1
|
Biernacka P, Felisiak K, Adamska I. The potential of dried Ginkgo Biloba leaves as a novel ingredient in fermented beverages of enhanced flavour and antioxidant properties. Food Chem 2024; 461:141018. [PMID: 39213734 DOI: 10.1016/j.foodchem.2024.141018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fermentation enhances the nutritional profile of foods and beverages like beer, wine, and fermented teas. Ginkgo biloba, long utilized for its health-enhancing properties, contains bioactive compounds like terpene trilactones and flavonoids, known for their antioxidant and neuroprotective effects. This study explores the feasibility of using dried Ginkgo biloba leaves in SCOBY-mediated fermentation to produce novel health-promoting beverages similar to kombucha. Infusions of dried Ginkgo biloba leaves with varying sugar concentrations are fermented over 21 days. Results showed that these beverages exhibited potent antioxidant properties, notably higher than tea-kombucha, attributed to increased polyphenol content. HPLC analysis identified significant levels of bioactive compounds such as catechin and apigenin. Sensory evaluation highlighted optimal acceptance of the seven-day fermented product. This research underscores the potential of Ginkgo biloba as a functional ingredient in fermented beverages, offering a healthier alternative to conventional soft drinks.
Collapse
Affiliation(s)
- Patrycja Biernacka
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| | - Katarzyna Felisiak
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| | - Iwona Adamska
- Faculty of Food Science and Fisheries, Department of Food Science and Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland.
| |
Collapse
|
2
|
Xu C, Zhou S, Zhang J, Bu D, Zang C, Fan R, Wang J, Guo T, Han R, Yang Y. Dynamic changes in microbial communities and volatile compounds in kombucha fermentation using Flos sophorae and Elm fruits, compared to black and green tea. Food Res Int 2024; 197:115233. [PMID: 39593316 DOI: 10.1016/j.foodres.2024.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
The dynamic changes in physicochemical properties, microbial communities, and volatile compounds in kombucha made from Flos sophorae (FLSK) and Elm fruit (EFK) were compared to those of black tea (BTK) and green tea (GTK) over a 12-day fermentation period. The results revealed that overall flavonoid and polyphenol content, as well as antioxidant activity, increased initially and then decreased, accompanied by a steady reduction in pH within the fermentation broths investigated. Notably, the GTK exhibited stronger antioxidant activity than the other fermentation broths. Furthermore, 16S rRNA gene sequencing revealed that Komagataeibacter rhaeticus, Komagataeibacter saccharivorans, and Acidovorax wautersii were the dominating microbial species in the fermentation broths under this study. Komagataeibacter rhaeticus initially reduced and then increased throughout the FLSK fermentation, whereas Komagataeibacter saccharivorans increased from day 0 to day 6, and remain stable by day 12 during the EFK fermentation. Comparative analysis revealed that Komagataeibacter rhaeticus was more abundant in the FLSK and GTK than in the EFK and BTK, whereas Komagataeibacter saccharivorans showed a higher abundance in the EFK relative to the other fermentation broths. Gas chromatography-mass spectrometry identified acetic acid, linalool, ethanol, and ethyl acetate as the major volatile chemicals that rose significantly in fermentation mixtures of the examined substrates. The FLSK had a much higher linalool concentration than the other fermentation broths, although the EFK and GTK had higher ethanol content. Correlation study found that Komagataeibacter rhaeticus was negatively related with alcohol compounds, but Komagataeibacter saccharivorans was positively associated with a diverse spectrum of acids, alcohols, and esters. The study found changes in bioactive chemicals as well as interactions between bacterial populations and volatile compounds throughout fermentation in the substrates investigated.
Collapse
Affiliation(s)
- Chunyu Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Shichu Zhou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Dengpan Bu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China.
| | - Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830000, Xinjiang, China.
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
3
|
Shalini TS, Prathiviraj R, Senthilraja P. Metagenomic analysis and bioactive profiling of kombucha fermentation: antioxidant, antibacterial activities, and molecular docking insights into gastric cancer therapeutics. Toxicol Res (Camb) 2024; 13:tfae224. [PMID: 39712641 PMCID: PMC11662944 DOI: 10.1093/toxres/tfae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
Kombucha is fermented and produced with a biofilm called a symbiotic culture of bacteria and yeast, which is drunk all over the world for its beneficial effects on human health and energy levels. The metagenomic study of kombucha frequently detected microorganisms in proteobacteria, firmicutes, and actinobacteria. And also, yeast and fungi are Ascomycota and Basidiomycota is present in green leaf and sugarcane juice fermented kombucha. The kombucha extracts' biological activities were assessed using pH, total phenolic content, antioxidant, antibacterial, and anticancer activity. Fermentation may enhance biological activity and the generation of bioactive substances. These results showed the pH -3.1 ± 0.2 and TPC -0.721 μg/mL of gallic acid equivalent. The antioxidant radicals scavenging activity of kombucha was evaluated by DPPH, ABTS, H2O2 and TAC. The bioactive chemicals identified by FT-IR and HR-LC/MS analysis of Kombucha totaled 45 components. The identified compounds were further move on to perform molecular docking study against gastric cancer target proteins 4H9M, 2DQ7 and 1TVO are binding with Nequinate compounds showing best LibDock scores 105.12, 114.49, and 108.97. So, this study suggests that knowledge can potentially active bioactive compounds are present in kombucha and it's stimulated the mechanism of gastrointestinal transit. Additionally, the metagenomic analysis gives strength to understand the bacterial and fungal distribution and its molecular mechanism from Kombucha.
Collapse
Affiliation(s)
| | - Ragothaman Prathiviraj
- Department of Microbiology, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India
| | - Poomalai Senthilraja
- Department of Bioinformatics, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
4
|
Mfopa AN, Kemzeu R, Fokom R, Yamthe LRT, Dize D, Boyom FF. Phenolic compounds, antioxidant and antileishmanial activities of kombucha as affected by fermentation time. Heliyon 2024; 10:e40463. [PMID: 39641030 PMCID: PMC11617884 DOI: 10.1016/j.heliyon.2024.e40463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Objective Study the impact of fermentation time on the phytochemical properties, antioxidant and antileishmanial activities. Materials and methods The preparation of Kombucha tea by fermentation was performed under aseptic conditions and symbiotic culture of bacteria and yeast (SCOBY) layer was maintained in culture for continuous growth in a water-sugar (4 L-500 g) mixture for 7, 14, 21, 28 and 35 days. The process of preparation was performed using a decoction. Phenolic compounds, flavonoids, and tannins was determined using standard method. The antioxidant activity was determined using three tests: DPPH•, ABTS• + and FRAP methods. Finally, the antileishmanial activity was performed in vitro on Leishmania donovani promastigote strains. Results The qualitative analysis of the constituents showed the kombucha drink was rich in saponins, terpenoids, quinones, phenolic compounds, catechins and coumarins depending on the fermentation times. Depending on the fermentation time (7 days, 14 days, 21 days, 28 days and 35 days), significant quantities of phenolic compounds were obtained in the tea with values ranging from 182.42 to 509.41 mg GAE/g dry extract; 15.83-53.05 mg QE/g dry extract and 6.16-51.82 mg TAE/g dry extract respectively for phenolic compounds, total flavonoids and total tannins. The SC50 values of DPPH• and ABTS• +, were 14.57 μg/mL; and 21.47 μg/mL after 14 and 21 days of fermentation respectively indicating a good antioxidant profile. The inhibition of the promastigote form of Leishmania donovani responsible for visceral leishmaniasis was observed with the samples obtained after 7 days, 14 days and 28 days with inhibitory concentrations 50 of: 131.2, 48.86 and 128.8 μg/mL respectively. The antileishmanial activity was more pronounced with the Kombucha tea after 14 days (KBT14) extract (48.86 μg/mL). Conclusion The Kombucha tea revealed the presence of phenolic compounds at different fermentation time. In addition, a good antioxidant profile was observed with the different radicals analyzed. Also, the inhibition of the Leishmania parasite was obtained. Therefore, the Kombucha tea constitutes a source bioactive molecules with antioxidant properties against Leishmania parasite.
Collapse
Affiliation(s)
- Alvine Ngoutane Mfopa
- Institute of Fisheries and Aquatic Sciences, Department of Processing and Quality Control, Yabassi, University of Douala, P.O Box 7236, Douala, Cameroon
| | - Raoul Kemzeu
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science University of Yaounde I, P. O Box 812, Yaounde, Cameroon
| | - Raymond Fokom
- Institute of Fisheries and Aquatic Sciences, Department of Processing and Quality Control, Yabassi, University of Douala, P.O Box 7236, Douala, Cameroon
| | - Lauve Rachel T. Yamthe
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science University of Yaounde I, P. O Box 812, Yaounde, Cameroon
- Laboratory of Pharmacology and Drugs Discovery, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, P.O. Box 13033, Cameroon
| | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science University of Yaounde I, P. O Box 812, Yaounde, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science University of Yaounde I, P. O Box 812, Yaounde, Cameroon
| |
Collapse
|
5
|
Jeong AY, Hong SJ, Jang DE, Kim E, Ko S, Kim YM. Optimization of microbial consortia and materials composition enhances gluconic acid content in kombucha. J Food Sci 2024; 89:7916-7927. [PMID: 39366779 DOI: 10.1111/1750-3841.17428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
The objective of this study was to optimize the microbial and ingredient composition of kombucha for enhanced production of gluconic acid (GA). Fourteen strains of Komagataeibacter spp. and one yeast strain of Dekkera sp. were isolated from kombucha. Among them, Komagataeibacter swingsii SS1 (SS1) and Komagataeibacter saccharivorans SS11 (SS11) were selected for their high GA production. A rapid reduction of pH, high GA content relative to acetic acid, and high cellulose production were observed in the tea infusion fermented by the microbial consortium (SS1 + SS11 + Dekkera bruxellensis Y24). From the correlation between the materials composition and quality indicators of kombucha, the decrease in pH was the most critical quality indicator of kombucha and the most closely related to GA content. Maximal GA production (11.7 mg/mL) was obtained under the conditions of 1% (w/v) tea extract, 8.5% (w/v) glucose, and 1.5% (v/v) ethanol through the optimization of materials composition by response surface methodology. The GA content of kombucha was enhanced threefold in comparison to general kombucha by fermentation with Komagataeibacter spp. and optimization of the composition of the ingredients. Overall, this study showed that a specific microbial consortium and materials composition could be established by correlation analysis among the ingredients, which results in increased GA levels in kombucha. These findings offer valuable foundational data for both commercial production and quality control of kombucha.
Collapse
Affiliation(s)
- Ah-Young Jeong
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Jin Hong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Agricultural Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Da-Eun Jang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Eunhye Kim
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
| | - Sugju Ko
- Jeollanamdo Agricultural Research and Extension Services, Jeollanamdo, Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Zhang R, Li Q, Gu Y, Liao W. Harnessing the Power of Fermented Tea to Improve Gut Microbiota and Combat Obesity Epidemic. BIOLOGY 2024; 13:779. [PMID: 39452088 PMCID: PMC11504357 DOI: 10.3390/biology13100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The global rise in obesity rates has prompted a thorough evaluation of dietary strategies that may alleviate this metabolic issue. Fermented tea, a beverage rich in polyphenols and catechins, has emerged as a viable therapeutic option for obesity management. This review discusses the role of fermented tea in modulating the gut microbiome, a critical factor in energy regulation and obesity. We explore how the bioactive components in fermented tea influence gut health and their implications for metabolic health. Fermented tea may inhibit weight gain and fat accumulation in obese animal models, likely by promoting beneficial bacteria and suppressing harmful species. Changes in the production of short-chain fatty acids and improvements in gut barrier integrity are linked to enhanced insulin sensitivity and reduced inflammatory markers, essential for effective obesity management. However, barriers remain in applying these findings in clinical settings, such as the need for standardized fermentation techniques and accurate dosage assessments. This review underscores the therapeutic potential of fermented tea in obesity treatment and advocates for further research to enhance its integration with public health initiatives.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| | - Qiling Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxuan Gu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
7
|
Sittisart P, Mahidsanan T, Yuvanatemiya V, Srinamngoen P. Technological quality and fungal community of Kombucha fermented with hemp leaves and milky mushroom flour ( Calocybe indica). PeerJ 2024; 12:e18116. [PMID: 39346034 PMCID: PMC11439377 DOI: 10.7717/peerj.18116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Kombucha is traditionally a non-alcoholic beverage whose production is dependent on culture and the various ingredients used as substrates for fermentation. The goal of our study was to apply hemp leaf and milky mushroom (Calocybe indica) flour as functional ingredients to enhance phytonutrient quality, along with using a microbial consortium highly symbiotic with these ingredients. The study determined the content of phytonutrients (phenolic and flavonoids content), antioxidant activity through percentage inhibition of DPPH radical scavenging activity (%), and microbial communities changes during fermentation. The microbial changes were evaluated by cell viable count (total bacteria, Lactic Acid Bacteria, and Yeast & Mold) and ITS in prepared kombucha (using red tea leaves, pandan leaves, and sucrose) supplemented with functional ingredients: T1 (hemp leaves (control)) and T2 (hemp leaves with milky mushroom flour). The results indicated that microbial consortium changed during fermentation. In the first 7 days, the levels of yeast and mold increased to 6.17 and 6.18 log CFU/mL, respectively. By day 21, the levels of both T1 and T2 continued to rise, reaching 7.78 and 7.82 log CFU/mL, respectively. The viable count of lactic acid bacteria in T1 and T2 gradually increased to 6.79 and 6.70 log CFU/mL, respectively, by day 14. These changes resulted in a marked decrease in pH value, reaching 3.63 and 3.23 in T1 and T2, respectively, by the end of the process (21 days). The total bacterial viable count decreased with an increase in the fermentation time. During fermentation, unique genera of tea fungus observed in T1 and T2 were 64% and 19%, respectively. At the beginning (0 days), the top five genera found in T1 were: g__Setophoma (25.91%), g__Macrocybe (14.88%), g__Cladosporium (7.81%), g__Phaeosphaeria (7.12%), g__Malassezia (6.63%), while the top five genera in T2 were g__Macrocybe (94.55%), g__Setophoma (1.87%), g__Cladosporium (0.77%), g__Phaeosphaeria (0.40%), g__Cordyceps (0.38%). However, on day 21 (end of the process), it was found that g__Dekkera had the highest relative abundance in both T1 and T2. In addition, the supplementation of the two ingredients affected the total phenolic and total flavonoid content of the treatments. At the end of the process, T2 showed values of 155.91 mg GAE/mL for total phenolics and 1.01 mg CE/mL for total flavonoids, compared to T1, which had 129.52 mg GAE/mL and 0.69 mg CE/mL, respectively. Additionally, the DPPH inhibition was higher in T1 (91.95%) compared to T2 (91.03%). The findings suggest that kombucha fermented with these innovative ingredients exhibited enhanced phytonutrients, and served as substrate for LAB and tea fungus fermentation, while limiting the growth of fungal genera and diversity of microbial consortium.
Collapse
Affiliation(s)
- Priyada Sittisart
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Thitikorn Mahidsanan
- Department of Food Science and Technology, Faculty of Agricultural Innovation and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Vasin Yuvanatemiya
- Faculty of Marine Technology, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| | - Pattama Srinamngoen
- Department of Agricultural Technology, Faculty of Science and Arts, Burapha University, Chanthaburi Campus, Chanthaburi, Thailand
| |
Collapse
|
8
|
Liao T, Li XR, Fan L, Zhang B, Zheng WM, Hua JJ, Li L, Mahror N, Cheng LH. Nature of back slopping kombucha fermentation process: insights from the microbial succession, metabolites composition changes and their correlations. Front Microbiol 2024; 15:1433127. [PMID: 39234548 PMCID: PMC11371673 DOI: 10.3389/fmicb.2024.1433127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 09/06/2024] Open
Abstract
Kombucha, a fermented tea prepared with a symbiotic culture of bacteria and yeast (SCOBY), offers a unique and unpredictable home-brewed fermentation process. Therefore, the need for a controlled kombucha fermentation process has become evident, which requiring a thorough understanding of the microbial composition and its relationship with the metabolites produced. In this study, we investigated the dynamics of microbial communities and metabolites over a 12-day fermentation period of a conventional kombucha-making process. Our findings revealed similarities between the microbial communities in the early (0-2 days) and late (10-12 days) fermentation periods, supporting the principle of back-slopping fermentation. Untargeted metabolite analysis unveiled the presence of harmful biogenic amines in the produced kombucha, with concentrations increasing progressively throughout fermentation, albeit showing relatively lower abundance on days 8 and 12. Additionally, a contrasting trend between ethanol and caffeine content was observed. Canonical correspondence analysis highlighted strong positive correlations between specific bacterial/yeast strains and identified metabolites. In conclusion, our study sheds light on the microbial and metabolite dynamics of kombucha fermentation, emphasizing the importance of microbial control and quality assurance measures in the production process.
Collapse
Affiliation(s)
- Ting Liao
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Xiang-Ru Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Bo Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Wei-Ming Zheng
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jia-Jia Hua
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Norlia Mahror
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
9
|
de Oliveira Duarte FA, Ramos KK, Gini C, Morasi RM, Silva NCC, Efraim P. Microbiological characterization of kombucha and biocellulose film produced with black tea and cocoa bean shell infusion. Food Res Int 2024; 190:114568. [PMID: 38945598 DOI: 10.1016/j.foodres.2024.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.
Collapse
Affiliation(s)
| | - Kazumi Kawazaki Ramos
- Department of Food Engineering and Technology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil; Mombora, 05409-000 São Paulo, SP, Brazil
| | - Chiara Gini
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy; Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rafaela Martins Morasi
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | | | - Priscilla Efraim
- Department of Food Engineering and Technology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Sadurski J, Polak-Berecka M, Staniszewski A, Waśko A. Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review. Foods 2024; 13:2216. [PMID: 39063300 PMCID: PMC11276190 DOI: 10.3390/foods13142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article offers a comprehensive overview of the current understanding of using metagenomic tools in food microbiome research. It covers the scientific foundation and practical application of genetic analysis techniques for microbial material from food, including bioinformatic analysis and data interpretation. The method discussed in the article for analyzing microorganisms in food without traditional culture methods is known as food metagenomics. This approach, along with other omics technologies such as nutrigenomics, proteomics, metabolomics, and transcriptomics, collectively forms the field of foodomics. Food metagenomics allows swift and thorough examination of bacteria and potential metabolic pathways by utilizing foodomic databases. Despite its established scientific basis and available bioinformatics resources, the research approach of food metagenomics outlined in the article is not yet widely implemented in industry. The authors believe that the integration of next-generation sequencing (NGS) with rapidly advancing digital technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data will facilitate the widespread adoption of this research strategy in microbial analysis for the food industry. This adoption is expected to enhance food safety and product quality in the near future.
Collapse
Affiliation(s)
- Jan Sadurski
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Poland; (M.P.-B.); (A.S.); (A.W.)
| | | | | | | |
Collapse
|
11
|
Morales D, de la Fuente-Nieto L, Marco P, Tejedor-Calvo E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles ( Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods 2024; 13:2162. [PMID: 38998667 PMCID: PMC11241703 DOI: 10.3390/foods13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The organoleptic and bioactive properties of truffles place these fungi as interesting materials for use in the of design functional foods based on fruiting bodies outside commercial standards. Moreover, kombucha beverages have become more popular in the Western world, leading to novel drinks using alternative substrates instead of tea leaves. In this work, two truffle species (Tuber melanosporum, TMEL; Tuber aestivum, TAES) and three different symbiotic consortia of bacteria and yeasts (SCOBYs: SC1, SC2, and SC3) were tested. Fermentation (21 days) was monitored in terms of physicochemical (pH, viscosity), biochemical (total carbohydrates, alcohol, soluble proteins, phenolic compounds), and sensory attributes (volatile organic compounds, VOCs). The obtained pH ranges were adequate, alcohol levels were undetectable or very low, and sugar content was lower than in traditional kombuchas or other beverages. In most cases, the usual bottling time could be applied (7-10 days), although longer fermentations are recommended (14 days) to reach higher protein and phenolic compounds contents. Truffle kombuchas produced up to 51 volatile organic compounds (alcohols, acids, esters, ketones, and aldehydes, among others), with TMEL showing a more complex profile than TAES. During the first week, acidic compound production was observed, especially acetic acid. Similar behavior in the VOC profile was reported with different SCOBYs.
Collapse
Affiliation(s)
- Diego Morales
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Laura de la Fuente-Nieto
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Instituto Agroalimentario de Aragón (IA2), University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Njieukam JA, Ciccone M, Gottardi D, Ricci A, Parpinello GP, Siroli L, Lanciotti R, Patrignani F. Microbiological, Functional, and Chemico-Physical Characterization of Artisanal Kombucha: An Interesting Reservoir of Microbial Diversity. Foods 2024; 13:1947. [PMID: 38928888 PMCID: PMC11202501 DOI: 10.3390/foods13121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Kombucha is a trending tea fermented via a complex microflora of yeasts and acetic acid bacteria. It can be a valid low-calorie substitute for soft drinks due to its sour, naturally carbonated, and sweet taste. Despite increased interest, the microflora and functional properties of kombucha have not yet been fully understood. The aim of this work was to characterize, from a microbiological, chemico-physical, and functional point of view, three types of artisanal kombucha obtained by fermenting green tea containing sugar by means of different starter cultures. Metagenomic analysis revealed a predominance of yeasts compared to bacteria, regardless of the sample. In particular, Brettanomyces spp. was found to be the dominant yeast. Moreover, the different types of kombucha had different microbial patterns in terms of acetic acid bacteria and yeasts. Ethanol and acetic acid were the dominant volatile molecules of the kombucha volatilome; the samples differed from each other in terms of their content of alcohols, esters, and acids. All the samples showed a high antioxidant potential linked to the high content of phenols. This study confirmed the positive chemico-physical and functional properties of kombucha and indicated that the microflora responsible for the fermentation process can significantly affect the characteristics of the final product.
Collapse
Affiliation(s)
- Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Marianna Ciccone
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giuseppina Paola Parpinello
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
13
|
Selvaraj S, Gurumurthy K. Metagenomic, organoleptic profiling, and nutritional properties of fermented kombucha tea substituted with recycled substrates. Front Microbiol 2024; 15:1367697. [PMID: 38873151 PMCID: PMC11169636 DOI: 10.3389/fmicb.2024.1367697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Kombucha fermentation yields a diverse range of beneficial macro and micronutrients. In our study, we examined the metabolites, antioxidant activity, organoleptic characteristics, and nutritional attributes of traditionally prepared kombucha tea, using black tea and sugar (control) as substrates, and compared them with tea made from tea dust and blackstrap molasses (test). Kombucha tea crafted from functional raw materials exhibited enhanced sensory qualities and improved health-promoting properties. The levels of tannins, flavonoids, and phenols play a crucial role in determining the antioxidant activity of kombucha tea. Using the DPPH and FRAP methods, we investigated the antioxidant activity throughout the fermentation period, ranging from day 0 to day 12, under optimized conditions. The results consistently demonstrated an initial increase in antioxidant activity from day 0 to 6, followed by a decline from day 6 to 12. Notably, statistical analysis revealed that the antioxidant activity of the test sample was significantly better (p > 0.001) compared to the control sample. The nutritional content of the kombucha from day 6 of the test sample is higher than the control sample provided sugars (fructose 0.4 ± 0.1, glucose 0.7 ± 0.1, sucrose 1.4 ± 0.1) g/100 mL, minerals (calcium, 19.4 ± 0.15, iron 23.1 ± 0.25, and potassium 28.3 ± 0.25) mg/100 mL, vitamins (B1 0.58 ± 0.01, B2 0.30 ± 0.02, B3 0.33 ± 0.02, B6 0.75 ± 0.02, B9 0.19 ± 0.03, B12 0.9 ± 0.03, and C 1.38 ± 0.06) mg/100 mL, sodium 4.35 ± 0.25 mg/100 mL, calories 14.85 ± 0.25 mg/100 mL, carbohydrates 3.135 ± 0.12, and acids (acetic acid 4.20 ± 0.02, glucuronic acid 1.78 ± 0.02) mg/100 mL on day 12. The predominant microbial species identified in both control and test samples included Komagataeibacter rhaeticus, Gluconobacter oxydans, Brettanomyces bruxellensis, and Zygosaccharomyces bailli, each with varying dominance levels. These microorganisms play essential roles in metabolizing sugars, generating acids, and contributing to the distinctive flavor profile of kombucha. Sensory evaluations of the control and test samples were analyzed, and the overall preference was 88% for the test sample with tea dust and molasses. The sensory characteristics of the test sample included a fruity smell (41%), fizzy texture (66%), bright color (47%), and a fruity taste (67%), with overall acceptability (56%) rating it as excellent. Our research contributes to a deeper understanding of the interplay between raw materials, microbial composition, and the resulting composition of bioactive compounds.
Collapse
Affiliation(s)
- Suriyapriya Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kalaichelvan Gurumurthy
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
O’Sullivan EN, O’Sullivan DJ. Viability and Diversity of the Microbial Cultures Available in Retail Kombucha Beverages in the USA. Foods 2024; 13:1707. [PMID: 38890935 PMCID: PMC11172315 DOI: 10.3390/foods13111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a two-stage fermented sweetened tea beverage that uses yeast and lactic acid bacteria (LAB) to convert sugars into ethanol and lactate and acetic acid bacteria (AAB) to oxidize ethanol to acetate. Its popularity as a beverage grew from claims of health benefits derived from this vibrant microbial bioconversion. While recent studies have shed light on the diversity of cultures in Kombucha fermentation, there is limited information on the diversity, and especially viability, of cultures in retail beverages that advertise the presence of Kombucha and probiotic cultures. In this study, 12 Kombucha beverages produced by different manufacturers throughout the US were purchased and microbially characterized. Eight of the beverages contained viable Kombucha cultures, while 3 of the remaining 4 had viable Bacillus cultures as added probiotics. Amplicon profiling revealed that all contained Kombucha yeast and bacteria cells. The dominant yeasts detected were Lachancea cidri (10/12), Brettanomyces (9/12), Malassezia (6/12), and Saccharomyces (5/12). Dominant LAB included Liquorilactobacillus and Oenococcus oeni, and AAB were Komagataeibacter, Gluconobacter, and Acetobacter. One beverage had a significant amount of Zymomonas mobilis, an ethanol-producing bacterium from Agave cactus. While Kombucha beverages differ in the types and viability of cultures, all except one beverage contained detectable viable cells.
Collapse
Affiliation(s)
| | - Daniel J. O’Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA;
| |
Collapse
|
15
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
16
|
Ohwofasa A, Dhami M, Winefield C, On SLW. Elevated abundance of Komagataeibacter results in a lower pH in kombucha production; insights from microbiomic and chemical analyses. Curr Res Food Sci 2024; 8:100694. [PMID: 38420346 PMCID: PMC10900771 DOI: 10.1016/j.crfs.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Kombucha consumption has grown rapidly worldwide in the last decade, with production at both small- and large scales. The complex fermentation process involves both bacterial and yeast species, but little is known regarding the progression of microbial development during production. We explored the microbial diversity of multiple batches across two kombucha types, i. e commercial scale versus laboratory-made (hereafter "home") kombucha brew using metabarcoding to characterize both fungal and bacterial communities. We found the microbial community of the commercial kombucha brew to be more complex than that of the home brew. Furthermore, PERMANOVA uncovered significant compositional differences between the bacterial (F = 2.68, R2 = 0.23, p = 00.001) and fungal (F = 3.18, R2 = 0.26, p = 00.006) communities between batches. For the home brew, both alpha and beta diversity analyses revealed no significant differences between all batches and replicates. When the microbial diversity of the home and commercial kombucha types were directly compared, the former had higher proportions of Ammoniphilus and Komagataeibacter. The commercial kombucha on the other hand were high in Anoxybacillus, Methylobacterium and Sphingomonas. For the fungal communities, the most dominant fungal genera detected in both kombucha types were similar. Linear model revealed significant correlations between some microorganisms and the sugars and organic acids assayed in this study. For example, rising glucose levels correlated with an increase in the relative abundance of Komagataeibacter (F = 7.115, Adj. R2 = 0.44, p = 00.0003). We believe these results contribute towards achieving a better control of the kombucha fermentation process and may assist in targeted product diversification.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
17
|
Hooi SL, Dwiyanto J, Toh KY, Tan G, Chong CW, Lee JWJ, Lim J. The microbial composition and functional roles of different kombucha products in Singapore. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2190794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Venegas CA, Saona LA, Urbina K, Quintrel P, Peña TA, Mardones W, Cubillos FA. Addition of Saccharomyces eubayanus to SCOBY fermentations modulates the chemical and volatile compound profiles in kombucha. Food Microbiol 2023; 116:104357. [PMID: 37689417 DOI: 10.1016/j.fm.2023.104357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023]
Abstract
Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.
Collapse
Affiliation(s)
- Camila A Venegas
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile
| | - Luis A Saona
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Kamila Urbina
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Pablo Quintrel
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Tomás A Peña
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Wladimir Mardones
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Francisco A Cubillos
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| |
Collapse
|
19
|
Palmnäs-Bédard M, de Santa Izabel A, Dicksved J, Landberg R. Characterization of the Bacterial Composition of 47 Fermented Foods in Sweden. Foods 2023; 12:3827. [PMID: 37893721 PMCID: PMC10606000 DOI: 10.3390/foods12203827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fermentation has long been utilized to preserve and enhance the flavor and nutritional value of foods. Recently, fermented foods have gained popularity, reaching new consumer groups due to perceived health benefits. However, the microbial composition of many fermented foods re-mains unknown. Here, we characterized the bacterial composition, diversity, and richness of 47 fermented foods available in Sweden, including kombucha, water kefir, milk kefir, yogurt, plant-based yogurt alternatives, kimchi, sauerkraut, and fermented vegetables. Via 16S rRNA gene sequencing, we identified 2497 bacteria (amplicon sequence variants). The bacterial composition was strongly associated with the type of fermented food, and lactic acid bacteria and/or acetic acid bacteria dominated most samples. However, each fermented food had a unique composition, with kombucha and water kefir having the highest diversity across and within samples. Few bacteria were abundant in multiple foods and food groups. These were Streptococcus thermophilus in yogurts and plant-based yoghurts; Lactococcus lactis in milk kefirs and one water kefir; and Lactiplantibacillus plantarum in kimchi, sauerkraut, and fermented cucumber. The broad range of fermented foods included in this study and their diverse bacterial communities warrant further investigation into the implications of microbial compositions for product traits and potential impact on human health.
Collapse
Affiliation(s)
- Marie Palmnäs-Bédard
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | | | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden;
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
20
|
Tian M, Zhang Q, Zeng X, Rui X, Jiang M, Chen X. The Differences in Protein Degradation and Sensitization Reduction of Mangoes between Juices and Pieces Fermentation. Foods 2023; 12:3465. [PMID: 37761174 PMCID: PMC10529661 DOI: 10.3390/foods12183465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Given the allergic reaction caused by mangoes, nonthermal food technologies for allergenicity reduction are urgently desired. This study aimed to assess the impact of kombucha fermentation on the allergenicity of mangoes. The total proteins, soluble proteins, peptides, amino acid nitrogen, the SDS-PAGE profiles of the protein extracts, and immunoreactivity of the sediment and supernatant were measured in two fermentation systems (juices and pieces fermentation). Throughout the fermentation, the pH decreased from about 4.6 to about 3.6, and the dissolved oxygen reduced about 50% on average. However, the protein degradation and sensitization reduction of mangoes were different between the two fermentation systems. In juices fermentation, there was a drop in proteins and peptides but an increase in amino acids, due to the conversion of proteins and peptides into amino acids both in the supernatant and sediment. The allergenicity decreased both in the solid and liquid phases of juices fermentation. In pieces fermentation, proteins and peptides were decreased in the solid phase but increased in the liquid phase. This was due to the fact that proteins and peptides were partly transported into the culture liquid, resulting in a decrease of allergenicity in fruit pieces and an increase in culture liquid. The principal component analysis results showed that the fermentation type had significant effects on the protein degradation and sensitization reduction, while mango variety had no significant effect. These results demonstrate that kombucha fermentation can reduce the allergenicity of mangoes, and it is more effective in juices fermentation than in pieces fermentation. The present study provides a theoretical basis for developing hypoallergenic mango products.
Collapse
Affiliation(s)
- Mengtian Tian
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Qiuqin Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xianming Zeng
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Mei Jiang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiaohong Chen
- Sanya Institute of Nanjing Agricultural University, Nanjing Agriculture University, Sanya 572024, China; (M.T.); (X.Z.); (X.R.); (M.J.); (X.C.)
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing 210095, China
| |
Collapse
|
21
|
Al-Madboly LA, Yagi A, Kabbash A, El-Aasr MA, El-Morsi RM. Microbiota-derived short chain fatty acids in fermented Kidachi Aloe promote antimicrobial, anticancer, and immunomodulatory activities. BMC Microbiol 2023; 23:240. [PMID: 37644400 PMCID: PMC10464184 DOI: 10.1186/s12866-023-02981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Fermented Aloe leaf juice is a commonly used food supplement in Japan. In a previous study, fermentation of A. arborescence juice was performed and the presence of short-chain fatty acids (SCFAs) was confirmed and quantified. Samples were collected before and after the fermentation process to be subjected, in the present study, to DNA extraction, 16S rRNA gene (V3-V4 regions) amplification, and sequencing by the next-generation Illumina MiSeq sequencer. Our work aims to analyze the sequences to assess the bacterial diversity in the juice before and after fermentation, identify the beneficial microbes responsible for the production of SCFAs, and evaluate some of the biological activities of the fermented juice. RESULTS Data revealed the richness and diversity of the bacterial community in the fermented juice compared to the unfermented control. Relative abundance of bacterial phyla showed that the majority of the microbial community in the test samples corresponded to Pseudomonadota (unfermented; 10.4%, fermented; 76.36%), followed by Bacillota (unfermented; 4.71%, fermented; 17.13%) and then Bacteroidota (unfermented; 0.57%, fermented; 1.64%). For the fermented sample, 84% of Bacillota were lactobacilli. A hierarchically clustered heatmap revealed that Lactobacillus was the most abundant genus in both samples suggesting its involvement in the production of SCFAs. To assess potential health benefits, the anticancer efficacy of the fermented product of A. arborescens was investigated against colorectal cancer (IC50 = 3.5 µg/ml) and liver cancer (IC50 = 6.367 µg/ml) compared to the normal peripheral blood mononuclear cells (PBMCs). Flow cytometric analysis of the cell cycle pattern revealed remarkable population arrest in G0 and G1, however, the highest percentages were mainly in the G1 phase for Hep-G2 (40.1%) and HCT-116 (53.2%) cell lines. This effect was accompanied by early apoptotic profiles of HCT-116 (36.9%) and late apoptosis for Hep-G2 (17.3%). Furthermore, immunomodulatory properties demonstrated a significantly (p < 0.001) reduced percentage of induced TNF-α while enhancing IFN-γ dramatically. For antimicrobial activities, marked broad-spectrum activities were recorded against some bacterial and fungal pathogens (17-37 mm inhibition zone diameter range). CONCLUSION Therefore, this study affords the basis of bacterial community composition in fermented A. arborescens juice as well as its potential biological benefits.
Collapse
Affiliation(s)
- Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Akira Yagi
- Department of Pharmaceutical Science, Fukuyama University, Hiroshima, Japan
| | - Amal Kabbash
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona A El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha M El-Morsi
- Department of Microbiology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
| |
Collapse
|
22
|
Cohen G, Sela DA, Nolden AA. Sucrose Concentration and Fermentation Temperature Impact the Sensory Characteristics and Liking of Kombucha. Foods 2023; 12:3116. [PMID: 37628115 PMCID: PMC10453479 DOI: 10.3390/foods12163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a fermented tea beverage consumed for its probiotics and functional properties. It has a unique sensory profile driven by the properties of tea polyphenols and fermentation products, including organic acids. Fermentation temperature and sucrose content affect the fermentation process and the production of organic acids; yet less is known about their impacts on the sensory profile and consumer acceptance. Thus, we aimed to examine the impact of sucrose concentration and fermentation temperature on sensory attributes and liking. For this study, kombucha tea was fermented at three different concentrations of sucrose and fermented at two temperatures for 11 days. Fermentation was monitored by pH, brix, and titratable acidity, and consumers (n = 111) evaluated the kombucha for sensory attributes and overall liking. The fermentation temperature resulted in significant differences in titratable acidity, with higher temperatures producing more organic acids, resulting in higher astringency, and suppressed sweetness. The lower fermentation was reported as significantly more liked, with no difference in liking between the 7.5% and 10% sucrose kombucha samples. Fermentation temperature had the greatest impact on the sensory profile rather than sucrose concentration, which had a greater effect on the fermentation rate and production organic acids.
Collapse
Affiliation(s)
- Gil Cohen
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alissa A. Nolden
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Tomar S, Mitra D, Kumar G, Kashyap P, Sharma M, Kumar S, Sridhar K, Pant K. Microbial Diversity and Functional Potential of Keem: A Traditional Starter Culture for Alcoholic Beverage-Application of Next-Generation Amplicon and Shotgun Metagenome Sequences. Mol Biotechnol 2023:10.1007/s12033-023-00839-3. [PMID: 37566190 DOI: 10.1007/s12033-023-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
"Pakhoi" is an ethnic drink of the Tons valley, Uttarakhand, India produced by fermenting jaggery and barley with the help of a starter culture called "keem". In the present study, we investigated the microbial diversity and associated functional potential of "keem" using shotgun metagenome sequencing and amplicon sequencing. We also compared the taxonomic data obtained using these two sequencing techniques. The results showed that shotgun sequencing revealed a higher resolution of taxonomic profiling as compared to the amplicon sequencing. Furthermore, it was found that the genera detected by shotgun sequencing were valuable for facilitating the fermentation process. Additionally, to understand the functional profiling of the genera, different databases were used for annotation, resulting in a total of 13 metabolic pathways. The five most abundant KEGG functions were genetic information processing, metabolism, translation, cofactor and vitamin metabolism and xenobiotic degradation. In contrast, the top five COG were in order of highest frequency sequences belonging to transcription, followed by general function prediction, carbohydrate transport metabolism, amino acid transport and metabolism and translation and biogenesis. Gene ontology revealed many pathways, biochemical processes and molecular functions associated with the organisms forming the starter culture. Overall, the present study can help to understand the microbial diversity and its role in fermentation of traditional alcoholic beverages using "Keem".
Collapse
Affiliation(s)
- Shikha Tomar
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, 793101, India
| | - Shiv Kumar
- MMICT&BM (HM), Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India.
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
24
|
Yao L, Zhang J, Lu J, Chen D, Song S, Wang H, Sun M, Feng T. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Food Res Int 2023; 169:112909. [PMID: 37254344 DOI: 10.1016/j.foodres.2023.112909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.
Collapse
Affiliation(s)
- Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
25
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
27
|
Chen M, Liu Y, Bao X, Yue Y, Tong B, Yang X, Yu H, Yang Y, Liu Y, Yu Y. Potential of Chinese Yam ( Dioscorea polystachya Turczaninow) By-Product as a Feed Additive in Largemouth Bass ( Micropterus salmoides): Turning Waste into Valuable Resources. AQUACULTURE NUTRITION 2023; 2023:9983499. [PMID: 37234450 PMCID: PMC10208758 DOI: 10.1155/2023/9983499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Chinese yam (Dioscorea polystachya Turczaninow) by-product produced in the water extraction process is commonly directly discarded resulting in a waste of resources and environmental pollution. However, the value of Chinese yam by-product which still contains effective ingredients is far from being fully realized; hence, it has the potential to be a safe and effective feed additive in aquaculture. To investigate the impacts of Chinese yam by-product on growth performance, antioxidant ability, histomorphology, and intestinal microbiota of Micropterus salmoides, juvenile fish (initial weight 13.16 ± 0.05 g) were fed diets supplemented with 0% (control), 0.1% (S1), 0.4% (S2), and 1.6% (S3) of Chinese yam by-product for 60 days. The results showed that no significant difference was found in weight gain, specific growth rate, and survival among all the experimental groups (P > 0.05). Feed conversion ratios of the S1 and S3 groups were significantly lower than those in the control group (P < 0.05). SOD activity of the S3 group and GSH contents of Chinese yam by-product groups were significantly higher than those in the control group (P < 0.05). MDA levels of the S2 and S3 groups were significantly lower than those in the control group and the S1 group (P < 0.05). Besides, Chinese yam by-product could protect liver and intestine health, as well as increase the abundance of beneficial bacteria and decrease the abundance of potential pathogens. This study suggests that Chinese yam by-product has the potential to be used as a functional feed additive in aquaculture, providing a reference for efficient recovery and utilization of by-products from plant sources during processing and culturing high-quality aquatic products.
Collapse
Affiliation(s)
- Mingshi Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Xiaoxue Bao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yuhua Yue
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Binbin Tong
- Sinopharm Group Dezhong (Foshan) Pharmaceutical Co., Ltd., Foshan 528225, China
| | - Xionghui Yang
- Sinopharm Group Dezhong (Foshan) Pharmaceutical Co., Ltd., Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| | - Yingying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, China
| |
Collapse
|
28
|
Mousavi M, Gharekhani M, Alirezalu K, Roufegarinejad L, Azadmard‐Damirchi S. Production and characterization of nondairy gluten-free fermented beverage based on buckwheat and lentil. Food Sci Nutr 2023; 11:2197-2210. [PMID: 37181300 PMCID: PMC10171538 DOI: 10.1002/fsn3.3095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to optimize the formulation of buckwheat/lentil gluten-free beverages fermented with Lactobacillus plantarum and Bifidobacterium bifidum. Physicochemical parameters of 14 different beverages, such as pH, acidity, total solids, ash, total phenol content, antioxidant activity, and sensory test, were assessed after 24 h of fermentation. The results showed that the numbers of viable cells of lactobacilli and bifidobacteria on the first day of the experiment were 9.9 and 9.6 log (CFU ml-1), respectively, which were over 9 log (CFU ml-1). During 24 h from the fermentation, the number of viable cells for all beverages decreased, which reached an average probiotic count of 8.81 log (CFU ml-1) that was statistically significantly different from the probiotic count before fermentation (p < .05). Cell viability was evaluated and shelf life was estimated during 15-day refrigerated storage. At the end of the storage (15th day), the beverages contained an average of 8.4 log (CFU ml-1) of live lactobacilli cells and 7.8 log (CFU ml-1) of viable bifidobacterial cells. The optimized levels of independent factors for sprouted buckwheat and lentil flours were 51.96% and 48.04%, respectively. The optimized probiotic beverage was contained 0.25 (% lactic acid) acidity, 5.7 pH, 7.9% total solids, 0.4% ash, 41.02% DPPH, 26.96 (mg GAE/ml) phenol compounds, and 8.65 log (CFU ml-1) probiotic count. The optimized beverage had distinct organoleptic properties on day 15 of refrigerated storage. This study showed that Bifidobacterium bifidum can be used for the development of potentially probiotic beverage with sprouted buckwheat and lentil.
Collapse
Affiliation(s)
- Mir‐Hossein Mousavi
- Department of Food Science and TechnologyTabriz Branch, Islamic Azad UniversityTabrizIran
| | - Mehdi Gharekhani
- Department of Food Science and TechnologyTabriz Branch, Islamic Azad UniversityTabrizIran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural RecoursesUniversity of TabrizTabrizIran
| | - Leila Roufegarinejad
- Department of Food Science and TechnologyTabriz Branch, Islamic Azad UniversityTabrizIran
| | | |
Collapse
|
29
|
Tejedor-Calvo E, Morales D. Chemical and Aromatic Changes during Fermentation of Kombucha Beverages Produced Using Strawberry Tree (Arbutus unedo) Fruits. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The use of alternative ingredients in the production of kombucha has seen a recent increase. Our research aimed to characterize the chemical, nutritional, microbial, and aromatic profiles of kombucha beverages prepared with strawberry tree (Arbutus unedo) fruits fermented with three different SCOBYs for 21 days. The analyses showed similar levels of microbiological groups (aerobic mesophilic microorganisms, lactic acid bacteria, acetic acid bacteria, and yeasts)among the SCOBYs used. The beverages studied displayed a decrease in pH value and carbohydrate content, and protein degradation was also observed as fermentation progressed. However, the increase in total phenolic compounds during the first week proved to be a point of interest. A total of 20 volatile organic compounds were detected, giving different sensory qualities to the beverages: higher ethanol, benzaldehyde-4-ethyl, or acetic acid depending on the SCOBY used. The results obtained indicated that strawberry tree kombucha might be an alternative beverage with notable nutritional and aromatic properties, with fermentation time and SCOBY composition being identified as crucial factors.
Collapse
|
30
|
Pradhan S, Prabhakar MR, Karthika Parvathy KR, Dey B, Jayaraman S, Behera B, Paramasivan B. Metagenomic and physicochemical analysis of Kombucha beverage produced from tea waste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1088-1096. [PMID: 36908366 PMCID: PMC9998758 DOI: 10.1007/s13197-022-05476-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 10/17/2022]
Abstract
Kombucha beverage produced through fermentation of sugared tea using bacteria and yeast has gained attention for its beneficial health benefits. However, the cost linked to the raw materials often increases the upstream process expenses, thereby the overall operating expenditures. Thus, there is a need to explore alternative waste and cost-effective raw materials for Kombucha fermentation. The present study, compared the physico-chemical and microbial growth pattern of Kombucha beverage production using tea waste from the tea processing industries with that of the green/black tea, reporting similar trends irrespective of its type. Further, the amplicon sequencing of 16S rRNA showed dominant presence of Komagataeibacter rhaeticus and high throughput sequencing of ITS1 confirmed the presence of yeast species similar to Brettanomyces bruxellensis in the tea waste based Kombucha beverage. Appreciable amount of carbohydrates (8.5/100 g) and energy (34 kcal/100 g) with appropriate organoleptic properties favourable for human consumption were also observed during the nutritional content and qualitative property assessment. The overall study showed a broad taxonomic and functional diversity existing during Kombucha fermentation process with tea waste to maintain a sustained eco-system to facilitate cost-effective beverage production with desired properties for safe consumption. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05476-3.
Collapse
Affiliation(s)
- Susanta Pradhan
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - Muhil Raj Prabhakar
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - K. R. Karthika Parvathy
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - Baishali Dey
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - Sivaraman Jayaraman
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - Bunushree Behera
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| | - Balasubramanian Paramasivan
- Agricultural and Environmental Biotechnology Group, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008 India
| |
Collapse
|
31
|
Atkinson FS, Cohen M, Lau K, Brand-Miller JC. Glycemic index and insulin index after a standard carbohydrate meal consumed with live kombucha: A randomised, placebo-controlled, crossover trial. Front Nutr 2023; 10:1036717. [PMID: 36875857 PMCID: PMC9982099 DOI: 10.3389/fnut.2023.1036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Kombucha is a complex probiotic beverage made from fermented tea, yet despite extensive historical, anecdotal, and in-vivo evidence for its health benefits, no controlled trials have been published on its effect on humans. Methods We conducted a randomised placebo-controlled, cross-over study that examined the Glycemic Index (GI) and Insulin Index (II) responses after a standardised high-GI meal consumed with three different test beverages (soda water, diet lemonade soft drink and an unpasteurised kombucha) in 11 healthy adults. The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (anzctr.org.au: 12620000460909). Soda water was used as the control beverage. GI or II values were calculated by expressing the 2-h blood glucose or insulin response as a percentage of the response produced by 50 g of glucose dissolved in water. Results There was no statistically significant difference in GI or II between the standard meal consumed with soda water (GI: 86 and II: 85) or diet soft drink (GI: 84 and II: 81, (p = 0.929 for GI and p = 0.374 for II). In contrast, when kombucha was consumed there was a clinically significant reduction in GI and II (GI: 68, p = 0.041 and II: 70, p = 0.041) compared to the meal consumed with soda water. Discussion These results suggest live kombucha can produce reductions in acute postprandial hyperglycemia. Further studies examining the mechanisms and potential therapeutic benefits of kombucha are warranted.
Collapse
Affiliation(s)
- Fiona S Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marc Cohen
- Extreme Wellness Institute, Melbourne, VIC, Australia
| | - Karen Lau
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jennie C Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Abaci N, Senol Deniz FS, Orhan IE. Kombucha - An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chem X 2022; 14:100302. [PMID: 35434600 PMCID: PMC9011011 DOI: 10.1016/j.fochx.2022.100302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Kombucha, originated in China 2000 years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.
Collapse
Key Words
- ABTS, 2,2-azinobis-(3-ethylbenzotiazoline-6-sulfonic acid)
- ACE, Angiotensin-converting enzyme
- AHA, Alpha hydroxy acid
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- AMPK, Adenosine monophosphate-activated protein kinase
- AST, Aspartate aminotransferase
- ATCC, American type culture collection
- BBB, Blood-brain barrier
- Bioactivity
- Biofilm
- CAT, Catalase
- COVID-19, Coronavirus disease of 2019
- DNA, Deoxyribonucleic Acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- DSL, d-Saccharic acid-1,4-lactone
- EGCG, Epigallocatechin gallate
- FRAP, Ferric reducing antioxidant power
- Fermented drink
- GC–MS, Gas chromatography- mass spectrometry
- GGT, Gamma glutamyl transferase
- GPx, Glutathione peroxidase
- GRx, Glutathione reductase
- GST, Glutathione S-transferase
- HDL, High density lipoprotein
- HPLC, High-performance liquid chromatography
- HPLC-MS/MS, High-performance liquid chromatography- mass spectrometry/ mass spectrometry
- HPLC-UV-ESI-MS, High-performance liquid chromatography-ultraviolet- electrospray ionization-mass spectrometry
- HPLC/ESI–MS, High-performance liquid chromatography/electrospray ionization-mass spectrometry
- HbA1c, Glycosylated Hemoglobin, Type A1C
- IC50, Half maximal ınhibitory concentration
- IL, Interleukin
- Kombucha
- LC-MS, Liquid chromatography–mass spectrometry
- LDH, Lactate dehydrogenase
- LDL, Low-density lipoprotein
- LOX, Lipoxygenase
- LPS, Lipopolysaccharide
- MCD, Methionine/choline-deficient diet
- MCDM, Multi-criteria decision-making MDA, Malondialdehyde
- MIC, Minimum inhibitory concentration
- Microorganism
- NAD, Nicotinamide adenine dinucleotide
- NAFLD, Non-alcoholic fatty liver disease
- NO, Nitric oxide
- ORAC, Oxygen radical absorbance capacity
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- SASP, Senescence-associated secretory phenotype
- SCOBY, Symbiotic culture of bacteria and yeast
- SMC, Synthetic microbial community
- SOD, Superoxide dismutase
- SPF, Sun Protection Factor
- TAA, Thioacetamide
- TE, Trolox equivalent
- TEAC, Trolox-equivalent antioxidant capacity
- TG, Triglyceride
- TLC, Thin-layer chromatography
- TNF-α, Tumour necrosis factor alpha
- UVB, Ultraviolet radiation-B
- VLDL, Very low-density lipoprotein
- WGJ, Wheatgrass juice
- WoS, Web of Science
Collapse
Affiliation(s)
- Nurten Abaci
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Cad., No. 112, 06670 Ankara, Turkey
| |
Collapse
|