1
|
Budiarso FS, Leong YK, Chang JJ, Chen CY, Chen JH, Yen HW, Chang JS. Current advances in microalgae-based fucoxanthin production and downstream processes. BIORESOURCE TECHNOLOGY 2025; 428:132455. [PMID: 40157580 DOI: 10.1016/j.biortech.2025.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Fucoxanthin, a marine carotenoid primarily found in brown algae and microalgae, offers significant health benefits, including antioxidant, anti-obesity, and anti-cancer effects. While brown algae remain the dominant commercial source, microalgae such as Phaeodactylum tricornutum are emerging as promising candidates for large-scale, sustainable fucoxanthin production. This review explores advancements in fucoxanthin biosynthesis, focusing on cultivation methods, extraction techniques, and genetic engineering strategies. Different cultivation systems - including autotrophic, heterotrophic, and mixotrophic approaches - have been assessed for their biomass yield, cost-effectiveness, and scalability, together with a quantitative meta-analysis to highlight specific trends or correlations in fucoxanthin production. The efficiency and environmental impact of extraction methods, such as supercritical fluid extraction, ultrasound-assisted extraction, and microwave-assisted extraction, have also been evaluated. In addition, synthetic biology and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genetic modifications show potential for enhancing fucoxanthin biosynthesis. However, challenges remain in terms of cost, scalability, and regulatory constraints. This review highlights the need for integrated biotechnological solutions to enhance commercial viability, combining metabolic engineering, efficient extraction techniques, and optimized cultivation strategies. As demand continues to grow in the nutraceutical, pharmaceutical, and cosmetic industries, ongoing advancements in microalgae-based fucoxanthin production will be critical for ensuring sustainable and cost-effective manufacturing.
Collapse
Affiliation(s)
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jih-Heng Chen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
2
|
Jiang M, Li P, Han X, Jiang L, Han L, He Q, Yang C, Sun Z, Wang Y, Cao Y, Liu X, Wu W. Marine-Derived Bioactive Compounds: A Promising Strategy for Ameliorating Skeletal Muscle Dysfunction in COPD. Mar Drugs 2025; 23:158. [PMID: 40278279 PMCID: PMC12028452 DOI: 10.3390/md23040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently accompanied by skeletal muscle dysfunction, a critical and severe extrapulmonary complication. This dysfunction contributes to reduced exercise capacity, increased frequency of acute exacerbations, and elevated mortality, serving as an independent risk factor for poor prognosis in COPD patients. Owing to the unique physicochemical conditions of the marine environment, marine-derived bioactive compounds exhibit potent anti-inflammatory and antioxidant properties, demonstrating therapeutic potential for ameliorating COPD skeletal muscle dysfunction. This review summarizes marine-derived bioactive compounds with promising efficacy against skeletal muscle dysfunction in COPD, including polysaccharides, lipids, polyphenols, peptides, and carotenoids. The discussed compounds have shown bioactivities in promoting skeletal muscle health and suppressing muscle atrophy, thereby providing potential strategies for the prevention and treatment of COPD skeletal muscle dysfunction. These findings may expand the therapeutic strategies for managing COPD skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Lihua Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Qinglan He
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Chen Yang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Zhichao Sun
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (P.L.); (L.J.); (Y.W.)
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China; (M.J.); (X.H.); (L.H.); (Q.H.); (C.Y.); (Z.S.); (Y.C.)
| |
Collapse
|
3
|
Jiao X, Zhang Y, Wang Z, Chang H, Li Y, Wang B, Gan Y, Gu D. Isoliquiritigenin, an Extract from Licorice, Attenuates Dexamethasone-Induced Muscle Atrophy via Akt/mTOR Pathway. Mol Nutr Food Res 2025; 69:e70000. [PMID: 39981829 DOI: 10.1002/mnfr.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Muscle atrophy is a pathological condition characterized by the excessive degradation of muscle proteins, leading to impaired physical performance. Isoliquiritigenin (ISL) is a promising extract known for its medical effects; however, its impact on muscle atrophy remains unclear. We investigated the effects of ISL on muscle atrophy both in vitro and in vivo. The results showed that 5-µM ISL exhibited no significant cytotoxicity on C2C12 cells, as reflected by cell count kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) tests. ISL increased the diameter of myotubes and downregulated forkhead box O proteins, muscle-specific RING finger protein 1 (MuRF-1), and Atrogin-1 induced by Dexamethasone (Dex). ISL could also enhance the phosphorylation of Akt, the mammalian target of rapamycin (mTOR), eIF4E-binding protein 1, and p70 S6 kinase in C2C12 myotubes. In animal experiments, ISL increased the muscle mass, improved the cross-sectional area of muscles, and inhibited the expression of MuRF-1 and Atrogin-1 in muscle tissues. For physical performance, ISL enhanced grip strength and running endurance. ISL ameliorated Dex-induced muscle atrophy both in vitro and in vivo, associated with increased diameter of myotubes and decreased Atrogin-1 and MuRF-1 expression via the Akt/mTOR signaling pathway. This suggested that ISL could be used as a natural drug for muscle atrophy.
Collapse
Affiliation(s)
- Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Oral Diseases, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Hanwen Chang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjin Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Binbin Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| | - Yaokai Gan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyun Gu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Lu Y, Li T, Shu Y, Lu C, Luo Z, Wang J, Xiong H, Li W. Lipid peroxidation and sarcopenia: molecular mechanisms and potential therapeutic approaches. Front Med (Lausanne) 2025; 12:1525205. [PMID: 39963429 PMCID: PMC11831367 DOI: 10.3389/fmed.2025.1525205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Sarcopenia is an age-related condition characterized by the progressive loss of skeletal muscle mass and strength. With the global aging population, its incidence is rapidly increasing. Lipid peroxidation is a critical biochemical process that generates reactive oxygen species (ROS), leading to the destruction of muscle cell structure and function. It plays a pivotal role in the onset and progression of sarcopenia. This review summarizes the mechanisms by which lipid peroxidation contributes to sarcopenia, with a focus on its regulatory effects on cell membrane damage, mitochondrial dysfunction, and cell death. In addition, we discuss the protective role of antioxidant factors such as GPX4 (glutathione peroxidase 4) and antioxidant peptides like SS peptides in mitigating lipid peroxidation and delaying the progression of sarcopenia. Finally, the potential of various strategies, including natural compounds, supplements, natural extracts, and lifestyle interventions, in inhibiting lipid peroxidation and promoting muscle health is explored.
Collapse
Affiliation(s)
- Yifan Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Tiao Li
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Shu
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chengyin Lu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zhiqiang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Jingrui Wang
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hui Xiong
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wangyang Li
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Han Y, Kim DH, Pack SP. Marine-Derived Bioactive Ingredients in Functional Foods for Aging: Nutritional and Therapeutic Perspectives. Mar Drugs 2024; 22:496. [PMID: 39590776 PMCID: PMC11595256 DOI: 10.3390/md22110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Aging is closely linked to various health challenges, including cardiovascular disease, metabolic disorders, and neurodegenerative conditions. This study emphasizes the critical role of bioactive compounds derived from marine sources, such as antioxidants, omega-3 fatty acids, vitamins, minerals, and polysaccharides, in addressing oxidative stress, inflammation, and metabolic disorders closely related to aging. Incorporating these materials into functional foods not only provides essential nutrients but also delivers therapeutic effects, thereby promoting healthy aging and mitigating age-related diseases. The growth of the global anti-aging market, particularly in North America, Europe, and Asia, underscores the significance of this study. This review systematically analyzes the current research, identifying key bioactive compounds, their mechanisms of action, and their potential health benefits, thus highlighting the broad applicability of marine-derived bioactive compounds to enhancing healthy aging and improving the quality of life of aging populations.
Collapse
Affiliation(s)
- Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
6
|
Lee H, Cho E, Hwang CY, Cao L, Kim M, Lee SG, Seo M. Bacterioruberin extract from Haloarchaea Haloferax marinum: Component identification, antioxidant activity and anti-atrophy effect in LPS-treated C2C12 myotubes. Microb Biotechnol 2024; 17:e70009. [PMID: 39264362 PMCID: PMC11391814 DOI: 10.1111/1751-7915.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Carotenoids are natural pigments utilized as colourants and antioxidants across food, pharmaceutical and cosmetic industries. They exist in carbon chain lengths of C30, C40, C45 and C50, with C40 variants being the most common. Bacterioruberin (BR) and its derivatives are part of the less common C50 carotenoid group, synthesized primarily by halophilic archaea. This study analysed the compositional characteristics of BR extract (BRE) isolated from 'Haloferax marinum' MBLA0078, a halophilic archaeon isolated from seawater near Yeoungheungdo Island in the Republic of Korea, and investigated its antioxidant activity and protective effect on lipopolysaccharide (LPS)-induced C2C12 myotube atrophy. The main components of BRE included all-trans-BR, monoanhydrobacterioruberin, 2-isopentenyl-3,4-dehydrorhodopin and all-trans-bisanhydrobacterioruberin. BRE exhibited higher antioxidant activity and DNA nicking protection activity than other well-known C40 carotenoids, such as β-carotene, lycopene and astaxanthin. In C2C12 myotubes, LPS treatment led to a reduction in myotube diameter and number, as well as the hypertranscription of the muscle-specific ubiquitin ligase MAFbx and MuRF1. BRE mitigated these changes by activating the Akt/mTOR pathway. Furthermore, BRE abolished the elevated cellular reactive oxygen species levels and the inflammation response induced by LPS. This study demonstrated that 'Hfx. marinum' is an excellent source of natural microbial C50 carotenoids with strong antioxidant capacity and may offer potential protective effects against muscle atrophy.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
| | - Eui‐Sang Cho
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Biotechnology Institute, University of MinnesotaSt. PaulMinnesotaUSA
| | - Chi Young Hwang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Lei Cao
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Mi‐Bo Kim
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Sang Gil Lee
- Department of Smart Green Technology EngineeringPukyong National UniversityBusanRepublic of Korea
- Department of Food Science and NutritionPukyong National UniversityBusanRepublic of Korea
| | - Myung‐Ji Seo
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Research Center for bio Materials & Process DevelopmentIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
7
|
Yoo A, Ahn J, Seo HD, Hahm J, Kim MJ, Jung CH, Ha TY. Gracilaria chorda attenuates obesity-related muscle wasting through activation of SIRT1/PGC1α in skeletal muscle of mice. Food Sci Nutr 2024; 12:5077-5086. [PMID: 39055231 PMCID: PMC11266886 DOI: 10.1002/fsn3.4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 03/24/2024] [Indexed: 07/27/2024] Open
Abstract
Gracilaria chorda (GC) is a red algal species that is primarily consumed in Asia. Here, we investigated the effect of GC on obesity-related skeletal muscle wasting. Furthermore, elucidating its impact on the activation of sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) constituted a critical aspect in understanding the underlying mechanism of action. In this study, 6-week-old male C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to induce obesity, then continued on the HFD for another 8 weeks while orally administered GC. GC decreased ectopic fat accumulation in skeletal muscle and increased muscle weight, size, and function in obese mice. Furthermore, GC reduced skeletal muscle atrophy and increased hypertrophy in mice. We hypothesized that the activation of SIRT1/PGC1α by GC regulates skeletal muscle atrophy and hypertrophy. We observed that GC increased the expression of SIRT1 and PGC1α in skeletal muscle of mice and in C2C12 cells, which increased mitochondrial function and biogenesis. In addition, when C2C12 cells were treated with the SIRT1-specific inhibitor EX-527, no changes were observed in the protein levels of SIRT1 and PGC1α in the GC-treated C2C12 cells. Therefore, GC attenuated obesity-related muscle wasting by improving mitochondrial function and biogenesis through the activation of SIRT1/PGC1α in the skeletal muscle of mice.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Jiyun Ahn
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| | - Hyo Deok Seo
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Jeong‐Hoon Hahm
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Min Jung Kim
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
| | - Chang Hwa Jung
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| | - Tae Youl Ha
- Division of Food Functionality ResearchKorea Food Research InstituteWanju‐gunKorea
- Division of Food BiotechnologyUniversity of Science and TechnologyDaejeonKorea
| |
Collapse
|
8
|
Batista EK, de Lima LMA, Gomes DA, Crans DC, Silva WE, Belian MF, Lira EC. Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur-Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals (Basel) 2024; 17:760. [PMID: 38931427 PMCID: PMC11206843 DOI: 10.3390/ph17060760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Vanadium compounds are known to exert insulin-enhancing activity, normalize elevated blood glucose levels in diabetic subjects, and show significant activity in models of insulin resistance (IR). Faced with insulin resistance, the present work investigates the antidiabetic performance of a known oxidovanadium(IV)-based coordination compound-[VIVO(octd)]-and effects associated with glucocorticoid-induced insulin resistance in mice. The effects of [VIVO(octd)] were evaluated in a female Swiss mice model of insulin resistance induced by seven days of dexamethasone treatment in comparison with groups receiving metformin treatment. Biological assays such as hematological, TyG index, hepatic lipids, glycogen, oxidative stress in the liver, and oral glucose tolerance tests were evaluated. [VIVO(octd)] was characterized with 51V NMR, infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), electronic absorption spectroscopy, and mass spectrometry (ESI-FT-MS). The [VIVO(octd)] oral treatment (50 mg/kg) had an antioxidant effect, reducing 50% of fast blood glucose (p < 0.05) and 25% of the TyG index, which is used to estimate insulin resistance (p < 0.05), compared with the non-treated group. The oxidovanadium-sulfur compound is a promising antihyperglycemic therapeutic, including in cases aggravated by insulin resistance induced by glucocorticoid treatment.
Collapse
Affiliation(s)
- Eucilene K. Batista
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Lidiane M. A. de Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Dayane A. Gomes
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80513, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80513, USA
| | - Wagner E. Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Mônica F. Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil; (L.M.A.d.L.); (W.E.S.)
| | - Eduardo C. Lira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (E.K.B.); (D.A.G.); (E.C.L.)
| |
Collapse
|
9
|
Dickerson B, Maury J, Jenkins V, Nottingham K, Xing D, Gonzalez DE, Leonard M, Kendra J, Ko J, Yoo C, Johnson S, Pradelles R, Purpura M, Jäger R, Sowinski R, Rasmussen CJ, Kreider RB. Effects of Supplementation with Microalgae Extract from Phaeodactylum tricornutum (Mi136) to Support Benefits from a Weight Management Intervention in Overweight Women. Nutrients 2024; 16:990. [PMID: 38613023 PMCID: PMC11013338 DOI: 10.3390/nu16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Microalgae like Phaeodactylum tricornutum (PT) contain the carotenoid, fucoxanthin, which has been purported to promote fat loss, lower blood lipids, and improve glucose management. This study examined whether dietary supplementation with microalgae extracts from PT containing 4.4 mg/d of fucoxanthin affects changes in body composition or health markers in overweight women during an exercise and diet intervention. MATERIALS AND METHODS A total of 37 females (28.6 ± 7.9 years, 80.2 ± 14.9 kg, 29.6 ± 3.8 kg/m², 41.4 ± 4.2% fat) fasted for 12 h, donated a fasting blood sample, completed health and mood state inventories, and undertook body composition, health, and exercise assessments. In a counterbalanced, randomized, and double-blind manner, participants ingested a placebo (PL), or microalgae extract of Phaeodactylum tricornutum standardized to 4.4 mg of fucoxanthin (FX) for 12 weeks while participating in a supervised exercise program that included resistance-training and walking (3 days/week) with encouragement to accumulate 10,000 steps/day on remaining days of the week. The diet intervention involved reducing energy intake by about -300 kcal/d (i.e., ≈1400-1600 kcals/d, 55% carbohydrate, 30% fat, 15% protein) to promote a -500 kcal/d energy deficit with exercise. Follow-up testing was performed at 6 and 12 weeks. A general linear model (GLM) with repeated measures statistical analysis was used to analyze group responses and changes from baseline with 95% confidence intervals. RESULTS Dietary supplementation with microalgae extract from PT containing fucoxanthin for 12 weeks did not promote additional weight loss or fat loss in overweight but otherwise healthy females initiating an exercise and diet intervention designed to promote modest weight loss. However, fucoxanthin supplementation preserved bone mass, increased bone density, and saw greater improvements in walking steps/day, resting heart rate, aerobic capacity, blood lipid profiles, adherence to diet goals, functional activity tolerance, and measures of quality of life. Consequently, there appears to be some benefit to supplementing microalgae extract from PT containing fucoxanthin during a diet and exercise program. Registered clinical trial #NCT04761406.
Collapse
Affiliation(s)
- Broderick Dickerson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jonathan Maury
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Kay Nottingham
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Jacob Kendra
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Rémi Pradelles
- Research & Development Department, Microphyt, 34670 Baillargues, France; (J.M.); (R.P.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (V.J.); (K.N.); (D.X.); (D.E.G.); (M.L.); (J.K.); (J.K.); (C.Y.); (S.J.); (R.S.); (C.J.R.)
| |
Collapse
|
10
|
Wu C, Xiang S, Wang H, Zhang X, Tian X, Tan M, Su W. Orally Deliverable Sequence-Targeted Fucoxanthin-Loaded Biomimetic Extracellular Vesicles for Alleviation of Nonalcoholic Fatty Liver Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9854-9867. [PMID: 38375789 DOI: 10.1021/acsami.3c18029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Extracellular vesicles (EVs) possess favorable biocompatibility and immunological characteristics, making them optimal carriers for bioactive substances. In this study, an innovative hepatic-targeted vesicle system encapsulating with fucoxanthin (GA-LpEVs-FX) was successfully designed and used to alleviate nonalcoholic fatty liver disease. The formulation entails the self-assembly of EVs derived from Lactobacillus paracasei (LpEVs), modification with glycyrrhetinic acid (GA) via amide reaction offering the system liver-targeting capacity and loading fucoxanthin (FX) through sonication treatment. In vitro experiments demonstrated that GA-LpEVs-FX effectively mitigated hepatic lipid accumulation and attenuated reactive oxygen species-induced damage resulting lipid accumulation (p < 0.05). In vivo, GA-LpEVs-FX exhibited significant downregulation of lipogenesis-related proteins, namely, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1), and sterol regulatory element binding protein 1 (SREBP-1), subsequently ameliorating lipid metabolism disorders (p < 0.05), and the stability of GA-LpEVs-FX significantly improved compared to free FX. These findings establish a novel formulation for utilizing foodborne components for nonalcoholic fatty liver disease alleviation.
Collapse
Affiliation(s)
- Caiyun Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiumin Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
11
|
Yi D, Sugimoto T, Matsumura T, Yokoyama S, Fujisato T, Nakamura T, Hashimoto T. Investigating the Combined Effects of Mechanical Stress and Nutrition on Muscle Hypertrophic Signals Using Contractile 3D-Engineered Muscle (3D-EM). Nutrients 2023; 15:4083. [PMID: 37764867 PMCID: PMC10536268 DOI: 10.3390/nu15184083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Since 3D-EM closely resembles in vivo muscles, the aim of this study was to investigate the effects of exercise (electrical pulse stimulation (EPS)) and nutrition (maca), which contains triterpenes, on muscle hypertrophy by using 3D-EM for the first time. The 3D-EM was composed of C2C12 cells and type 1 collagen gel, was differentiated for 14 days, and was divided into four groups: control, maca, EPS, and maca + EPS. The medium was replaced every two days before each EPS intervention, and the concentration of maca in the culture solution was 1 mg/mL. The intervention conditions of the EPS were 30 V, 1 Hz, and 2 ms (24 h on, 24 h off, for one week). The expression levels of proteins were examined by Western blotting. The intervention of maca and EPS upregulated the expression of MHC-fast/slow (both p < 0.05) compared with the control group, and the addition of maca had no effect on the phosphorylation of mTOR (p = 0.287) but increased the AMPK phosphorylation (p = 0.001). These findings suggest that intervention with maca and EPS has a positive effect on muscle hypertrophy, which has a positive impact on sarcopenia. However, the underlying mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Dong Yi
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Takeshi Sugimoto
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Teppei Matsumura
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Sho Yokoyama
- Department of Mechanical Engineering, School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| |
Collapse
|
12
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
13
|
Shirouchi B, Kawahara Y, Kutsuna Y, Higuchi M, Okumura M, Mitsuta S, Nagao N, Tanaka K. Oral Administration of Chaetoceros gracilis—A Marine Microalga—Alleviates Hepatic Lipid Accumulation in Rats Fed a High-Sucrose and Cholesterol-Containing Diet. Metabolites 2023; 13:metabo13030436. [PMID: 36984876 PMCID: PMC10051878 DOI: 10.3390/metabo13030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Microalgae are attracting attention as a next-generation alternative source of protein and essential fatty acids that do not consume large amounts of water or land. Chaetoceros gracilis (C. gracilis)—a marine microalga—is rich in proteins, fucoxanthin, and eicosapentaenoic acid (EPA). Growing evidence indicates that dietary fucoxanthin and EPA have beneficial effects in humans. However, none of these studies have shown that dietary C. gracilis has beneficial effects in mammals. In this study, we investigated the effects of dietary C. gracilis on lipid abnormalities in Sprague-Dawley rats fed a high-sucrose cholesterol-containing diet. Dried C. gracilis was added to the control diet at a final dose of 2 or 5% (w/w). After four weeks, the soleus muscle weights were found to be dose-responsive to C. gracilis and showed a tendency to increase. The hepatic triglyceride and total cholesterol levels were significantly reduced by C. gracilis feeding compared to those in the control group. The activities of FAS and G6PDH, which are related to fatty acid de novo synthesis, were found to be dose-responsive to C. gracilis and tended to decrease. The hepatic glycerol content was also significantly decreased by C. gracilis feeding, and the serum HDL cholesterol levels were significantly increased, whereas the serum levels of cholesterol absorption markers (i.e., campesterol and β-sitosterol) and the hepatic mRNA levels of Scarb1 were significantly decreased. Water-soluble metabolite analysis showed that the muscular contents of several amino acids, including leucine, were significantly increased by C. gracilis feeding. The tendency toward an increase in the weight of the soleus muscle as a result of C. gracilis feeding may be due to the enhancement of muscle protein synthesis centered on leucine. Collectively, these results show that the oral administration of C. gracilis alleviates hepatic lipid accumulation in rats fed a high-sucrose and cholesterol-containing diet, indicating the potential use of C. gracilis as a food resource.
Collapse
Affiliation(s)
- Bungo Shirouchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
- Correspondence: ; Tel.: +81-95-813-5734
| | - Yuri Kawahara
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Yuka Kutsuna
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mina Higuchi
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Mai Okumura
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Sarasa Mitsuta
- Department of Nutrition Science, Faculty of Nursing and Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| | - Norio Nagao
- Blue Scientific Shinkamigoto Co., Ltd., 770 Kogushi, Shin-Kamigoto, Minami-Matsuura, Nagasaki 857-4601, Japan
| | - Kazunari Tanaka
- Regional Partnership Center, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
| |
Collapse
|
14
|
Ichii S, Matsuoka I, Okazaki F, Shimada Y. Zebrafish Models for Skeletal Muscle Senescence: Lessons from Cell Cultures and Rodent Models. Molecules 2022; 27:molecules27238625. [PMID: 36500717 PMCID: PMC9739860 DOI: 10.3390/molecules27238625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Human life expectancy has markedly increased over the past hundred years. Consequently, the percentage of elderly people is increasing. Aging and sarcopenic changes in skeletal muscles not only reduce locomotor activities in elderly people but also increase the chance of trauma, such as bone fractures, and the incidence of other diseases, such as metabolic syndrome, due to reduced physical activity. Exercise therapy is currently the only treatment and prevention approach for skeletal muscle aging. In this review, we aimed to summarize the strategies for modeling skeletal muscle senescence in cell cultures and rodents and provide future perspectives based on zebrafish models. In cell cultures, in addition to myoblast proliferation and myotube differentiation, senescence induction into differentiated myotubes is also promising. In rodents, several models have been reported that reflect the skeletal muscle aging phenotype or parts of it, including the accelerated aging models. Although there are fewer models of skeletal muscle aging in zebrafish than in mice, various models have been reported in recent years with the development of CRISPR/Cas9 technology, and further advancements in the field using zebrafish models are expected in the future.
Collapse
Affiliation(s)
- Shogo Ichii
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan
| | - Fumiyoshi Okazaki
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Mie 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
15
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
16
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
17
|
Nutraceuticals in the Prevention and Treatment of the Muscle Atrophy. Nutrients 2021; 13:nu13061914. [PMID: 34199575 PMCID: PMC8227811 DOI: 10.3390/nu13061914] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Imbalance of protein homeostasis, with excessive protein degradation compared with protein synthesis, leads to the development of muscle atrophy resulting in a decrease in muscle mass and consequent muscle weakness and disability. Potential triggers of muscle atrophy include inflammation, malnutrition, aging, cancer, and an unhealthy lifestyle such as sedentariness and high fat diet. Nutraceuticals with preventive and therapeutic effects against muscle atrophy have recently received increasing attention since they are potentially more suitable for long-term use. The implementation of nutraceutical intervention might aid in the development and design of precision medicine strategies to reduce the burden of muscle atrophy. In this review, we will summarize the current knowledge on the importance of nutraceuticals in the prevention of skeletal muscle mass loss and recovery of muscle function. We also highlight the cellular and molecular mechanisms of these nutraceuticals and their possible pharmacological use, which is of great importance for the prevention and treatment of muscle atrophy.
Collapse
|