolomic analysis revealed that both pAKK and live AKK reversed metabolic disturbances in PE by modulating key metabolites and pathways related to unsaturated fatty acid biosynthesis, folate, and linoleic acid metabolism. As a postbiotic, pAKK may support existing treatments for preeclampsia by improving gut barrier function, restoring endothelial function, and regulating metabolic dysregulation, offering a safer alternative to live bacteria. These findings highlight the potential clinical value of pAKK as an adjunctive therapy in managing PE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaojing Yue
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (L.P.)
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; (L.P.)
| |
Collapse
|
2
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Concepción-Zavaleta MJ, Quiroz-Aldave JE, Durand-Vásquez MDC, Gamarra-Osorio ER, Valencia de la Cruz JDC, Barrueto-Callirgos CM, Puelles-León SL, Alvarado-León EDJ, Leiva-Cabrera F, Zavaleta-Gutiérrez FE, Concepción-Urteaga LA, Paz-Ibarra J. A comprehensive review of genetic causes of obesity. World J Pediatr 2024; 20:26-39. [PMID: 37725322 DOI: 10.1007/s12519-023-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - José Paz-Ibarra
- Department of Medicine, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
4
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
5
|
Basilicata M, Pieri M, Marrone G, Nicolai E, Di Lauro M, Paolino V, Tomassetti F, Vivarini I, Bollero P, Bernardini S, Noce A. Saliva as Biomarker for Oral and Chronic Degenerative Non-Communicable Diseases. Metabolites 2023; 13:889. [PMID: 37623833 PMCID: PMC10456419 DOI: 10.3390/metabo13080889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Saliva is a very complex fluid and it is essential to maintain several physiological processes and functions, including oral health, taste, digestion and immunological defenses. Saliva composition and the oral microbiome can be influenced by several factors, like diet and smoking habits, and their alteration can represent an important access point for pathogens and, thus, for systemic illness onset. In this review, we explore the potentiality of saliva as a new tool for the early detection of some pathological conditions, such as oral diseases, chronic degenerative non-communicable diseases, among these chronic kidney disease (CKD). We also examined the possible correlation between oral and systemic diseases and oral and gut microbiota dysbiosis. In particular, we deeply analyzed the relationship between oral diseases and CKD. In this context, some salivary parameters can represent a new device to detect either oral or systemic pathologies. Moreover, the positive modulation of oral and gut microbiota induced by prebiotics, postbiotics, or symbiotics could represent a new possible adjuvant therapy in the clinical management of oral diseases and CKD.
Collapse
Affiliation(s)
- Michele Basilicata
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eleonora Nicolai
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Vivarini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Policlinico Tor Vergata, 00133 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, “Tor Vergata” University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
6
|
Pacifici F, Malatesta G, Mammi C, Pastore D, Marzolla V, Ricordi C, Chiereghin F, Infante M, Donadel G, Curcio F, Noce A, Rovella V, Lauro D, Tesauro M, Di Daniele N, Garaci E, Caprio M, Della-Morte D. A Novel Mix of Polyphenols and Micronutrients Reduces Adipogenesis and Promotes White Adipose Tissue Browning via UCP1 Expression and AMPK Activation. Cells 2023; 12:714. [PMID: 36899850 PMCID: PMC10001138 DOI: 10.3390/cells12050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Obesity is a pandemic disease characterized by excessive severe body comorbidities. Reduction in fat accumulation represents a mechanism of prevention, and the replacement of white adipose tissue (WAT) with brown adipose tissue (BAT) has been proposed as one promising strategy against obesity. In the present study, we sought to investigate the ability of a natural mixture of polyphenols and micronutrients (A5+) to counteract white adipogenesis by promoting WAT browning. Methods: For this study, we employed a murine 3T3-L1 fibroblast cell line treated with A5+, or DMSO as control, during the differentiation in mature adipocytes for 10 days. Cell cycle analysis was performed using propidium iodide staining and cytofluorimetric analysis. Intracellular lipid contents were detected by Oil Red O staining. Inflammation Array, along with qRT-PCR and Western Blot analyses, served to measure the expression of the analyzed markers, such as pro-inflammatory cytokines. Results: A5+ administration significantly reduced lipids' accumulation in adipocytes when compared to control cells (p < 0.005). Similarly, A5+ inhibited cellular proliferation during the mitotic clonal expansion (MCE), the most relevant stage in adipocytes differentiation (p < 0.0001). We also found that A5+ significantly reduced the release of pro-inflammatory cytokines, such as IL-6 and Leptin (p < 0.005), and promoted fat browning and fatty acid oxidation through increasing expression levels of genes related to BAT, such as UCP1 (p < 0.05). This thermogenic process is mediated via AMPK-ATGL pathway activation. Conclusion: Overall, these results demonstrated that the synergistic effect of compounds contained in A5+ may be able to counteract adipogenesis and then obesity by inducing fat browning.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gina Malatesta
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Donatella Pastore
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francesca Chiereghin
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Marco Infante
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Section of Diabetology, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesco Curcio
- Covid Internal Medicine Unit, Department of Translational Medical Sciences, AOU Federico II, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Enrico Garaci
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, 00166 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Han XD, Li YJ, Wang P, Han XL, Zhao MQ, Wang JF, Li CY, Tian N, Han XJ, Hou TT, Wang YX, Song L, Du YF, Qiu CX. Insulin Resistance-Varying Associations of Adiposity Indices with Cerebral Perfusion in Older Adults: A Population-Based Study. J Nutr Health Aging 2023; 27:219-227. [PMID: 36973931 DOI: 10.1007/s12603-023-1894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Excessive accumulation of adipose tissue may accelerate brain aging, but the underlying mechanisms are poorly understood. Several adiposity indices were proposed to assess obesity, while their linkage with brain health in older adults remained unclear. Here we aimed to examine the associations of adiposity indices with global and regional cerebral blood flow (CBF) in older adults, while considering insulin resistance. DESIGN This was a cross-sectional population-based study that included older adults derived from the baseline participants in the ongoing Multimodal Interventions to Delay Dementia and Disability in rural China (MIND-China) study. SETTING AND PARTICIPANTS The study included 103 Chinese rural-dwelling older adults (age≥60 years; 69.9% women) who underwent brain magnetic resonance imaging scans. METHODS We estimated eight adiposity indices based on anthropometric measures. We automatically quantified global and regional CBF using the arterial spin labeling scans. Insulin resistance was assessed using the triglyceride-glucose index and then dichotomized into high and low levels according to the median. Data were analyzed using general linear model and voxel-wise analysis. RESULTS Of the eight examined adiposity indices, only higher waist-to-height ratio (WHtR) and body roundness index (BRI) were associated with reduced global CBF (multivariable-adjusted β-coefficients and 95%CI: -1.76; -3.25, -0.27 and -1.77; -3.25, -0.30, respectively) and hypoperfusion in bilateral middle temporal gyri, angular gyri and superior temporal gyri, left middle cingulum and precuneus (P<0.05). There were statistical interactions of WHtR and BRI with levels of insulin resistance on CBF, such that the significant associations of higher WHtR and BRI with lower global and regional CBF existed only in people with high insulin resistance (P<0.05). CONCLUSION Higher WHtR and BRI are associated with cerebral hypoperfusion in older adults, especially in people with high insulin resistance. This may highlight the pathological role of visceral fat in vascular brain aging.
Collapse
Affiliation(s)
- X D Han
- Prof. Yifeng Du and Dr. Lin Song, Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324, Jingwu Road, Jinan, Shandong 250021, P. R. China. Tel.: + 86 531 68776354; fax: + 86 531 68776354. E-mail address: (Y. Du), (L. Song)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
9
|
The melatonergic agonist agomelatine ameliorates high fat diet-induced obesity in mice through the modulation of the gut microbiome. Biomed Pharmacother 2022; 153:113445. [PMID: 36076560 DOI: 10.1016/j.biopha.2022.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
10
|
Feng Y, Si X, Zhu R, Chen J, Zhao W, Wang Q, Han S. Analysis of the Relationship between Gut Flora Levels in Childhood Obese Population and Normal Healthy Population Based on Machine Learning. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6860940. [PMID: 36072769 PMCID: PMC9441368 DOI: 10.1155/2022/6860940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Aims To explore the study of the relationship between the level of gut flora in childhood obese people and normal healthy people based on the analysis of machine learning. Materials and Methods The stools of 54 normal weight, 53 overweight, and 59 obese children from May 2021 to May 2022 were selected. And DNA was extracted, and primers specific for the four bacteria were designed according to the specificity of the four bacteria to the 16 S rDNA gene sequences of the bacteria to be tested, and real-time fluorescence quantitative PCR reactions were performed to compare whether there was any difference in the number of the four bacteria between the three groups. Results. The results of agarose gel electrophoresis showed that the PCR amplification products of all four target bacteria showed clear bands at the corresponding positions, and no nonspecific bands appeared. When compared with the marker, the size matched with the target fragment, indicating good primer specificity. The comparison between normal body recombinant, super recombinant, and obese groups was statistically significant (P < 0.05) for rectal eubacteria, polymorphic anaplasma, bifidobacteria spp., and lactobacilli. The median number of bifidobacteria in the three groups was significantly higher than the median number of rectal eubacteria, polymorphomycetes, and lactobacilli. The difference in comparison was statistically significant (P < 0.05). Stratified analysis of children's age revealed that normal body composition of Lactobacillus decreased with increasing age, and the difference was statistically significant (P < 0.05). Conclusion An increase in rectal eubacteria and a decrease in polymorphomycetes, bifidobacteria spp., and lactobacilli may be associated with the development of obesity. The numbers of rectal eubacteria, polymorphic methanobacteria, bifidobacteria spp., and lactobacilli in the intestine of normal weight and obese children were less affected by sex and age.
Collapse
Affiliation(s)
- Yaoqing Feng
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Xia Si
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Ruifang Zhu
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Junxiang Chen
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Wenting Zhao
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Qian Wang
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| | - Shifan Han
- School of Nursing, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi Province 030001, China
| |
Collapse
|
11
|
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res 2022; 87:101183. [PMID: 35961483 DOI: 10.1016/j.plipres.2022.101183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The last decades revealed that the adipose tissue shows an unexplored therapeutic potential. In particular, targeting the perivascular adipose tissue (PVAT), that surrounds blood vessels, can prevent cardiovascular pathologies and browning of the adipose tissue can become an effective strategy against obesity. Therefore, new analytical tools are necessary to analyze this tissue. This review reports on the recent developments of various Raman-based techniques for the identification and quantification of the adipose tissue compared to conventional analytical methods. In particular, the emphasis is on analysis of PVAT, investigation of pathological changes of the adipose tissue in model systems and possibilities for its characterization in the clinical context. Overall, the review critically discusses the potential and limitations of Raman techniques in adipose tissue-targeted diagnostics and possible future anti-obesity therapies.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Natalia Hachlica
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
12
|
Wang TY, Tao SY, Wu YX, An T, Lv BH, Liu JX, Liu YT, Jiang GJ. Quinoa Reduces High-Fat Diet-Induced Obesity in Mice via Potential Microbiota-Gut-Brain-Liver Interaction Mechanisms. Microbiol Spectr 2022; 10:e0032922. [PMID: 35583337 PMCID: PMC9241864 DOI: 10.1128/spectrum.00329-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is important in the occurrence and development of obesity. It can not only via its metabolites, but also through microbiota-gut-brain-liver interactions, directly or indirectly, influence obesity. Quinoa, known as one kind of pseudocereals and weight loss food supplements, has been high-profile for its high nutritional value and broad applications. In this context, we produced high-fat diet-induced (HFD) obese mouse models and assessed the efficacy of quinoa with saponin and quinoa without saponin on obesity. We explored the potential therapeutic mechanisms of quinoa using methods such as 16S rRNA, Western blotting, Immunohistochemical (IHC). Our results indicated that quinoa can improve the obese symptoms significantly on HFD mice, as well as aberrant glucose and lipid metabolism. Further analyses suggest that quinoa can regulate microbiota in the colon and have predominantly regulation on Bacteroidetes, Actinobacteria and Desulfovibrio, meanwhile can decrease the F/B ratio and the abundance of Blautia. Contemporaneously, quinoa can upregulate the expression of TGR5 in the colon and brain, as well as GLP-1 in the colon, liver and brain. while downregulate the expression of TLR4 in the colon and liver, as well as markers of ER stress and oxidative stress in livers and serums. Beyond this, tight junctional proteins in colons and brains are also increased in response to quinoa. Therefore, quinoa can effectively reduce obesity and may possibly exert through microbiota-gut-brain-liver interaction mechanisms. IMPORTANCE Gut microbiota has been investigated extensively, as a driver of obesity as well as a therapeutic target. Studies of its mechanisms are predominantly microbiota-gut-brain axis or microbiota-gut-liver axis. Recent studies have shown that there is an important correlation between the gut-brain-liver axis and the energy balance of the body. Our research focus on microbiota-gut-brain-liver axis, as well as influences of quinoa in intestinal microbiota. We extend this study to the interaction between microbiota and brains, and the result shows obvious differences in the composition of the microbiome between the HFD group and others. These observations infer that besides the neurotransmitter and related receptors, microbiota itself may be a mediator for regulating bidirectional communication, along the gut-brain-liver axis. Taken together, these results also provide strong evidence for widening the domain of applicability of quinoa.
Collapse
Affiliation(s)
- Ting-Ye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tian An
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Xian Liu
- Zhong Li Science and Technology Limited Company, Beijing, China
| | - Yu-Tong Liu
- Gansu Pure High-Land Agricultural Science and Technology Limited Company, Lanzhou, Gansu, China
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Perivascular adipose tissue-mediated arterial stiffening in aging and disease: An emerging translational therapeutic target? Pharmacol Res 2022; 178:106150. [PMID: 35339679 DOI: 10.1016/j.phrs.2022.106150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in modernized societies. Arterial stiffening with aging and disease is a key pathological event leading to increased CVD morbidity and mortality. Perivascular adipose tissue (PVAT) is a fat depot not widely studied yet has direct and profound effects on arterial stiffening. Identifying PVAT as a novel therapeutic target to lower arterial stiffness and thereby CVD risk has potentially important clinical ramifications. Thus, herein, we will overview the current preclinical evidence and the associated mechanisms for PVAT to promote arterial stiffness with aging and other disease conditions. We will also discuss viable translational lifestyle and pharmacological interventions for altering PVAT function that may de-stiffen arteries. Last, the translational potential for PVAT as a therapeutic target to lower arterial stiffness and CVD risk for clinical populations will be discussed.
Collapse
|
14
|
Ugwoke CK, Cvetko E, Umek N. Skeletal Muscle Microvascular Dysfunction in Obesity-Related Insulin Resistance: Pathophysiological Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23020847. [PMID: 35055038 PMCID: PMC8778410 DOI: 10.3390/ijms23020847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity is a worrisomely escalating public health problem globally and one of the leading causes of morbidity and mortality from noncommunicable disease. The epidemiological link between obesity and a broad spectrum of cardiometabolic disorders has been well documented; however, the underlying pathophysiological mechanisms are only partially understood, and effective treatment options remain scarce. Given its critical role in glucose metabolism, skeletal muscle has increasingly become a focus of attention in understanding the mechanisms of impaired insulin function in obesity and the associated metabolic sequelae. We examined the current evidence on the relationship between microvascular dysfunction and insulin resistance in obesity. A growing body of evidence suggest an intimate and reciprocal relationship between skeletal muscle microvascular and glucometabolic physiology. The obesity phenotype is characterized by structural and functional changes in the skeletal muscle microcirculation which contribute to insulin dysfunction and disturbed glucose homeostasis. Several interconnected etiologic molecular mechanisms have been suggested, including endothelial dysfunction by several factors, extracellular matrix remodelling, and induction of oxidative stress and the immunoinflammatory phenotype. We further correlated currently available pharmacological agents that have deductive therapeutic relevance to the explored pathophysiological mechanisms, highlighting a potential clinical perspective in obesity treatment.
Collapse
|
15
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|