1
|
Jawale N, Shenberger JS, Rodriguez RJ, Shetty AK, Garg PM. The Nonbacterial Infant Microbiome and Necrotizing Enterocolitis. Am J Perinatol 2025. [PMID: 40037519 DOI: 10.1055/a-2549-6551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Necrotizing enterocolitis (NEC) is among the most devastating neonatal illnesses of premature infants. Although it is a disease of multifactorial etiology associated with bacterial dysbiosis, several reports of viral and some fungal infections associated with NEC have been published. Despite the abundance of viruses-primarily bacteriophages, and "virus-like particles" in the normal infant gut flora, there is limited understanding of the contribution of these elements to newborn gut health and disease. This study aims to review existing evidence on normal newborn virome and mycobiome development and present insights into the complex inter-kingdom interactions between gut bacteria, viruses, and fungi in the intestinal ecosystem, exploring their potential role in predisposing the preterm infant to NEC. · We have reviewed a number of viral and fungal infections reported in association with NEC-like illnesses.. · Bacteriophages play a crucial role in the gut microbiome development, but their role in pathogenesis of NEC and potential for therapeutic use is unknown.. · Development of next-gen metagenomic tools are needed to enhance our understanding of viral diversity, bacteriophages, and the gut virome in the context of neonatal health and disease..
Collapse
Affiliation(s)
- Nilima Jawale
- Department of Pediatrics/Neonatology, SUNY Upstate Medical University, New York, New York
| | - Jeffrey S Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Ricardo J Rodriguez
- Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, North Carolina
| | - Avinash K Shetty
- Department of Pediatrics/Infectious Disease, Wake Forest University, Winston Salem, North Carolina
| | - Parvesh M Garg
- Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, North Carolina
| |
Collapse
|
2
|
Pan C, Xu P, Yuan M, Wei S, Lu Y, Lu H, Zhang W. Effects of Different Feeding Patterns on the Gut Virome of 6-Month-Old Infants. J Med Virol 2025; 97:e70344. [PMID: 40202375 DOI: 10.1002/jmv.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiome is essential for infant health, and in recent years, the impact of enteroviruses on infant health and disease has received increasing attention. The transmission of breast milk phages to the infant gastrointestinal tract contributes to the shaping of the infant gut virome, while breastfeeding regulates the colonization of the infant gut virome. In this study, we collected fecal samples from healthy infants and analyzed the distribution characteristics of infant viral communities by viral metagenomic analysis, and analyzed the differences in infant viral communities under different feeding practices. Our results indicate that the infant intestinal virome consists of phages and eukaryotic viruses. Caudovirales and Microviridae dominated the phage composition, and except for Siphoviridae, which was more predominant in the intestines of formula-fed infants, there were no significant differences in the overall abundance of other Caudovirales and Microviridae in the intestines of infants with different feeding patterns. Breastfeeding can lead to a higher diversity of infant gut viruses through vertical transmission, and a highly diverse gut virome helps maintain the maturation of the gut microbiome. This study informs the shaping of gut virome in healthy infants by breastfeeding and contributes to further research on infant gut virome characteristics and formation processes.
Collapse
Affiliation(s)
- Chunduo Pan
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minli Yuan
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shanjie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Hoban R, Perez KM, Hendrixson DT, Valentine GC, Strobel KM. Non-nutritional use of human milk as a therapeutic agent in neonates: Brain, gut, and immunologic targets. Early Hum Dev 2024; 198:106126. [PMID: 39348773 DOI: 10.1016/j.earlhumdev.2024.106126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Human milk (HM) exposure improves short- and long-term outcomes for infants due to a complex milieu of bioactive, stem cell, anti-inflammatory, anti-microbial, and nutritive components. Given this remarkable biologic fluid, non-nutritional utilization of HM as a targeted therapeutic is being explored in pre-clinical and clinical studies. This article describes recent research pertinent to non-nutritional uses of HM for neurologic, gastrointestinal, and infectious pathologies in neonates, as well as future directions.
Collapse
Affiliation(s)
- Rebecca Hoban
- Seattle Children's Hospital, University of Washington Department of Pediatrics, Division of Neonatology, Seattle, WA, USA.
| | - Krystle M Perez
- Seattle Children's Hospital, University of Washington Department of Pediatrics, Division of Neonatology, Seattle, WA, USA
| | - D Taylor Hendrixson
- Seattle Children's Hospital, University of Washington Department of Pediatrics, Division of Neonatology, Seattle, WA, USA
| | - Gregory C Valentine
- Seattle Children's Hospital, University of Washington Department of Pediatrics, Division of Neonatology, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA; Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Katie M Strobel
- Seattle Children's Hospital, University of Washington Department of Pediatrics, Division of Neonatology, Seattle, WA, USA
| |
Collapse
|
4
|
Shi X, Liu Y, Ma T, Jin H, Zhao F, Sun Z. Delivery mode and maternal gestational diabetes are important factors in shaping the neonatal initial gut microbiota. Front Cell Infect Microbiol 2024; 14:1397675. [PMID: 39268487 PMCID: PMC11390658 DOI: 10.3389/fcimb.2024.1397675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background The infant gut microbiome's establishment is pivotal for health and immune development. Understanding it unveils insights into growth, development, and maternal microbial interactions. Research often emphasizes gut bacteria, neglecting the phageome. Methods To investigate the influence of geographic or maternal factors (mode of delivery, mode of breastfeeding, gestational diabetes mellitus) on the gut microbiota and phages of newborns, we collected fecal samples from 34 pairs of mothers and their infants within 24 hours of delivery from three regions (9 pairs from Enshi, 7 pairs from Hohhot, and 18 pairs from Hulunbuir) using sterile containers. Gut microbiota analysis by Shotgun sequencing was subsequently performed. Results Our results showed that geographic location affects maternal gut microbiology (P < 0.05), while the effect on infant gut microbiology was not significant (P = 0.184). Among the maternal factors, mode of delivery had a significant (P < 0.05) effect on the newborn. Specific bacteria (e.g., Bacteroides, Escherichia spp., Phocaeicola vulgatus, Escherichia coli, Staphylococcus hominis, Veillonella spp.), predicted active metabolites, and bacteriophage vOTUs varied with delivery mode. Phocaeicola vulgatus significantly correlated with some metabolites and bacteriophages in the early infant gut (P < 0.05). In the GD group, a strong negative correlation of phage diversity between mother and infants was observed (R = -0.58, P=0.04). Conclusion In conclusion, neonatal early gut microbiome (including bacteria and bacteriophages) colonization is profoundly affected by the mode of delivery, and maternal gestational diabetes mellitus. The key bacteria may interact with bacteriophages to influence the levels of specific metabolites. Our study provides new evidence for the study of the infant microbiome, fills a gap in the analysis of the infant gut microbiota regarding the virome, and emphasizes the importance of maternal health for the infant initial gut virome.
Collapse
Affiliation(s)
- Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Baumgartel K. Breastfeeding Measurement - Teleological Considerations: Human Milk Collection for Research. J Hum Lact 2024; 40:356-362. [PMID: 38855832 DOI: 10.1177/08903344241254827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
We discuss the evolution and composition of breast milk and briefly describe how mammalian evolution resulted in lactation, which played a crucial role in infant growth and development. We focus on three teleological factors that significantly contribute to breast milk composition: (1) biological sex at birth, (2) gestational age, and (3) circadian rhythms. We also explain how these factors lead to variability in human milk composition. We emphasize the importance of standardizing the definitions of "preterm" and "term" to accurately study the effects of gestational age on milk composition. Finally, we discuss the role of the circadian clock in regulating lactation and the impact of breast milk on fetal and infant sleep. Investigators may integrate these critical factors when designing a research study that involves the collection of breast milk samples. Teleological factors greatly influence milk composition, and these factors may be considered when designing a study that requires breast milk. We provide both the rationale and application of solutions to address these factors.
Collapse
|
6
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Composition of Microbiota in Transient and Mature Human Milk: Significant Changes in Large for Gestational Age Group. Nutrients 2024; 16:208. [PMID: 38257101 PMCID: PMC10818272 DOI: 10.3390/nu16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The composition of the human milk (HM) microbiota and, consequently, the microorganisms that are passed on to the infant through breastfeeding, can be influenced by various factors such as the mother's health and diet, gestational age, delivery mode, lactation stage, method of infant feeding, and geographical location. The aim of the Human Milk-Gest Study was to compare the microbiota of transient (postpartum 7-15 days) and mature HM (postpartum 45-90 days) of 44 mothers, and to investigate any potential changes associated with preterm birth, mode of delivery, and birth weight in relation to gestational age. The data were classified into five study groups: normal spontaneous delivery-term (NS-T) newborns, cesarean delivery-term (CS-T) newborns, preterm (PT) newborns (with a gestational age of less than 37 weeks), small for gestational age (SGA) newborns, and large for gestational age (LGA) newborns. An analysis of differential abundance was conducted using ANCOM-BC to compare the microbial genera between transient and mature HM samples as well as between other study groups. A significant difference was detected between HM samples at different sampling times and between the study groups (p < 0.01). In transient HM samples, Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the NS-T, CS-T, PT, and SGA groups. In mature HM samples, Burkholderiaceae_uc, Ralstonia, Pelomonas, and Klebsiella were significantly dominant in the LGA group compared to the NS-T, CS-T, and PT groups, while Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the SGA group. Differences were also detected between the transient and mature HM samples in the CS-T, PT, SGA, and LGA groups, but no differences occurred in the NS-T groups. In conclusion, we showed that Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group in transient HM and continued in mature HM. The body mass index (BMI) of the mothers in the LGA group was not >30 at conception, however, the maternal BMI at birth and maternal weight gain during pregnancy were higher than in the other groups. The nutritional composition of HM is specifically designed to meet infant nutritional requirements during early life. Evaluating the effects of HM microbiota on infant microbiota composition and short- and long-term health effects in larger studies would be useful.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Türkiye;
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Ozge Aydemir
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Neslihan Tekin
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1090 Brussels, Belgium
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC-UVEG), 46980 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye
| |
Collapse
|
7
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Francese R, Peila C, Donalisio M, Lamberti C, Cirrincione S, Colombi N, Tonetto P, Cavallarin L, Bertino E, Moro GE, Coscia A, Lembo D. Viruses and Human Milk: Transmission or Protection? Adv Nutr 2023; 14:1389-1415. [PMID: 37604306 PMCID: PMC10721544 DOI: 10.1016/j.advnut.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Human milk (HM) is considered the best source of nutrition for infant growth and health. This nourishment is unique and changes constantly during lactation to adapt to the physiological needs of the developing infant. It is also recognized as a potential route of transmission of some viral pathogens although the presence of a virus in HM rarely leads to a disease in an infant. This intriguing paradox can be explained by considering the intrinsic antiviral properties of HM. In this comprehensive and schematically presented review, we have described what viruses have been detected in HM so far and what their potential transmission risk through breastfeeding is. We have provided a description of all the antiviral compounds of HM, along with an analysis of their demonstrated and hypothesized mechanisms of action. Finally, we have also analyzed the impact of HM pasteurization and storage methods on the detection and transmission of viruses, and on the antiviral compounds of HM. We have highlighted that there is currently a deep knowledge on the potential transmission of viral pathogens through breastfeeding and on the antiviral properties of HM. The current evidence suggests that, in most cases, it is unnecessarily to deprive an infant of this high-quality nourishment and that the continuation of breastfeeding is in the best interest of the infant and the mother.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Chiara Peila
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy
| | - Cristina Lamberti
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Simona Cirrincione
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Nicoletta Colombi
- Biblioteca Federata di Medicina "Ferdinando Rossi", University of Turin, Turin, Italy
| | - Paola Tonetto
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Laura Cavallarin
- Institute of the Science of Food Production - National Research Council, Grugliasco, TO, Italy
| | - Enrico Bertino
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy
| | - Guido E Moro
- Italian Association of Human Milk Banks (AIBLUD), Milan, Italy.
| | - Alessandra Coscia
- Department of Public Health and Pediatrics, Neonatal Intensive Care Unit, University of Turin, Turin, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Orbassano (TO), Italy.
| |
Collapse
|
9
|
Pantazi AC, Balasa AL, Mihai CM, Chisnoiu T, Lupu VV, Kassim MAK, Mihai L, Frecus CE, Chirila SI, Lupu A, Andrusca A, Ionescu C, Cuzic V, Cambrea SC. Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients 2023; 15:3647. [PMID: 37630837 PMCID: PMC10457741 DOI: 10.3390/nu15163647] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The first 1000 days after birth represent a critical window for gut microbiome development, which is essential for immune system maturation and overall health. The gut microbiome undergoes major changes during this period due to shifts in diet and environment. Disruptions to the microbiota early in life can have lasting health effects, including increased risks of inflammatory disorders, autoimmune diseases, neurological disorders, and obesity. Maternal and environmental factors during pregnancy and infancy shape the infant gut microbiota. In this article, we will review how maintaining a healthy gut microbiome in pregnancy and infancy is important for long-term infant health. Furthermore, we briefly include fungal colonization and its effects on the host immune function, which are discussed as part of gut microbiome ecosystem. Additionally, we will describe how potential approaches such as hydrogels enriched with prebiotics and probiotics, gut microbiota transplantation (GMT) during pregnancy, age-specific microbial ecosystem therapeutics, and CRISPR therapies targeting the gut microbiota hold potential for advancing research and development. Nevertheless, thorough evaluation of their safety, effectiveness, and lasting impacts is crucial prior to their application in clinical approach. The article emphasizes the need for continued research to optimize gut microbiota and immune system development through targeted early-life interventions.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Larisia Mihai
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Corina Elena Frecus
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | | | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Antonio Andrusca
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Constantin Ionescu
- Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (S.I.C.)
| | - Viviana Cuzic
- Pediatrics Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania (A.L.B.)
- Pediatrics Department, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases Department, Faculty of Medicine, “Ovidius” University, 900470 Constanta, Romania
| |
Collapse
|
10
|
Rivera-Gutiérrez X, Morán P, Taboada B, Serrano-Vázquez A, Isa P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. The fecal and oropharyngeal eukaryotic viromes of healthy infants during the first year of life are personal. Sci Rep 2023; 13:938. [PMID: 36650178 PMCID: PMC9845211 DOI: 10.1038/s41598-022-26707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Using a metagenomic sequencing approach, we described and compared the diversity and dynamics of the oropharyngeal and fecal eukaryotic virome of nine asymptomatic children in a semi-rural community setting located in the State of Morelos, Mexico. Ninety oropharyngeal swabs and 97 fecal samples were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In both niches, more than 95% of the total sequence reads were represented by viruses that replicate either in humans or in plants. Regarding human viruses, three families were most abundant and frequent in the oropharynx: Herpesviridae, Picornaviridae, and Reoviridae; in fecal samples, four virus families predominated: Caliciviridae, Picornaviridae, Reoviridae, and Anelloviridae. Both niches showed a high abundance of plant viruses of the family Virgaviridae. Differences in the frequency and abundance of sequence reads and diversity of virus species were observed in both niches and throughout the year of study, with some viruses already present in the first months of life. Our results suggest that the children's virome is dynamic and likely shaped by the environment, feeding, and age. Moreover, composition analysis suggests that the virome composition is mostly individual. Whether this constant exposition to different viruses has a long-term impact on children's health or development remains to be studied.
Collapse
Affiliation(s)
- Xaira Rivera-Gutiérrez
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Taboada
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pavel Isa
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana López
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Chronopoulou EG. Levansucrase: Enzymatic Synthesis of Engineered Prebiotics. Curr Pharm Biotechnol 2023; 24:199-202. [PMID: 36883258 DOI: 10.2174/1389201023666220421134103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Evangelia G Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
12
|
Stinson LF, Ma J, Sindi AS, Geddes DT. Methodological approaches for studying the human milk microbiome. Nutr Rev 2022; 81:705-715. [PMID: 36130405 DOI: 10.1093/nutrit/nuac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human milk contains a low-biomass, low-diversity microbiome, consisting largely of bacteria. This community is of great research interest in the context of infant health and maternal and mammary health. However, this sample type presents many unique methodological challenges. In particular, there are numerous technical considerations relating to sample collection and storage, DNA extraction and sequencing, viability, and contamination. Failure to properly address these challenges may lead to distortion of bacterial DNA profiles generated from human milk samples, ultimately leading to spurious conclusions. Here, these technical challenges are discussed, and various methodological approaches used to address them are analyzed. Data were collected from studies in which a breadth of methodological approaches were used, and recommendations for robust and reproducible analysis of the human milk microbiome are proposed. Such methods will ensure high-quality data are produced in this field, ultimately supporting better research outcomes for mothers and infants.
Collapse
Affiliation(s)
- Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Jie Ma
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Perth, Australia.,is with the College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Boudar Z, Sehli S, El Janahi S, Al Idrissi N, Hamdi S, Dini N, Brim H, Amzazi S, Nejjari C, Lloyd-Puryear M, Ghazal H. Metagenomics Approaches to Investigate the Neonatal Gut Microbiome. Front Pediatr 2022; 10:886627. [PMID: 35799697 PMCID: PMC9253679 DOI: 10.3389/fped.2022.886627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Early infancy is critical for the development of an infant's gut flora. Many factors can influence microbiota development during the pre- and postnatal periods, including maternal factors, antibiotic exposure, mode of delivery, dietary patterns, and feeding type. Therefore, investigating the connection between these variables and host and microbiome interactions in neonatal development would be of great interest. As the "unculturable" era of microbiome research gives way to an intrinsically multidisciplinary field, microbiome research has reaped the advantages of technological advancements in next-generation sequencing, particularly 16S rRNA gene amplicon and shotgun sequencing, which have considerably expanded our knowledge about gut microbiota development during early life. Using omics approaches to explore the neonatal microbiome may help to better understand the link between the microbiome and newborn diseases. Herein, we summarized the metagenomics methods and tools used to advance knowledge on the neonatal microbiome origin and evolution and how the microbiome shapes early and late individuals' lives for health and disease. The way to overcome limitations in neonatal microbiome studies will be discussed.
Collapse
Affiliation(s)
- Zakia Boudar
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sara El Janahi
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Najib Al Idrissi
- Department of Surgery, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Salsabil Hamdi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nouzha Dini
- Mother and Child Department, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC, United States
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Chakib Nejjari
- Department of Epidemiology and Biostatistics, International School of Public Health, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Department of Epidemiology and Public Health, Faculty of Medicine, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | | | - Hassan Ghazal
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
14
|
Selma-Royo M, Calvo-Lerma J, Bäuerl C, Esteban-Torres M, Cabrera-Rubio R, Collado MC. Human milk microbiota: what did we learn in the last 20 years? MICROBIOME RESEARCH REPORTS 2022; 1:19. [PMID: 38046359 PMCID: PMC10688795 DOI: 10.20517/mrr.2022.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, which also contribute to gut colonization and immune system maturation. There is growing evidence of the beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors contributing to milk microbes' variations, and the potential functions in the infant's gut remain unclear. This review provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are for the next years.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| |
Collapse
|
15
|
Notarbartolo V, Giuffrè M, Montante C, Corsello G, Carta M. Composition of Human Breast Milk Microbiota and Its Role in Children's Health. Pediatr Gastroenterol Hepatol Nutr 2022; 25:194-210. [PMID: 35611376 PMCID: PMC9110848 DOI: 10.5223/pghn.2022.25.3.194] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 12/26/2022] Open
Abstract
Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Claudio Montante
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Maurizio Carta
- Department of Health Promotion, Mather and Child Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Blanco-Picazo P, Gómez-Gómez C, Morales-Cortes S, Muniesa M, Rodríguez-Rubio L. Antibiotic resistance in the viral fraction of dairy products and a nut-based milk. Int J Food Microbiol 2022; 367:109590. [PMID: 35220008 DOI: 10.1016/j.ijfoodmicro.2022.109590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Phages, the most abundant biological entities in the biosphere, can carry different bacterial genes, including those conferring antibiotic resistance. In this study, dairy products were analyzed by qPCR for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Eleven ARGs were identified in 50 samples of kefir, yogurt, milk, fresh cheese and nut-based milk (horchata), purchased from local retailers in Barcelona. Propagation experiments showed that at least some of the phages isolated from these samples infected Escherichia coli WG5, which was selected as the host strain because it does not contain prophages or ARGs in its genome. Electron microscopy revealed that the phage particles showed morphologies compatible with the Myoviridae and Siphoviridae families. Our results show that dairy products contain ARGs within infectious phage particles and may therefore serve as a reservoir of ARGs that can be mobilized to susceptible hosts, both in the food matrix and in the intestinal tract after ingestion.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. Eur J Pediatr 2022; 181:1811-1820. [PMID: 35124754 PMCID: PMC9056486 DOI: 10.1007/s00431-022-04383-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Although traditionally considered sterile, human milk is currently recognized as an alive ecosystem that harbors not only bacteria, but also viruses, fungi and yeasts, and minor genera, collectively known as the human milk microbiome (HMM). The seeding of HMM is a complex phenomenon whose dynamics are still a matter of research. Many factors contribute to its determination, both maternal, neonatal, environmental, and related to human milk itself. The transmission of microorganisms to the infant through breastfeeding may impact its present and future health, mainly shaping the GI tract microbiome and immune system. The existence and persistence of HMM as a conserved feature among different species may also have an evolutionary meaning, which will become apparent only in evolutionary times. CONCLUSION The complexities of HMM warrant further research in order to deepen our knowledge on its origin, determinants, and impact on infants' health. The practical and translational implications of research on HMM (e.g., reconstitution of donor human milk through inoculation of infant's own mother milk, modulation of HMM through maternal dietary supplementation) should not be overlooked. WHAT IS KNOWN • Human milk harbors a wide variety of microorganisms, ranging from bacteria to viruses, fungi and yeasts, and minor genera. • Human milk microbiome is shaped over time by many factors: maternal, neonatal, environmental, and related to human milk itself. • The transmission of microorganisms through breastfeeding may impact the infant's present and future health. WHAT IS NEW • We provide an overview on human milk microbiome, hopefully encouraging physicians to consider it among the other better-known breastfeeding benefits. • Further studies, with standardized and rigorous study designs to enhance accuracy and reproducibility of the results, are needed to deepen our knowledge of the human milk microbiota and its role in newborn and infant's health.
Collapse
|
18
|
Young GR, Yew WC, Nelson A, Bridge SH, Berrington JE, Embleton ND, Smith DL. Optimisation and Application of a Novel Method to Identify Bacteriophages in Maternal Milk and Infant Stool Identifies Host-Phage Communities Within Preterm Infant Gut. Front Pediatr 2022; 10:856520. [PMID: 35558373 PMCID: PMC9087270 DOI: 10.3389/fped.2022.856520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Human milk oligosaccharides, proteins, such as lactoferrin, and bacteria represent just some of the bioactive components of mother's breast milk (BM). Bacteriophages (viruses that infect bacteria) are an often-overlooked component of BM that can cause major changes in microbial composition and metabolism. BM bacteriophage composition has been explored in term and healthy infants, suggesting vertical transmission of bacteriophages occurs between mothers and their infants. Several important differences between term and very preterm infants (<30 weeks gestational age) may limit this phenomenon in the latter. To better understand the link between BM bacteriophages and gut microbiomes of very preterm infants in health and disease, standardised protocols are required for isolation and characterisation from BM. In this study, we use isolated nucleic acid content, bacteriophage richness and Shannon diversity to validate several parameters applicable during bacteriophage isolation from precious BM samples. Parameters validated include sample volume required; centrifugal sedimentation of microbes; hydrolysis of milk samples with digestive enzymes; induction of temperate bacteriophages and concentration/purification of isolated bacteriophage particles in donor milk (DM). Our optimised method enables characterisation of bacteriophages from as little as 0.1 mL BM. We identify viral families that were exclusively identified with the inclusion of induction of temperate bacteriophages (Inoviridae) and hydrolysis of milk lipid processes (Iridoviridae and Baculoviridae). Once applied to a small clinical cohort we demonstrate the vertical transmission of bacteriophages from mothers BM to the gut of very preterm infants at the species level. This optimised method will enable future research characterising the bacteriophage composition of BM in very preterm infants to determine their clinical relevance in the development of a healthy preterm infant gut microbiome.
Collapse
Affiliation(s)
- Gregory R Young
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wen C Yew
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon H Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Janet E Berrington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nicholas D Embleton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.,Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|