1
|
Faris M, Abdelrahim DN, El Herrag SE, Khaled MB, Shihab KA, AlKurd R, Madkour M. Cardiometabolic and obesity risk outcomes of dawn-to-dusk, dry intermittent fasting: Insights from an umbrella review. Clin Nutr ESPEN 2025; 67:127-145. [PMID: 40081802 DOI: 10.1016/j.clnesp.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS This umbrella review comprehensively and systematically summarizes meta-analyses on the impact of dawn-to-dusk, dry intermittent fasting of Ramadan (RIF) on cardiometabolic and glucose homeostasis indicators. METHODS Twenty meta-analyses were examined on the effects of RIF on body fat percentage (BFP), fat mass, fat-free mass, body mass index (BMI), body weight (BW), waist circumference (WC), systolic and diastolic blood pressure (SBP, DBP), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), and very low-density lipoprotein cholesterol (VLDL-C), fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin resistance (HOMA-IR), serum insulin, leptin, and adiponectin. Results of continuous outcomes were pooled from included meta-analyses. We employed random-effects meta-analysis using the restricted maximum likelihood method to estimate heterogeneity. P-values were derived from standard meta-analytic tests, including Egger's test for small-study effects and the excess significance test for potential publication bias. Additionally, we applied criteria from Ioannidis' evidence classification to assess the credibility of the findings. RESULTS In healthy subjects, RIF was associated with significant reductions in BW (Hedges' G = -0.33; 95 % confidence interval (CI) = -0.37, -0.29; p-value = 2.63 × 10-52), WC (Hedges' G = -0.30; 95 % CI = -0.38, -0.23; p-value = 5.73 × 10-15), BFP (Hedges' G = -0.26; 95 % CI = -0.37, -0.14; p-value = 6.81 × 10-06), DBP (n = 3,456; Hedges' G = -0.26; 95 % CI = -0.38, -0.15; p-value = 9.18 × 10-06), TC (n = 9,314; Hedges' G = -0.16; 95 % CI = -0.25, -0.07; p-value = 6.27 × 10-04), and TG levels (n = 9,020; Hedges' G = -0.16; 95 % CI = -0.24, -0.08; p-value = 6.87 × 10-05). Moreover, in general population, TG (n = 16,688; Hedges' G = -0.15; 95 % CI = -0.22, -0.08; p-value <0.01) and FBG (n = 16,106; Hedges' G = -0.23; 95 % CI = -0.33, -0.13; p-value <0.01) were significantly reduced. CONCLUSIONS Dawn-to-dusk, dry RIF shows promise as a complementary therapy and preventive measure for reducing cardiometabolic and obesity-related risks. However, controlled studies are necessary to validate its effectiveness and fully understand its health implications.
Collapse
Affiliation(s)
- MoezAlIslam Faris
- Department of Clinical Nutrition and Dietetics, Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan.
| | - Dana N Abdelrahim
- Sharjah Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Salah Eddine El Herrag
- Laboratory of Nutrition, Pathology, Agrobiotechnology and Health (Lab-NuPABS), Department of Biology, Faculty of Life and Natural Science, Djillali Liabes University, Sidi Bel Abbes, Algeria; Department of Biology, Faculty of Life and Natural Science, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria.
| | - Meghit Boumediene Khaled
- Laboratory of Nutrition, Pathology, Agrobiotechnology and Health (Lab-NuPABS), Department of Biology, Faculty of Life and Natural Science, Djillali Liabes University, Sidi Bel Abbes, Algeria; Department of Biology, Faculty of Life and Natural Science, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria.
| | - Katia Abu Shihab
- Sharjah Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Refat AlKurd
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, Petra University, Amman, Jordan.
| | - Mohammed Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Purnomo SP, Rejeki PS, Argarini R, Halim S, Rachmayanti DA, Permataputri CDA, Singgih IK. Regulation of Metabolic Aging Through Adenosine Mono Phosphate-Activated Protein Kinase and Mammalian Target of Rapamycin: A Comparative Study of Intermittent Fasting Variations in Obese Young Women. Nutrients 2025; 17:1695. [PMID: 40431436 PMCID: PMC12114083 DOI: 10.3390/nu17101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Obesity accelerates metabolic aging through oxidative stress, inflammation, and mitochondrial dysfunction. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are nutrient-sensing pathways regulating metabolism. AMPK promotes energy metabolism and autophagy, while excessive mTOR activity contributes to aging. Intermittent fasting (IF), including time-restricted feeding (TRF)-limiting food intake to a 6 h window (18:6)-and alternate-day modified fasting (ADMF)-alternating 24 h fasting (≤25% daily caloric intake) with unrestricted feeding-may improve metabolic regulation. However, their effects on AMPK, mTOR, and metabolic age remain unclear. Methods: This quasi-experimental pre-test-post-test control group study compared the TRF and ADMF on metabolic age, AMPK, and mTOR in young obese women. Twenty-four participants (mean age: 21.29 ± 1.76 years; body fat: 36.92 ± 3.18%; BMI: 29.68 ± 3.70 kg/m2) were initially matched by BMI and assigned to Control, TRF, and ADMF groups. A total of 4 participants (1 Control, 3 ADMF) were excluded due to outlier values, yielding final group sizes: Control (n = 7), TRF (n = 8), and ADMF (n = 5). The intervention lasted 20 days. Results: A significant decrease in AMPK levels was observed in the ADMF group (p = 0.043), while changes in the TRF and Control groups were not significant. mTOR levels showed a decreasing trend but were not statistically significant. No significant changes were found in metabolic age. Conclusions: Twenty days of intermittent fasting intervention did not significantly affect AMPK, mTOR, or metabolic age in young obese women. TRF may more effectively enhance AMPK and reduce mTOR, while ADMF may better reduce metabolic age.
Collapse
Affiliation(s)
- Sheeny Priska Purnomo
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
- Faculty of Medicine, Petra Christian University, Surabaya 60236, East Java, Indonesia
| | - Purwo Sri Rejeki
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Raden Argarini
- Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Pulau Pinang, Malaysia;
| | - Dian Aristia Rachmayanti
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
| | - Chy’as Diuranil Astrid Permataputri
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, East Java, Indonesia or (S.P.P.); (D.A.R.); (C.D.A.P.)
| | - Ivan Kristianto Singgih
- Study Program of Industrial Engineering, University of Surabaya, Surabaya 60293, East Java, Indonesia;
| |
Collapse
|
3
|
Chouli M, Bothou A, Kyrkou G, Kaliarnta S, Dimitrakopoulou A, Diamanti A. An updated review of popular dietary patterns during pregnancy and lactation: Trends, benefits, and challenges. Metabol Open 2025; 25:100353. [PMID: 40034803 PMCID: PMC11874815 DOI: 10.1016/j.metop.2025.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
This review examines nutritional needs during pregnancy and lactation, focusing on the critical nutrients required for both maternal and fetal health. Essential nutrients such as folic acid, vitamin D, iron, calcium, and omega-3 fatty acids play a significant role in supporting fetal development and minimizing the risk of complications like gestational diabetes, hypertension, and preterm birth. Various dietary patterns, including the Mediterranean, vegetarian/vegan, and gluten-free diets, were evaluated for their adequacy and potential benefits. The Mediterranean diet was highlighted for its protective effects against pregnancy-related health issues. In contrast, the review identified vegetarian and vegan diets as requiring careful planning to ensure sufficient intake of key nutrients. Additionally, the review explored the implications of gestational diabetes and dietary strategies for managing blood sugar levels. The effects of intermittent fasting during pregnancy were also discussed, with mixed evidence regarding its safety and impact on pregnancy outcomes. Overall, the review stresses the importance of tailored nutritional guidance to ensure optimal health for both the mother and the developing fetus during pregnancy and lactation.
Collapse
Affiliation(s)
- Maria Chouli
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Anastasia Bothou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Giannoula Kyrkou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | | | - Aikaterini Dimitrakopoulou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Athina Diamanti
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| |
Collapse
|
4
|
Golpour-Hamedani S, Askari G, Khorvash F, Kesharwani P, Bagherniya M, Sahebkar A. The potential protective effects and mechanisms of fasting on neurodegenerative disorders: A narrative review. Brain Res 2025; 1849:149348. [PMID: 39581525 DOI: 10.1016/j.brainres.2024.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
This study aimed to review the potential neuroprotective effects and underlying mechanisms of fasting in neurodegenerative disorders by synthesizing the existing literature. Research indicates that fasting may induce substantial modifications in both brain structure and function through diverse metabolic and cellular pathways. Preclinical studies utilizing animal models have elucidated several key mechanisms mediating these effects. The other significant proposed mechanism involves the modulation of gut microbiota during fasting periods. The intestinal microbiome functions as a crucial intermediary in the complex interplay between feeding patterns, circadian rhythms, and immune responses. These microbiome alterations may subsequently exert considerable influence on central nervous system functionality. Moreover, by reducing glucose availability, fasting has been shown to enhance the survival and resistance of healthy cells to adjuvant treatments in central nervous system tumors. Fasting presents a promising non-pharmacological intervention for neurodegenerative disorders, potentially offering both preventive and therapeutic benefits. However, the current evidence base remains preliminary, warranting extensive further investigation to validate these initial findings and establish robust clinical protocols for both efficacy and safety.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Perez-Kast RC, Camacho-Morales A. Fasting the brain for mental health. J Psychiatr Res 2025; 181:215-224. [PMID: 39616869 DOI: 10.1016/j.jpsychires.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Unfavorable socioeconomic and geopolitical conditions such as poverty, violence and inequality increase vulnerability to mental disorders. Also, exposure to a poor nutrition such as high-energy dense (HED) diets has been linked to alterations in brain function, leading to anxiety, addiction, and depression. HED diets rich in saturated fatty acids or obesity can activate the innate immune system in the brain, especially microglia, increasing proinflammatory cytokines such as interleukin 1 beta (IL1-β) and interleukin 6 (IL-6), in part, by the stimulation of toll-like receptor 4 (TLR4) and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Intermittent fasting (IF), an eating protocol characterized by alternating periods of fasting with periods of eating, has gained recognition as a weight-management strategy to reduce obesity. Accordingly, during IF inflammation and brain function can be modulated by production of ketone bodies and modulation of the intestinal microbiota, which also promote the induction of brain-derived neurotrophic factor (BDNF), which is involved in neurogenesis and neuronal plasticity. Although IF has contributed to reduce body weight and improve metabolic profiles, its influence on mental health remains an evolving field of research. Here, we provide experimental evidence supporting the role of IF reducing neuroinflammation as a valuable approach to improve mental health.
Collapse
Affiliation(s)
- Roberto Carlos Perez-Kast
- Universidad Autónoma de Nuevo León, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico
| | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo León, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico.
| |
Collapse
|
6
|
Wu F, Guo Y, Wang Y, Sui X, Wang H, Zhang H, Xin B, Yang C, Zhang C, Jiang S, Qu L, Feng Q, Dai Z, Shi C, Li Y. Effects of Long-Term Fasting on Gut Microbiota, Serum Metabolome, and Their Association in Male Adults. Nutrients 2024; 17:35. [PMID: 39796469 PMCID: PMC11722564 DOI: 10.3390/nu17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Long-term fasting demonstrates greater therapeutic potential and broader application prospects in extreme environments than intermittent fasting. METHOD This pilot study of 10-day complete fasting (CF), with a small sample size of 13 volunteers, aimed to investigate the time-series impacts on gut microbiome, serum metabolome, and their interrelationships with biochemical indices. RESULTS The results show CF significantly affected gut microbiota diversity, composition, and interspecies interactions, characterized by an expansion of the Proteobacteria phylum (about six-fold) and a decrease in Bacteroidetes (about 50%) and Firmicutes (about 34%) populations. Notably, certain bacteria taxa exhibited complex interactions and strong correlations with serum metabolites implicated in energy and amino acid metabolism, with a particular focus on fatty acylcarnitines and tryptophan derivatives. A key focus of our study was the effect of Ruthenibacterium lactatiformans, which was highly increased during CF and exhibited a strong correlation with fat metabolic indicators. This bacterium was found to mitigate high-fat diet-induced obesity, glucose intolerance, dyslipidemia, and intestinal barrier dysfunction in animal experiments. These effects suggest its potential as a probiotic candidate for the amelioration of dyslipidemia and for mediating the benefits of fasting on fat metabolism. CONCLUSIONS Our pilot study suggests that alterations in gut microbiota during CF contribute to the shift of energy metabolic substrate and the establishment of a novel homeostatic state during prolonged fasting.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Yihua Wang
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Cheng Zhang
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute (Shenzhen), Shenzhen 518000, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing 200038, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China (Y.L.)
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
7
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
8
|
Haasis E, Bettenburg A, Lorentz A. Effect of Intermittent Fasting on Immune Parameters and Intestinal Inflammation. Nutrients 2024; 16:3956. [PMID: 39599741 PMCID: PMC11597193 DOI: 10.3390/nu16223956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Intermittent fasting (IF), including alternate day fasting (ADF) and time-restricted feeding (TRF) or, in humans, time-restricted eating (TRE), has been associated with the prevention and improvement of diseases, including inflammatory bowel disease (IBD). This review summarizes 20 animal and human studies on the influence of IF on intestinal inflammation. In the animal studies, TRF and ADF improved histological scores, inflammatory markers, markers of oxidative stress, and microbiota composition. Apart from the studies on Ramadan fasting, there are no studies on IF in IBD patients, so human studies on IF in healthy people were included. The studies on Ramadan fasting showed almost no effects, but this particular type of fasting is not directly comparable to TRE or ADF. However, TRE and ADF appear to have anti-inflammatory effects in healthy individuals, as they significantly reduce CRP levels and inflammatory markers. TRE also improved the composition of microbiota and the circadian oscillation of clock genes. The beneficial effects of TRE and ADF in healthy people appear to depend on the number of uninterrupted days of fasting, while in animal studies improvements in colitis have been observed regardless of the duration of fasting.
Collapse
Affiliation(s)
| | | | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
9
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
10
|
Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, Guo Y, Wang L, Li Y, Dai Z. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne) 2024; 15:1443051. [PMID: 39253586 PMCID: PMC11381305 DOI: 10.3389/fendo.2024.1443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.
Collapse
Affiliation(s)
- Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
11
|
Brogi S, Tabanelli R, Puca S, Calderone V. Intermittent Fasting: Myths, Fakes and Truth on This Dietary Regimen Approach. Foods 2024; 13:1960. [PMID: 38998465 PMCID: PMC11241639 DOI: 10.3390/foods13131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Intermittent fasting (IF) has been indicated as a valuable alternative to the classical caloric restriction dietary regimen for lowering body weight and preventing obesity-related complications, such as metabolic syndrome and type II diabetes. However, is it effective? In this review article, we analyzed over 50 clinical studies in which IF, conducted by alternate day fasting (ADF) or time-restricted feeding (TRF), was compared with the caloric restriction approach. We evaluated the different roles of IF in treating and preventing human disorders such as metabolic syndrome, type II diabetes, and some types of cancer, as well as the usefulness of IF in reducing body weight and cardiovascular risk factors such as hypertension. Furthermore, we explored the cellular pathways targeted by IF to exert their beneficial effects by activating effector proteins that modulate cell functions and resistance to oxidative stress. In contrast, we investigated concerns regarding human health related to the adoption of IF dietary regimens, highlighting the profound debate surrounding weight loss regimens. We examined and compared several clinical trials to formulate an updated concept regarding IF and its therapeutic potential.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rita Tabanelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| | - Sara Puca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| |
Collapse
|
12
|
Mirrazavi ZS, Behrouz V. Various types of fasting diet and possible benefits in nonalcoholic fatty liver: Mechanism of actions and literature update. Clin Nutr 2024; 43:519-533. [PMID: 38219703 DOI: 10.1016/j.clnu.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver injury, affecting around one-fourth of the general population across the world. Several important pathophysiological mechanisms underlying NAFLD include oxidative stress, inflammation, liver fibrosis, and apoptosis. Currently, therapeutic approaches are not ideal for managing NAFLD, thus new approaches and treatments are still needed. Over the last two decades, various fasting protocols have been explored to reduce body weight and improve metabolic disorders. In this review, we provide updated literature that supports fasting regimens for subjects with NAFLD and describes underlying mechanisms of action. We suggest that fasting regimens may modulate NAFLD via several mechanisms, including changes in gut microbiota, hepatic arginase, hepatic autophagy, inflammatory responses, liver functional enzymes and hepatic steatosis, fibroblast growth factors signaling, white adipose tissue browning, adipokines, circadian rhythms, lipid profiles, and body composition.
Collapse
Affiliation(s)
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Mackieh R, Al-Bakkar N, Kfoury M, Okdeh N, Pietra H, Roufayel R, Legros C, Fajloun Z, Sabatier JM. Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health. Curr Med Chem 2024; 31:1781-1803. [PMID: 38018193 DOI: 10.2174/0109298673275492231121062033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different body's physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.
Collapse
Affiliation(s)
- Rawan Mackieh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nadia Al-Bakkar
- Faculty of Health Sciences, College of Life Sciences, Beirut Arab University, Beirut Campus, P.O. Box 11 50 20, Riad El Solh, Beirut 11072809, Lebanon
| | - Milena Kfoury
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nathalie Okdeh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Hervé Pietra
- Association Esprit Jeûne & Fasting Spirit, 226, Chemin du Pélican, Toulon 83000, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Hadiya, Kuwait
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Aix-- Marseille Université, CNRS, INP, Inst Neurophysiopathol, Marseille 13385, France
| |
Collapse
|
14
|
Purdel C, Margină D, Adam-Dima I, Ungurianu A. The Beneficial Effects of Dietary Interventions on Gut Microbiota-An Up-to-Date Critical Review and Future Perspectives. Nutrients 2023; 15:5005. [PMID: 38068863 PMCID: PMC10708505 DOI: 10.3390/nu15235005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Different dietary interventions, especially intermittent fasting, are widely used and promoted by physicians; these regimens have been studied lately for their impact on the gut microbiota composition/function and, consequently, on the general physiopathological processes of the host. Studies are showing that dietary components modulate the microbiota, and, at the same time, the host metabolism is deeply influenced by the different products resulting from nutrient transformation in the microbiota compartment. This reciprocal relationship can potentially influence even drug metabolism for chronic drug regimens, significantly impacting human health/disease. Recently, the influence of various dietary restrictions on the gut microbiota and the differences between the effects were investigated. In this review, we explored the current knowledge of different dietary restrictions on animal and human gut microbiota and the impact of these changes on human health.
Collapse
Affiliation(s)
- Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Ines Adam-Dima
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (I.A.-D.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| |
Collapse
|
15
|
Saglam D, Colak GA, Sahin E, Ekren BY, Sezerman U, Bas M. Effects of Ramadan intermittent fasting on gut microbiome: is the diet key? Front Microbiol 2023; 14:1203205. [PMID: 37705730 PMCID: PMC10495574 DOI: 10.3389/fmicb.2023.1203205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Much research has been conducted regarding the impact of diet on the gut microbiota. However, the effects of dietary habits such as intermittent fasting are unclear. This study aimed to investigate the effect of intermittent fasting during Ramadan on the gut microbiota. The study was conducted on 12 healthy adult individuals who practiced fasting 17 h per day for 29 consecutive days during the month of Ramadan. To determine the dietary intake of individuals, a 3-day dietary record was kept at the beginning and end of the study. Reads that passed quality filtering were clustered, and custom-prepared 16S rRNA gene regions of bacteria associated with the human microbiome were used as a reference. Consensus sequences were created, and genus-level taxonomic annotations were determined using a sequence identity threshold of 95%. The correlations between the dietary intake measurements of the participants and the respective relative abundance of bacterial genera were investigated. The results showed that Firmicutes were higher in abundance in the gut microbiota before fasting among participants, while they were significantly lower in abundance at the end of Ramadan fasting (p < 0.05). Proteobacteria were significantly higher in abundance at the end of the month of Ramadan (p < 0.05). Fasting was associated with a significant decrease in levels of seven genera: Blautia, Coprococcus, Dorea, Faecalicatena, Fusicatenibacter, Lachnoclostridium, and Mediterraneibacter. Conversely, the abundances of two bacterial genera were enhanced at the end of the fasting month: Escherichia and Shigella. The results of the dietary intake analysis showed that a negative correlation was detected for three comparisons: Ihubacter and protein (rho = -0.54, p = 0.0068), Fusicatenibacter and vegetables (rho = -0.54, p = 0.0042), and Intestinibacter and nuts (rho = -0.54, p-value = 0.0065). The results suggest that even when the fasting period during Ramadan is consistent, the types of food consumed by individuals can affect the gut microbiota.
Collapse
Affiliation(s)
- Duygu Saglam
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Gozde Aritici Colak
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Eray Sahin
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Berkay Yekta Ekren
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ugur Sezerman
- Department of Medical Statistics and Bioinformatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Murat Bas
- Department of Nutrition and Dietetics, Health Sciences Faculty, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
16
|
Arora N, Pulimamidi S, Yadav H, Jain S, Glover J, Dombrowski K, Hernandez B, Sarma AK, Aneja R. Intermittent fasting with ketogenic diet: A combination approach for management of chronic diseases. Clin Nutr ESPEN 2023; 54:166-174. [PMID: 36963859 DOI: 10.1016/j.clnesp.2023.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Intermittent Fasting (IF) is the consumption of food and drinks within a defined time, while the ketogenic diet (KD) switches the metabolism from glucose to fats. Continuation of intermittent fasting leads to the generation of ketones, the exact mechanism for a ketogenic diet. This article discusses the types of IF and KD, the monitoring required, and the mechanisms underlying IF and KD, followed by disorders in which the combination strategy could be applied. The strategies for successfully applying combination therapy are included, along with recommendations for the primary care physicians (PCP) which could serve as a handy guide for patient management. This opinion article could serve as the baseline for future clinical studies since there is an utmost need for developing new wholesome strategies for managing chronic disorders.
Collapse
Affiliation(s)
- Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States.
| | - Shruthi Pulimamidi
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Anand Karthik Sarma
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Rachna Aneja
- Department of Neurology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
17
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
18
|
Trabelsi K, Ammar A, Boujelbane MA, Puce L, Garbarino S, Scoditti E, Boukhris O, Khanfir S, Clark CCT, Glenn JM, Alhaj OA, Jahrami H, Chtourou H, Bragazzi NL. Religious fasting and its impacts on individual, public, and planetary health: Fasting as a "religious health asset" for a healthier, more equitable, and sustainable society. Front Nutr 2022; 9:1036496. [PMID: 36505246 PMCID: PMC9729557 DOI: 10.3389/fnut.2022.1036496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
Religious fasting is practiced by people of all faiths, including Christianity, Islam, Buddhism, Jainism, as well as Hinduism, Judaism, and Taoism. Individual/clinical, public, global, and planetary health has traditionally been studied as separate entities. Nevertheless, religious fasting, in conjunction with other religious health assets, can provide several opportunities, ranging from the individual to the population, environmental, and planetary levels, by facilitating and supporting societal transformations and changes, such as the adoption of healthier, more equitable, and sustainable lifestyles, therein preserving the Earth's systems and addressing major interconnected, cascading, and compound challenges. In this review, we will summarize the most recent evidence on the effects of religious fasting, particularly Orthodox and Ramadan Islamic fasting, on human and public health. Further, we will explore the potential effects of religious fasting on tackling current environmental issues, with a special focus on nutrition/food restriction and planetary health. Finally, specific recommendations, particularly around dietary intake during the fasting rituals, will be provided to ensure a sustainable healthy planet.
Collapse
Affiliation(s)
- Khaled Trabelsi
- Research Laboratory: Education, Motricity, Sport and Health, Sfax, Tunisia
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- UFR SESS-STAPS, Paris-East Créteil University, LIRTES (EA 7313), Créteil, France
| | - Mohamed Ali Boujelbane
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Egeria Scoditti
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Omar Boukhris
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia
| | - Saber Khanfir
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Jordan M. Glenn
- Department of Health, Exercise Science Research Center Human Performance and Recreation, University of Arkansas, Fayetteville, AR, United States
| | - Omar A. Alhaj
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Haitham Jahrami
- Department of Psychiatry, Ministry of Health, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hamdi Chtourou
- Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
19
|
Effects of 10-Day Complete Fasting on Physiological Homeostasis, Nutrition and Health Markers in Male Adults. Nutrients 2022; 14:nu14183860. [PMID: 36145236 PMCID: PMC9503095 DOI: 10.3390/nu14183860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Fasting shows great potential in preventing chronic diseases and has to be surmounted under some extraordinary circumstances. This study aimed to investigate the safety, time effects of metabolic homeostasis and health indexes during prolonged fasting. Thirteen participants were recruited to conduct a 10-day complete fasting (CF) in a controlled health research building under medical supervision including 3-day Baseline (BL), 10-day CF, 4-day calorie restriction (CR) and 5-day full recovery (FR). Body healthy status was assessed by surveying pulse, blood pressure, body weight (BW), blood glucose and ketones, body composition and nutritional and biochemistry indexes at different times. BW declined about 7.28 kg (−9.8%) after 10-day CF, accompanied by increased pulse and decreased systolic blood pressure, but there were no changes to the myocardial enzymogram. Body composition analysis showed fat mass was constantly lost, but lean mass could recover after CR. The energy substrate switch from glucose to ketone occurred and formed a stable dynamic balance between 3–6 days of CF. The lipid metabolism presented increased total cholesterol, LDL-C, ApoA1 and almost no changes to TG and HDL-C. Prolonged CF did not influence liver function, but induced a slight decrease of kidney function. The interesting results came from the marked increase of lipid-soluble vitamins and a significant decrease of sodium and chlorine. Adults could well tol-erate a 10-day CF. A new metabolic homeostasis was achieved. No vitamins but NaCl supplement should be considered. These findings provide evidence to design a new fasting strategy for clinical practice.
Collapse
|
20
|
Fasting in mood disorders and its potential therapeutic aspects -narrative review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction: Fasting is defined as a period of voluntary abstinence from eating food for religious, therapeutic or political reasons, which is associated with a reduction in the supply of sources (kilocalories) to the body. There are different types of fasting, including short, long or intermittent fasting. It has been shown that the use of different types of fasting can influence the occurrence of mood disorders. The aim of this review was to search for the relationship between the use of fasting and mood disorders and its potential use as a therapeutic method.
Material and method: The available literature was reviewed by searching the PubMed and Google Scholar databases using the following keywords: fasting, intermittent fasting, mood disorders, depression, Ramadan, for studies listed from database inception to November 2021.
Results: A review of the collected scientific articles indicates that the dietary restrictions, including both daily restriction of caloric consumption and the use of intermittent fasting (IF), has potentially numerous health benefits in the co-treatment of mental diseases. However, due to conflicting results, further clinical trials in mentally ill people should be conducted. It is worth remembering that among patients with mental illnesses there are somatically ill. IF in these people may require additional nutritional modifications or discontinuation of therapy.
Conclusions: Dietary restriction and fasting are promising methods in co-therapy of mood disorders treatment. However, implementing therapy needs earlier individual evaluation of their benefits and risk, the same as patient’s feasibility of implementing this type of intervention.
Collapse
|