1
|
Olesińska W, Biernatek M, Lachowicz-Wiśniewska S, Piątek J. Systematic Review of the Impact of COVID-19 on Healthcare Systems and Society-The Role of Diagnostics and Nutrition in Pandemic Response. J Clin Med 2025; 14:2482. [PMID: 40217931 PMCID: PMC11989619 DOI: 10.3390/jcm14072482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The COVID-19 pandemic has revealed deep vulnerabilities in healthcare systems and public health preparedness. This systematic review examines the effectiveness of epidemiological procedures, the role of diagnostics, and the influence of nutritional status on immune function and disease severity. A total of 88 studies were analyzed, encompassing diagnostics, micronutrient deficiencies (notably vitamin D, C, E, zinc, and selenium), and the psychosocial impact of the pandemic. The results underscore the importance of integrated strategies-including accurate testing, preventive nutritional measures, and mental health support-in improving outcomes and societal resilience during global health crises. Unlike previous reviews that focused on isolated biomedical or public health elements, this study integrates diagnostics, immune-nutritional status, and psychosocial effects to present a comprehensive, multidimensional analysis of pandemic impact and preparedness.
Collapse
Affiliation(s)
| | | | - Sabina Lachowicz-Wiśniewska
- Faculty of Medicine and Health Science, University of Kalisz (Calisia University), plac Wojciecha Bogusławskiego 2, 62-800 Kalisz, Poland; (W.O.); (M.B.); (J.P.)
| | | |
Collapse
|
2
|
Perestiuk V, Kosovska T, Volianska L, Boyarchuk O. Association of zinc deficiency and clinical symptoms, inflammatory markers, severity of COVID-19 in hospitalized children. Front Nutr 2025; 12:1566505. [PMID: 40201587 PMCID: PMC11975579 DOI: 10.3389/fnut.2025.1566505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Zinc plays an important role in the functioning of the immune system. Zinc deficiency leads to increased susceptibility to inflammatory and infectious diseases. There are few studies investigating the role of zinc in the development and progression of COVID-19 in children, and their findings remain inconsistent. This study aimed to determine the zinc levels in children with COVID-19 and assess their association with symptoms, inflammation markers, and disease progression. Methods A prospective cohort study included hospitalized patients under 18 years who had a confirmed diagnosis of SARS-CoV-2 infection. Serum zinc concentrations were measured using a colorimetric method. Based on zinc levels, the children were divided into two groups: the first group had concentrations below 10.7 μmol/L, indicating zinc deficiency, while the second group had levels above 10.7 μmol/L, which was considered within the optimal range. Results In total, 140 hospitalized patients with COVID-19 were examined. Zinc deficiency was identified in 40 children (28.6%), while optimal levels were found in 100 children (71.4%). Zinc status did not depend on the age of the children. Among the symptoms of acute SARS-CoV-2 infection, children with zinc deficiency showed a trend toward more frequent fever occurrences (p = 0.0654). No significant impact of zinc status was observed on the severity of COVID-19 or the duration of hospitalization. Children with zinc deficiency had higher median values of the neutrophil-to-lymphocyte ratio (NLR) (1.84 vs. 1.09, p = 0.0010), C-reactive protein (CRP) levels (9.65 vs. 3.96 mg/L, p = 0.0053), and fibrinogen levels (2.88 vs. 2.07 g/L, p = 0.0057) compared to those with adequate zinc levels. Additionally, the percentage of patients with a NLR greater than 4, elevated CRP, and fibrinogen levels was higher in the zinc-deficient group (p = 0.0017, p = 0.0107, p = 0.0338, respectively). Conclusion Zinc deficiency was observed in 28.6% of children with COVID-19 and was not dependent on age. Children with hypozincemia had higher levels of inflammation markers, including the neutrophil-to-lymphocyte ratio and CRP.
Collapse
Affiliation(s)
- Vita Perestiuk
- Department of Children’s Diseases and Pediatric Surgery, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | | | | |
Collapse
|
3
|
Raval C, Rheingold SZ, Gordon AM, Hardigan P. Zinc Deficiency Associated With an Increase in Mortality in COVID-19 Patients: A Meta-Analysis. Cureus 2025; 17:e77011. [PMID: 39912051 PMCID: PMC11798623 DOI: 10.7759/cureus.77011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 02/07/2025] Open
Abstract
The exact role of zinc in COVID-19-infected patients is not well understood. We examined the effects and outcomes of zinc deficiency on COVID-19-infected patients. We focused on patient outcomes: severity, symptomatology, and mortality. The meta-analysis was performed to examine whether COVID-19-infected individuals suffered greater symptomology and mortality. Secondary outcomes explored included severity and hospital length of stay. For mortality, we found that COVID-19-infected individuals with zinc deficiency had a greater risk of mortality than individuals without zinc deficiency (risk ratio (RR)=5.77; 95% confidence interval (CI): 3.48, 9.54; p=0.004). For symptomology, we found that COVID-19-infected individuals with zinc deficiency had a greater risk of symptomatology than individuals without a zinc deficiency (RR=1.39; 95% CI: 1.13, 1.70; p=0.020). Zinc-deficient individuals are at a greater risk for mortality and symptomatology. Our findings further reinforce the importance of supplementation as a prophylactic agent against viral infections such as COVID-19.
Collapse
Affiliation(s)
- Chirag Raval
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Spencer Z Rheingold
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Antonio M Gordon
- Department of Internal Medicine, University Health Care, Hialeah, USA
| | - Patrick Hardigan
- Health Professions Division, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| |
Collapse
|
4
|
Rayman MP, Schomburg L, Zhang J, Taylor EW, Du Laing G, Beck M, Hughes DJ, Heller R. Comment on Ambra et al. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023, 28, 4130. Molecules 2024; 29:2466. [PMID: 38893342 PMCID: PMC11173556 DOI: 10.3390/molecules29112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 06/21/2024] Open
Abstract
The authors of this Comment are longstanding selenium investigators with a total of 200 or more published articles on selenium; the corresponding author (Margaret P [...].
Collapse
Affiliation(s)
- Margaret P. Rayman
- Department of Nutritional Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Lutz Schomburg
- Institute of Experimental Endocrinology, Charité—Universitätsmedizin, D-10115 Berlin, Germany; (L.S.)
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA;
| | - Gijs Du Laing
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Melinda Beck
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - David J. Hughes
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Raban Heller
- Institute of Experimental Endocrinology, Charité—Universitätsmedizin, D-10115 Berlin, Germany; (L.S.)
| |
Collapse
|
5
|
Ren L, Zhang Y, Wu J. Association between urinary metals and prostate-specific antigen in aging population with depression: a cross-sectional study. Front Public Health 2024; 12:1401072. [PMID: 38846601 PMCID: PMC11153824 DOI: 10.3389/fpubh.2024.1401072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Objective This study aims to investigate the impact of depression and urinary metals on Prostate-Specific Antigen (PSA). Methods Analysis was conducted on 1901 samples collected from the National Health and Nutrition Examination Survey (NHANES) database between 2001 and 2010. Analytical methods included stepwise multiple linear regression (MLR) analysis of the overall population's urinary metals and PSA relationship, analysis of urinary metals and PSA relationship in older adults and BMI subgroups, analysis of urinary metals and PSA relationship in the depressed population, and restricted cubic spline (RCS) analysis. A significance level of p < 0.05 was considered statistically significant. Results In the stepwise multiple linear regression, beryllium (Be) showed a dose-response association with PSA (third quartile: β = 0.05, 95%CI (0.02, 0.09); fourth quartile: β = 0.07, 95%CI (0.02, 0.12), p trend = 0.048). Subgroup analysis indicated that in individuals aged >60, Be at Q4 level [β = 0.09, 95%CI (0.05, 0.21)] exhibited a dose-response correlation with PSA. In the population with 25 ≤ BMI < 30, Be might more significantly elevate PSA, with Q4 level having a pronounced impact on PSA levels [β = 0.03, 95%CI (0.02, 1.27)]. In the depressed population, urinary cadmium (Cd) levels showed a significant positive dose-response relationship, with Q4 level of Cd having the maximum impact on PSA [β = 0.3, 95%CI (0.09, 0.49)]. Conclusion Individuals exposed to beryllium (Be), especially the older adults and overweight, should monitor their PSA levels. In depressed patients, cadmium (Cd) levels may further elevate PSA levels, necessitating increased monitoring of PSA levels among males.
Collapse
Affiliation(s)
- Liquan Ren
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
| | - Yue Zhang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinyi Wu
- Department of Public Health, Wuhan Fourth Hospital, Wuhan, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Khan KM, Zimpfer MJ, Sultana R, Parvez TM, Navas-Acien A, Parvez F. Role of Metals on SARS-CoV-2 Infection: a Review of Recent Epidemiological Studies. Curr Environ Health Rep 2023; 10:353-368. [PMID: 37665544 PMCID: PMC11149155 DOI: 10.1007/s40572-023-00409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Mariah J Zimpfer
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Rasheda Sultana
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Tahmid M Parvez
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
7
|
Fan L, Cui Y, Liu Z, Guo J, Gong X, Zhang Y, Tang W, Zhao J, Xue Q. Zinc and selenium status in coronavirus disease 2019. Biometals 2023; 36:929-941. [PMID: 37079168 PMCID: PMC10116102 DOI: 10.1007/s10534-023-00501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
We systematically analyzed and attempted to discuss the possibility that deficiencies of zinc or selenium were associated with the incidence and severity of COVID-19. We searched for published and unpublished articles in PubMed, Embase, Web of Science and Cochrane up to 9 February 2023. And we selected healthy individuals, mild/severe, and even deceased COVID-19 patients to analyze their serum data. Data related to 2319 patients from 20 studies were analyzed. In the mild/severe group, zinc deficiency was associated with the degree of severe disease (SMD = 0.50, 95% CI 0.32-0.68, I2 = 50.5%) and we got an Egger's test of p = 0.784; but selenium deficiency was not associated with the degree of severe disease (SMD = - 0.03, 95% CI - 0.98-0.93, I2 = 96.7%). In the surviving/death group, zinc deficiency was not associated with mortality of COVID-19 (SMD = 1.66, 95%CI - 1.42-4.47), nor was selenium (SMD = - 0.16, 95%CI - 1.33-1.01). In the risk group, zinc deficiency was positively associated with the prevalence of COVID-19 (SMD = 1.21, 95% CI 0.96-1.46, I2 = 54.3%) and selenium deficiency was also positively associated with the prevalence of it (SMD = 1.16, 95% CI 0.71-1.61, I2 = 58.3%). Currently, serum zinc and selenium deficiencies increase the incidence of COVID-19 and zinc deficiency exacerbates the disease; however, neither zinc nor selenium was associated with mortality in patients with COVID-19. Nevertheless, our conclusions may change when new clinical studies are published.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yanshuo Cui
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Zonghao Liu
- Shandong University, No.27, Shanda Nanshan Road, Jinan, 250100, Shandong, China
| | - Jiayue Guo
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Xiaohui Gong
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yunfei Zhang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Weihao Tang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Jiahe Zhao
- Binzhou Medical University, No.346 Guanhai Road, Binzhou, 256699, Shandong, China
| | - Qingjie Xue
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China.
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
8
|
Wozniak H, Le Terrier C, Primmaz S, Suh N, Lenglet S, Thomas A, Vuilleumier N, Pagano S, de Watteville A, Stringhini S, Guessous I, Quintard H, Heidegger CP, Pugin J. Association of Trace Element Levels with Outcomes in Critically Ill COVID-19 Patients. Nutrients 2023; 15:3308. [PMID: 37571249 PMCID: PMC10421129 DOI: 10.3390/nu15153308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The primary objective of this study was to compare the plasma levels of copper, selenium, and zinc between critically ill COVID-19 patients and less severe COVID-19 patients. The secondary objective was to investigate the association of these trace element levels with adverse outcomes, including the duration of mechanical ventilation, occurrence of septic shock, and mortality in critically ill COVID-19 patients. All COVID-19 patients admitted to the ICU of the Geneva University Hospitals between 9 March 2020 and 19 May 2020 were included in the study. Plasma levels of copper, selenium and zinc were measured on admission to the ICU and compared with levels measured in COVID-19 patients hospitalized on the ward and in non-hospitalized COVID-19 patients. To analyze the association of trace elements with clinical outcomes, multivariate linear and logistic regressions were performed. Patients in the ICU had significantly lower levels of selenium and zinc and higher levels of copper compared to COVID-19 patients hospitalized on the ward and in non-hospitalized COVID-19 patients. In ICU patients, lower zinc levels tended to be associated with more septic shock and increased mortality compared to those with higher zinc levels (p = 0.07 for both). Having lower copper or selenium levels was associated with a longer time under mechanical ventilation (p = 0.01 and 0.04, respectively). These associations remained significant in multivariate analyses (p = 0.03 for copper and p = 0.04 for selenium). These data support the need for interventional studies to assess the potential benefit of zinc, copper and selenium supplementation in severe COVID-19 patients.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Christophe Le Terrier
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Steve Primmaz
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, 1205 Geneva, Switzerland (A.T.)
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, 1205 Geneva, Switzerland (A.T.)
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Silvia Stringhini
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Idris Guessous
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Community Medicine, Primary Care and Emergency Medicine, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Hervé Quintard
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Claudia Paula Heidegger
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| | - Jérôme Pugin
- Division of Intensive Care, Geneva University Hospitals, the Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland (A.d.W.); (H.Q.); (C.P.H.)
| |
Collapse
|
9
|
Ambra R, Melloni S, Venneria E. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023; 28:molecules28104130. [PMID: 37241870 DOI: 10.3390/molecules28104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this review is to systematically examine the scientific evidence investigating selenium's relationship with COVID-19, aiming to support, or refute, the growing hypothesis that supplementation could prevent COVID-19 etiopathogenesis. In fact, immediately after the beginning of the COVID-19 pandemic, several speculative reviews suggested that selenium supplementation in the general population could act as a silver bullet to limit or even prevent the disease. Instead, a deep reading of the scientific reports on selenium and COVID-19 that are available to date supports neither the specific role of selenium in COVID-19 severity, nor the role of its supplementation in the prevention disease onset, nor its etiology.
Collapse
Affiliation(s)
- Roberto Ambra
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Sahara Melloni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Eugenia Venneria
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
10
|
Equey A, Berger MM, Gonseth-Nusslé S, Augsburger M, Rezzi S, Hodgson ACC, Estoppey S, Pantaleo G, Pellaton C, Perrais M, Lenglet S, Rousson V, D'Acremont V, Bochud M. Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study. Clin Nutr 2023; 42:972-986. [PMID: 37130500 PMCID: PMC10110932 DOI: 10.1016/j.clnu.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY CORONA IMMUNITAS:: ISRCTN18181860.
Collapse
Affiliation(s)
- Antoine Equey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Semira Gonseth-Nusslé
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Épalinges, Switzerland
| | | | - Sandrine Estoppey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Valentin Rousson
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Valérie D'Acremont
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| |
Collapse
|
11
|
Malka M, Du Laing G, Kurešová G, Hegedüsová A, Bohn T. Enhanced accumulation of phenolics in pea (Pisum sativum L.) seeds upon foliar application of selenate or zinc oxide. Front Nutr 2023; 10:1083253. [PMID: 37063310 PMCID: PMC10097936 DOI: 10.3389/fnut.2023.1083253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundSelenium (Se) and zinc (Zn) are essential antioxidant enzyme cofactors. Foliar Se/Zn application is a highly effective method of plant biofortification. However, little is known about the effect of such applications on the concentration of trace elements and phytochemicals with pro-oxidant or antioxidant activity in pea (Pisum sativum L.).MethodsA 2-year pot experiment (2014/2015) was conducted to examine the response of two pea varieties (Ambassador and Premium) to foliar-administered sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of selected trace elements (Fe, Cu, and Mn), total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity (ABTS, FRAP) of seeds were determined.Results and conclusionsSe/Zn treatments did not improve the concentration of trace elements, while they generally enhanced TPC. Among examined treatments, the highest TPC was found in Ambassador (from 2014) treated with 100 g Se/ha and 750 g Zn/ha (2,926 and 3,221 mg/100 g DW, respectively) vs. the control (1,737 mg/100 g DW). In addition, 50 g of Se/ha increased TFC vs. the control (261 vs. 151 mg/100 g DW) in Premium (from 2014), 750 g of Zn/ha increased ABTS vs. the control (25.2 vs. 59.5 mg/100 g DW) in Ambassador (from 2015), and 50 g of Se/ha increased FRAP vs. the control (26.6 vs. 18.0 mmol/100 g DW) in Ambassador (from 2015). In linear multivariable regression models, Zn, Mn, Cu, and TPC best explained ABTS (R = 0.577), while Se, Cu, and TPC best explained the FRAP findings (R = 0.696). This study highlights the potential of foliar biofortification with trace elements for producing pea/pea products rich in bioactive plant metabolites beneficial for human health.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gabriela Kurešová
- Department of Plant Protection, Crop Research Institute, Prague, Czechia
| | - Alžbeta Hegedüsová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
- *Correspondence: Torsten Bohn
| |
Collapse
|
12
|
Malka M, Laing GD, Hegedűsová A, Bohn T. Foliar Selenate and Zinc Oxide Separately Applied to Two Pea Varieties: Effects on Growth Parameters and Accumulation of Minerals and Macronutrients in Seeds under Field Conditions. Foods 2023; 12:1286. [PMID: 36981212 PMCID: PMC10048356 DOI: 10.3390/foods12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Though selenium (Se) and zinc (Zn) constitute essential nutrients for human health, their deficiencies affect up to 15% and 17% of the global population, respectively. Agronomic biofortification of staple crops with Se/Zn may alleviate these challenges. Pea (Pisum sativum L.) is a nutritious legume crop that has great potential for Se/Zn biofortification. Herein, two varieties of pea (Ambassador, Premium) were biofortified via foliar application of sodium selenate (0/50/100 g of Se/ha) or zinc oxide (0/375/750 g of Zn/ha) during the flowering stage under field conditions. While no significant differences were found in Se accumulation between seed varieties upon Se treatments, selenate enhanced the accumulation of Se in the two seed varieties in a dose dependent manner. Selenium concentration was most elevated in seeds of Ambassador exposed to 100 g of Se/ha (3.93 mg/kg DW compared to the control (0.08 mg/kg DW), p < 0.001). 375 g of Zn/ha (35.7 mg/kg DW) and 750 g of Zn/ha (35.5 mg/kg DW) significantly and similarly enhanced Zn concentrations compared to the control (31.3 mg/kg DW) in Premium seeds, p < 0.001. Zinc oxide also improved accumulations of Fe, Cu, Mn, and Mg in Premium seeds. Se/Zn treatments did not significantly affect growth parameters and accumulations of soluble solids and protein in seeds. Positive and significant (p < 0.01) correlations were observed between Zn and Fe, Cu, Mn and Mg levels in Premium seeds, among others. Consuming 33 g/day of pea biofortified with Se at 50 g/ha and 266 g/day of pea biofortified with 375 g of Zn/ha could provide 100% of the RDA (55 μg) for Se and RDA (9.5 mg) for Zn in adults, respectively. These results are relevant for enhancing Se/Zn status in peas by foliar biofortification.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Alžbeta Hegedűsová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
13
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
14
|
Moretti A, Liguori S, Paoletta M, Migliaccio S, Toro G, Gimigliano F, Iolascon G. Bone fragility during the COVID-19 pandemic: the role of macro- and micronutrients. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158200. [PMID: 36937822 PMCID: PMC10015293 DOI: 10.1177/1759720x231158200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
Bone fragility is the susceptibility to fracture due to poor bone strength. This condition is usually associated with aging, comorbidities, disability, poor quality of life, and increased mortality. International guidelines for the management of patients with bone fragility include a nutritional approach, mainly aiming at optimal protein, calcium, and vitamin D intakes. Several biomechanical features of the skeleton, such as bone mineral density (BMD), trabecular and cortical microarchitecture, seem to be positively influenced by micro- and macronutrient intake. Patients with major fragility fractures are usually poor consumers of dairy products, fruit, and vegetables as well as of nutrients modulating gut microbiota. The COVID-19 pandemic has further aggravated the health status of patients with skeletal fragility, also in terms of unhealthy dietary patterns that might adversely affect bone health. In this narrative review, we discuss the role of macro- and micronutrients in patients with bone fragility during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Antimo Moretti
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples,
Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health
Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Francesca Gimigliano
- Department of Physical and Mental Health and
Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| |
Collapse
|
15
|
Abstract
In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.
Collapse
|
16
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
17
|
Demircan K, Chillon TS, Bracken T, Bulgarelli I, Campi I, Du Laing G, Fafi-Kremer S, Fugazzola L, Garcia A, Heller R, Hughes DJ, Ide L, Klingenberg GJ, Komarnicki P, Krasinski Z, Lescure A, Mallon P, Moghaddam A, Persani L, Petrovic M, Ruchala M, Solis M, Vandekerckhove L, Schomburg L. Association of COVID-19 mortality with serum selenium, zinc and copper: Six observational studies across Europe. Front Immunol 2022; 13:1022673. [PMID: 36518764 PMCID: PMC9742896 DOI: 10.3389/fimmu.2022.1022673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tommy Bracken
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ilaria Bulgarelli
- Laboratorio Analisi Cliniche, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Irene Campi
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alejandro Abner Garcia
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Raban Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,Clinic of Traumatology and Orthopaedics, Bundeswehr Hospital Berlin, Berlin, Germany,Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
| | - David J. Hughes
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Louis Ide
- Laboratory Medicine, AZ Jan Palfijn AV, Gent, Belgium
| | - Georg Jochen Klingenberg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pawel Komarnicki
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Krasinski
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poznan, Poland
| | - Alain Lescure
- Architecture et Réactivité de l’ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Luca Persani
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mirko Petrovic
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Marek Ruchala
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Morgane Solis
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Linos Vandekerckhove
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Lutz Schomburg,
| |
Collapse
|
18
|
Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants (Basel) 2022; 11:2270. [PMID: 36421456 PMCID: PMC9686906 DOI: 10.3390/antiox11112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between oxidative stress and skin aging/disorders is well established. Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed to protect the skin against the deleterious effect induced by increased reactive oxygen species production, particularly in the context of sun exposure. In this review, we focused on the combination of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated in skin and hair disorders.
Collapse
Affiliation(s)
- Joël Pincemail
- CHU of Liège, Platform Antioxidant Nutrition and Health, Pathology Tower, 4130, Sart Tilman, 4000 Liège, Belgium
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France
| |
Collapse
|
19
|
Malka M, Du Laing G, Li J, Bohn T. Separate foliar sodium selenate and zinc oxide application enhances Se but not Zn accumulation in pea ( Pisum sativum L.) seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:968324. [PMID: 36466269 PMCID: PMC9714566 DOI: 10.3389/fpls.2022.968324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Up to 15% and 17% of the world population is selenium (Se) and zinc (Zn) deficient, respectively. Pea (Pisum sativum L.) is an important staple legume with a high potential for Se and Zn biofortification in seeds. A 2-year pot experiment investigated two pea varieties (Ambassador and Premium) following foliar-applied sodium selenate (0/50/100 g of Se/ha) and zinc oxide (0/375/750 g of Zn/ha) at the flowering stage. Selenate and zinc oxide had minimal overall effects on growth parameters. Zinc oxide did not improve Zn accumulation in both seed varieties, while selenate improved Se accumulation in both seed varieties dose-dependently. Premium accumulated greater amounts of Se in seeds than Ambassador (p < 0.001). Selenium concentrations were highest in seeds of Premium treated with 100 g of Se/ha [7.84 mg/kg DW vs. the control (0.16 mg/kg DW), p < 0.001]. The predominant Se species in Se-enriched seeds was selenomethionine (40%-76% of total Se). Furthermore, a significant (p < 0.01) positive correlation was found between Zn and S concentrations in Ambassador (r 2 = 0.446) and Premium (r 2 = 0.498) seeds, but not between Se and S. Consuming as little as 55 g/day of pea biofortified by 50 g of Se/ha would cover 100% of the adult RDA (55 µg) for Se. Findings are important for improving foliar biofortification of pea with Se and Zn.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
20
|
Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191:150-163. [PMID: 36067902 DOI: 10.1016/j.freeradbiomed.2022.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, 10115 Berlin, Germany.
| |
Collapse
|
21
|
Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, Sun C. Zinc and COVID-19: Immunity, Susceptibility, Severity and Intervention. Crit Rev Food Sci Nutr 2022; 64:1969-1987. [PMID: 36094452 DOI: 10.1080/10408398.2022.2119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic and continuing emergence of viral mutants, there has been a lack of effective treatment methods. Zinc maintains immune function, with direct and indirect antiviral activities. Zinc nutritional status is a critical factor in antiviral immune responses. Importantly, COVID-19 and zinc deficiency overlap in high-risk population. Hence, the potential effect of zinc as a preventive and adjunct therapy for COVID-19 is intriguing. Here, this review summarizes the immune and antiviral function of zinc, the relationship between zinc levels, susceptibility, and severity of COVID-19, and the effect of zinc supplementation on COVID-19. Existing studies have confirmed that zinc deficiency was associated with COVID-19 susceptibility and severity. Zinc supplementation plays a potentially protective role in enhancing immunity, decreasing susceptibility, shortening illness duration, and reducing the severity of COVID-19. We recommend that zinc levels should be monitored, particularly in COVID-19 patients, and zinc as a preventive and adjunct therapy for COVID-19 should be considered for groups at risk of zinc deficiency to reduce susceptibility and disease severity.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Malka M, Du Laing G, Bohn T. Separate Effects of Foliar Applied Selenate and Zinc Oxide on the Accumulation of Macrominerals, Macronutrients and Bioactive Compounds in Two Pea ( Pisum sativum L.) Seed Varieties. PLANTS (BASEL, SWITZERLAND) 2022; 11:2009. [PMID: 35956488 PMCID: PMC9370774 DOI: 10.3390/plants11152009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) and zinc (Zn) are important cofactors for antioxidant enzymes. Foliar Se/Zn application is a highly efficient strategy of plant biofortification. However, its effects on the accumulation of macrominerals, macronutrients and bioactive compounds in the pea plant (Pisum sativum L.) have been poorly investigated. A two-year pot experiment was performed to study responses of two pea varieties (Ambassador, Premium) to foliar-applied sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of Ca, Mg, K, Na, soluble solids (SSC), protein, chlorophyll a and b, total chlorophyll, total carotenoids and total condensed tannins (TCT) were determined in seeds. Mg concentration in Ambassador and chlorophyll a concentration in Premium were positively affected, in part, by selenate and zinc oxide, respectively. Selenate and zinc oxide increased, in part, protein concentration in Premium. Highest protein concentration was found in Premium treated with 375 g Zn/ha (27.6% DW) vs. the control (26.6% DW). Significant (all p < 0.001) positive correlations were found, among others, between concentrations of Zn and Mg (r2 = 0.735) and between Zn and protein (r2 = 0.437) for Ambassador, and between Mg and protein (r2 = 0.682), between Zn and Mg (r2 = 0.807), as well as between Zn and protein (r2 = 0.884) for Premium. TCT significantly (all p < 0.05) and positively correlated with SSC (r2 = 0.131), chlorophyll b (r2 = 0.128) and total chlorophyll (r2 = 0.109) for Ambassador. This study provides new nutritional data on Se/Zn biofortified peas, important for improving agronomic biofortification of pea plants.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; (M.M.); (G.D.L.)
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; (M.M.); (G.D.L.)
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
23
|
Chillon TS, Maares M, Demircan K, Hackler J, Sun Q, Heller RA, Diegmann J, Bachmann M, Moghaddam A, Haase H, Schomburg L. Serum Free Zinc Is Associated With Vaccination Response to SARS-CoV-2. Front Immunol 2022; 13:906551. [PMID: 35844578 PMCID: PMC9280661 DOI: 10.3389/fimmu.2022.906551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Zinc (Zn) is an essential trace element with high relevance for the immune system, and its deficiency is associated with elevated infection risk and severe disease course. The association of Zn status with the immune response to SARS-CoV-2 vaccination is unknown. Methods A cohort of adult health care workers (n=126) received two doses of BNT162B2, and provided up to four serum samples over a time course of 6 months. Total SARS-CoV-2 IgG and neutralizing antibody potency was determined, along with total as well as free Zn concentrations. Results The SARS-CoV-2 antibodies showed the expected rise in response to vaccination, and decreased toward the last sampling point, with highest levels measured three weeks after the second dose. Total serum Zn concentrations were relatively stable over time, and showed no significant association with SARS-CoV-2 antibodies. Baseline total serum Zn concentration and supplemental intake of Zn were both unrelated to the antibody response to SARS-CoV-2 vaccination. Time resolved analysis of free Zn indicated a similar dynamic as the humoral response. A positive correlation was observed between free Zn concentrations and both the induced antibodies and neutralizing antibody potency. Conclusion While the biomarkers of Zn status and supplemental Zn intake appeared unrelated to the humoral immune response to SARS-CoV-2 vaccination, the observed correlation of free Zn to the induced antibodies indicates a diagnostic value of this novel biomarker for the immune system.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Hackler
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Qian Sun
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raban A. Heller
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Diegmann
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | - Manuel Bachmann
- Aschaffenburg Trauma and Orthopaedic Research Group (ATORG), Center for Orthopaedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, Aschaffenburg, Germany
| | | | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Lutz Schomburg, ; Hajo Haase,
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Lutz Schomburg, ; Hajo Haase,
| |
Collapse
|
24
|
Thyroid Dysfunction and COVID-19: The Emerging Role of Selenium in This Intermingled Relationship. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116912. [PMID: 35682497 PMCID: PMC9180529 DOI: 10.3390/ijerph19116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
COVID-19 represents a worldwide public health emergency, and, beyond the respiratory symptoms characterizing the classic viral disease, growing evidence has highlighted a possible reciprocal relationship between SARS-CoV-2 infection and thyroid dysfunction. The updated data discussed in this review suggests a role of SARS-CoV-2 infection on the thyroid gland, with multiple thyroid pictures described. Conversely, no conclusion can be drawn on the association between pre-existing thyroid disease and increased risk of SARS-CoV-2 infection. In this scenario, selenium (Se), an essential trace element critical for thyroid function and known as an effective agent against viral infections, is emerging as a potential novel therapeutic option for the treatment of COVID-19. Large multicentre cohort studies are required to elucidate the mechanisms underlying thyroid dysfunction during or following recovery from COVID-19, including Se status. Meanwhile, clinical trials should be performed to evaluate whether adequate intake of Se can help address COVID-19 in Se-deficient patients, also avoiding thyroid complications that can contribute to worsening outcomes during infection.
Collapse
|
25
|
Voelkle M, Gregoriano C, Neyer P, Koch D, Kutz A, Bernasconi L, Conen A, Mueller B, Schuetz P. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients 2022; 14:1862. [PMID: 35565831 PMCID: PMC9101904 DOI: 10.3390/nu14091862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A higher risk for severe clinical courses of coronavirus disease 2019 (COVID-19) has been linked to deficiencies of several micronutrients. We therefore studied the prevalence of deficiencies of eight different micronutrients in a cohort of hospitalized COVID-19-patients. METHODS We measured admission serum/plasma levels of vitamins A, B12, D, and E, as well as folic acid, zinc, selenium, and copper in 57 consecutively admitted adult patients with confirmed COVID-19 and analyzed prevalence of micronutrient deficiencies and correlations among micronutrient levels. Further, we studied associations of micronutrient levels with severe disease progression, a composite endpoint consisting of in-hospital mortality and/or need for intensive care unit (ICU) treatment with logistic regression. RESULTS Median age was 67.0 years (IQR 60.0, 74.2) and 60% (n = 34) were male. Overall, 79% (n = 45) of patients had at least one deficient micronutrient level and 33% (n = 19) had ≥3 deficiencies. Most prevalent deficiencies were found for selenium, vitamin D, vitamin A, and zinc (51%, 40%, 39%, and 39%, respectively). We found several correlations among micronutrients with correlation coefficients ranging from r = 0.27 to r = 0.42. The strongest associations with lower risk for severe COVID-19 disease progression (adjusted odds ratios) were found for higher levels of vitamin A (0.18, 95% CI 0.05-0.69, p = 0.01), zinc (0.73, 95% CI 0.55-0.98, p = 0.03), and folic acid (0.88, 95% CI 0.78-0.98, p = 0.02). CONCLUSIONS We found a high prevalence of micronutrient deficiencies in mostly older patients hospitalized for COVID-19, particularly regarding selenium, vitamin D, vitamin A, and zinc. Several deficiencies were associated with a higher risk for more severe COVID-19 courses. Whether supplementation of micronutrients is useful for prevention of severe clinical courses or treatment of COVID-19 warrants further research.
Collapse
Affiliation(s)
- Manyola Voelkle
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| | - Claudia Gregoriano
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (P.N.); (L.B.)
| | - Daniel Koch
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Alexander Kutz
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (P.N.); (L.B.)
| | - Anna Conen
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
- Department of Infectious Diseases and Infection Prevention, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Beat Mueller
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| | - Philipp Schuetz
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| |
Collapse
|
26
|
Majeed M, Nagabhushanam K, Prakasan P, Mundkur L. Can Selenium Reduce the Susceptibility and Severity of SARS-CoV-2?-A Comprehensive Review. Int J Mol Sci 2022; 23:4809. [PMID: 35563199 PMCID: PMC9105991 DOI: 10.3390/ijms23094809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 infection is a highly contagious viral infection, which has claimed millions of lives in the last two years. The infection can cause acute respiratory distress, myocarditis, and systemic inflammatory response in severe cases. The interaction of the viral spike protein with the angiotensin-converting enzyme in various tissues causes damage to vital organs and tissues, leading to complications in the post-infection period. Vaccines and antiviral drugs have improved patient response to the infection, but the long-term effect on vital organs is still unknown. Investigations are now focused on supportive nutrient therapies, which can mitigate the susceptibility as well as the long-term complications of COVID-19. Selenium is one such micronutrient that plays a vital role in preventing oxidative stress induced by the virus. Further, selenium is important for effective immune response, controlling systemic inflammation, and maintain overall health of humans. We examine the role of selenium in various aspects of SARS-CoV-2 infection and address the importance of selenium supplementation in reducing the susceptibility and severity of infection in this review.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA;
| | | | - Priji Prakasan
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bangalore 560-058, Karnataka, India; (M.M.); (P.P.)
| |
Collapse
|
27
|
Demircan K, Chillon TS, Sun Q, Heller RA, Klingenberg GJ, Hirschbil-Bremer IM, Seemann P, Diegmann J, Bachmann M, Moghaddam A, Schomburg L. Humoral immune response to COVID-19 mRNA vaccination in relation to selenium status. Redox Biol 2022; 50:102242. [PMID: 35139480 PMCID: PMC8810594 DOI: 10.1016/j.redox.2022.102242] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The essential trace element selenium (Se) is of central importance for human health and particularly for a regular functioning of the immune system. In the context of the current pandemic, Se deficiency in patients with COVID-19 correlated with disease severity and mortality risk. Selenium has been reported to be associated with the immune response following vaccination, but it is unknown whether this also applies to SARS-CoV-2 vaccines. In this observational study, adult health care workers (n = 126) who received two consecutive anti-SARS-CoV-2 vaccinations by BNT162b2 were followed for up to 24 weeks, with blood samples collected at the first and second dose and at three and 21 weeks after the second dose. Serum SARS-CoV-2 IgG titres, neutralising antibody potency, total Se and selenoprotein P concentrations, and glutathione peroxidase 3 activity were quantified. All three biomarkers of Se status were significantly correlated at all the time points, and participants who reported supplemental Se intake displayed higher Se concentrations. SARS-CoV-2 IgG titres and neutralising potency were highest three weeks after the second dose and decreased towards the last sampling point. The humoral immune response was not related to any of the three Se status biomarkers. Supplemental Se intake had no effect at any time point on the vaccination response as measured by serum SARS-CoV-2 IgG levels or neutralising potency. Overall, no association was found between Se status or supplemental Se intake and humoral immune response to COVID-19 mRNA vaccination. Humoral SARS-CoV-2 vaccination response in healthy adults was unrelated to baseline Se status or supplemental Se intake. Vaccine-induced neutralising activity correlated with SARS-CoV-2 IgG concentration, but not with Se status. Rise and decline of the vaccination-induced SARS-CoV-2 IgG was Se status-independent during 24 weeks after first dose.
Collapse
|
28
|
Maares M, Hackler J, Haupt A, Heller RA, Bachmann M, Diegmann J, Moghaddam A, Schomburg L, Haase H. Free Zinc as a Predictive Marker for COVID-19 Mortality Risk. Nutrients 2022; 14:nu14071407. [PMID: 35406020 PMCID: PMC9002649 DOI: 10.3390/nu14071407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Free zinc is considered to be the exchangeable and biological active form of zinc in serum, and is discussed to be a suitable biomarker for alterations in body zinc homeostasis and related diseases. Given that coronavirus disease 2019 (COVID-19) is characterized by a marked decrease in total serum zinc, and clinical data indicate that zinc status impacts the susceptibility and severity of the infection, we hypothesized that free zinc in serum might be altered in response to SARS-CoV-2 infection and may reflect disease severity. To test this hypothesis, free zinc concentrations in serum samples of survivors and nonsurvivors of COVID-19 were analyzed by fluorometric microassay. Similar to the reported total serum zinc deficit measured by total reflection X-ray fluorescence, free serum zinc in COVID-19 patients was considerably lower than that in control subjects, and surviving patients displayed significantly higher levels of free zinc than those of nonsurvivors (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0004). In contrast to recovering total zinc concentrations (r = 0.706, p < 0.001) or the declining copper−zinc ratio (r = −0.646; p < 0.001), free zinc concentrations remained unaltered with time in COVID-19 nonsurvivors. Free serum zinc concentrations were particularly low in male as compared to female patients (mean ± SD; 0.4 ± 0.2 nM vs. 0.2 ± 0.1 nM; p = 0.0003). This is of particular interest, as the male sex is described as a risk factor for severe COVID-19. Overall, results indicate that depressed free serum zinc levels are associated with increased risk of death in COVID-19, suggesting that free zinc may serve as a novel prognostic marker for the severity and course of COVID-19.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
| | - Alessia Haupt
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
| | - Raban Arved Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Bundeswehr Hospital Berlin, Department of Traumatology and Orthopaedics, Septic and Reconstructive Surgery, 10115 Berlin, Germany
- Department of General Practice and Health Services Research, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Manuel Bachmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Joachim Diegmann
- ATORG, Aschaffenburg Trauma and Orthopedic Research Group, Center for Orthopedics, Trauma Surgery and Sports Medicine, Hospital Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany; (M.B.); (J.D.)
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, 63739 Aschaffenburg, Germany;
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (M.M.); (A.H.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany;
- Correspondence: (L.S.); (H.H.); Tel.: +49-30-450524289 (L.S.); +49-(0)-30-31472701 (H.H.); Fax: +49-30-4507524289 (L.S.); +49-(0)-30-31472823 (H.H.)
| |
Collapse
|
29
|
Tsuchiya H. Gustatory and Saliva Secretory Dysfunctions in COVID-19 Patients with Zinc Deficiency. Life (Basel) 2022; 12:life12030353. [PMID: 35330104 PMCID: PMC8950751 DOI: 10.3390/life12030353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022] Open
Abstract
Given the ever-progressing studies on coronavirus disease 2019 (COVID-19), it is critical to update our knowledge about COVID-19 symptomatology and pathophysiology. In the present narrative review, oral symptoms were overviewed using the latest data and their pathogenesis was hypothetically speculated. PubMed, LitCovid, ProQuest, and Google Scholar were searched for relevant studies from 1 April 2021 with a cutoff date of 31 January 2022. The literature search indicated that gustatory dysfunction and saliva secretory dysfunction are prevalent in COVID-19 patients and both dysfunctions persist after recovery from the disease, suggesting the pathogenic mechanism common to these cooccurring symptoms. COVID-19 patients are characterized by hypozincemia, in which zinc is possibly redistributed from blood to the liver at the expense of zinc in other tissues. If COVID-19 induces intracellular zinc deficiency, the activity of zinc-metalloenzyme carbonic anhydrase localized in taste buds and salivary glands may be influenced to adversely affect gustatory and saliva secretory functions. Zinc-binding metallothioneins and zinc transporters, which cooperatively control cellular zinc homeostasis, are expressed in oral tissues participating in taste and saliva secretion. Their expression dysregulation associated with COVID-19-induced zinc deficiency may have some effect on oral functions. Zinc supplementation is expected to improve oral symptoms in COVID-19 patients.
Collapse
|
30
|
Schomburg L. Selenium Deficiency in COVID-19-A Possible Long-Lasting Toxic Relationship. Nutrients 2022; 14:283. [PMID: 35057464 PMCID: PMC8781157 DOI: 10.3390/nu14020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
In the last two years, there has been a surge in the number of publications on the trace element selenium (Se) and selenocysteine-containing selenoproteins in human health, largely due to the pandemic and the multiple roles that this micronutrient and Se-dependent selenoproteins play in various aspects of the disease [...].
Collapse
Affiliation(s)
- Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| |
Collapse
|
31
|
Bañuelos GS, Freeman JL, Arroyo IS. Selenium content and speciation differences in selenium enriched soups made from selenium biofortified plants. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|